OPTIMIZATION AND TROPICAL GEOMETRY: EXERCISES AND PROBLEMS 1

MICHAEL JOSWIG

Exercise 1. Let $F : \mathbb{R}^d \to \mathbb{R}$ be a tropical polynomial. Show that for any fixed vector $y \in \mathbb{R}^d$ the map

$$F_y: \mathbb{R}^d \to \mathbb{R}, \ x \mapsto F(x+y)$$

is a tropical polynomial map, too. How are the tropical hypersurfaces $\mathcal{T}(F)$ and $\mathcal{T}(F_y)$ related?

Exercise 2. Consider the directed graph Γ on four nodes with the weighted adjacency matrix

$$D = \begin{pmatrix} 0 & \infty & \infty & 1 \\ 1 & 0 & \infty & \infty \\ y & 1 & 0 & \infty \\ \infty & x & 1 & 0 \end{pmatrix} ,$$

whose coefficients lie in the semiring $\mathbb{T}[x, y]$ of bivariate tropical polynomials. Find all labeled types of shortest-path trees directed to the nodes 1 and 2 (i.e., corresponding to the first two columns of D) and their dependence on x and y.

Exercise 3. Let $k \ge 1$ be a fixed integer. Construct a directed adjacency matrix $D \in \mathbb{T}[X_1, \ldots, X_k]^{n \times n}$, with separated variables, such that the number of labeled shortest-path trees (directed to some node) is maximized.

The tropical moment map of degree n-1 is defined as

(1) $m_{n-1} : \mathbb{R} \to \mathbb{R}^n : t \mapsto (t^{\odot 0}, t^{\odot 1}, \dots, t^{\odot (d-1)}) = (0, t, 2t, \dots, (n-1)t)$.

Exercise 4 (Tropical Vandermonde determinant). Pick *n* real numbers $t_1 < t_2 < \cdots < t_n$ in an ascending ordering. Let *A* be the $n \times n$ -matrix whose rows are formed by the vectors $m_{n-1}(t_1), m_{n-1}(t_2), \ldots, m_{n-1}(t_n)$. Compute tdet(A), and decide if *A* is tropically regular or singular.

The latter notions are naturally derived from the notion of vanishing of a tropical polynomial. That is, for a *tropically singular* matrix the minimum in the Leibniz expression is attained at least twice. Otherwise that matrix is called *tropically regular*.

Date: 15 April 2019.

MICHAEL JOSWIG

Problem 5. Employ the tropical geometry techniques from [2] to study parameterized flow problems. Also consult [1]. Specifically,

- (a) Find and prove a parameterized version of the max-flow min-cut theorem.
- (b) What are the consequences does this have for parameterized minimum or maximum matching problems?
- (c) What can you say about the optimal complexity of parameterized flow algorithms for a fixed number of parameters?
- (d) What about *b*-transshipment?

References

- Giorgio Gallo, Michael D. Grigoriadis, and Robert E. Tarjan, A fast parametric maximum flow algorithm and applications, SIAM J. Comput. 18 (1989), no. 1, 30–55. MR 978165
- Michael Joswig and Benjamin Schröter, The tropical geometry of shortest paths, 2019, Preprint arXiv:1904.01082.

(Michael Joswig) Institut für Mathematik, TU Berlin, Str. des 17. Juni 136, 10623 Berlin, Germany

Email address: joswig@math.tu-berlin.de