## THIRD QUESTION

MICHAEL JOSWIG

## 3. How large is a Gröbner basis?

Problem 1. Consider the set $G=\left\{y^{5}, x^{3} y^{2}, x^{4}\right\}$ in $\mathbb{Q}[x, y]$. Show that $G$ is a Gröbner basis with respect to the pure lex ordering with $x>y$.

Problem 2 (Möller \& Mora 1984). Fix $d \geq 2$. In the polynomial ring $\mathbb{Q}\left[x_{0}, x_{1}, x_{2}\right]$ consider the ideal

$$
\left\langle x_{2}^{d}, x_{0}^{d-1} x_{2}-x_{1}^{d}\right\rangle .
$$

Show that the reduced degree lexicographic Gröbner basis of $I$ contains the monomial $x_{1}^{d^{2}}$.

Problem 3 (Decker \& Lossen 2005). In the polynomial ring $\mathbb{Q}[x, y, z]$ compute a (degree reverse lexicographic) Gröbner basis for the ideal

$$
\left\langle 3 x^{3} y+x^{3}+x y^{3}+y^{2} z^{2}, 2 x^{3} z-x y-x z^{3}-y^{4}-z^{2}, 2 x^{2} y z-2 x y^{2}+x z^{2}-y^{4}\right\rangle .
$$

What about, say, a lexicographic Gröbner basis?
Problem 4 (Kotsireas 2001). In the polynomial ring $\mathbb{Q}[B, D, F, b, d, f]$ let $G$ be the reduced degree reverse lexicographic Gröbner basis of the ideal

$$
\left\langle\begin{array}{cc}
(b-d)(B-D)-2 F+2, & (b-d)(B+D-2 F)+2(B-D), \\
(b-d)^{2}-2(b+d)+f+1, & B^{2} b^{3}-1, \\
D^{2} d^{3}-1, & F^{2} f^{3}-1
\end{array}\right\rangle .
$$

a. What is the largest absolute value of a coefficient occurring in some polynomial in $G$ ?
b. How large is the transformation matrix (text output, size in bytes)?
(Michael Joswig) Technische Universität Berlin, Chair of Discrete Mathematics/Geometry, Max-Planck Institute for Mathematics in the Sciences, Leipzig, joswig@math.tu-berlin.de

