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Exercise 1. Determine the nondominated points of the multiobjective linear program

min

(
−3 1 1 −2
2 1 1 0

)
· x subject to x ∈ {0, 1}4

Exercise 2. Consider the monomial ideal M in K[x1, x2, x3, x4] spanned by the nondomi-
nated points from Exercise 1. Check ifM is Artinian; if not replaceM by its Artinian closure.
Compute the Alexander dual. You may use software like Macaulay2 [4] or Singular [2].

Exercise 3. Let C ⊂ TPn−1 be a tropical cone, not necessarily polyhedral. Show that there
is a unique set R ⊂ C which is minimal with respect to inclusion such that tpos(R) = C.

Exercise 4. In Exercise 3.1 we discussed the max-tropical polyhedron P = ord(P ) where
P is the Puiseux polyhedron given by the linear inequalities

x1 + x2 ≤ 2

tx1 ≤ 1 + t2x2

tx2 ≤ 1 + t3x1

x1 ≤ t2x2

x1,x2 ≥ 0

over the ordered field K of reverse Puiseux series with real coefficients. Compute the tropical
vertices of P .

***

Problem 5. Study the zero-sum matrix games with multi-dimensional payoffs introduced
by Hamel and Löhne [5, §3] in terms of tropical convexity. See also [3].

Problem 6 ([7, Question 25]). Give an interpretation of the planar resolution algorithm
from [8, §3.5] and the hull resolution from [8, §4.4] in terms of tropical convexity.

The tropical upper bound theorem bounds the number k of extremal generators of a
(monomial) tropical cone given as the intersection ofm tropical halfspaces; cf. [1, Theorem 1]
and [7, Theorem 17]. Equivalently, the number k yields the number of scalarizations required
for an n-criteria optimization problem with m nondominated points. It is known that that
the bound in [1, Theorem 1] is not tight for all parameters.

Date: 20 May 2019.



2 MICHAEL JOSWIG

Problem 7 ([7, Question 26]). Determine the exact upper bound for m as a function of n
and d. See also work of Hoşten and Morris [6] and [8, Theorem 6.33].

Problem 8 ([7, Question 27]). Which bipartite graphs occur as the vertex-facet incidence
graphs of monomial tropical cones?

Problem 9 ([7, Question 28]). To what extent does our approach generalize to multicri-
teria optimization problems which are not discrete? For instance, look into more general
semigroup rings; cf. [8, Chapter 7].
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