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What is tropical geometry about? Back in 2005 an influential paper by Richter-Gebert,
Sturmfels and Theobald [11] answered that question in the following way: “Tropical
algebraic geometry is the geometry of the tropical semiring (R,min,+). Its objects are
polyhedral cell complexes which behave like complex algebraic varieties.” Let us look at
plane algebraic curves and their tropicalizations to get an idea how this works. To this
end consider a plane algebraic curve C, which arises as the vanishing locus of a single
bivariate polynomial f (over an algebraically closed field K of characteristic zero). Instead
of picking the complex numbers for K, however, here it is more rewarding to take the field
of formal Puiseux series with complex coefficients. These are the formal power series with
rational exponents which share a common denominator. Puiseux series have been used for
the resolution of singularities. As their special feature they admit a non-trivial valuation
by sending Puiseux series to their smallest exponents. The tropicalization of the algebraic
curve C now arises from applying the valuation map to C pointwise and coordinatewise.
One then defines the tropical plane curve T (C) as the topological closure of the image
of the valuation map in R2. The tropical curve T (C) is an unbounded one-dimensional
polyhedral complex, equipped with integral weights, which still “knows” a lot about the
original curve C. For instance, from T (C) one can see the Newton polygon and thus the
degree of C. Moreover, the dimension of the space of cycles of T (C), seen as a planar
graph, equals the arithmetic genus of C. Again by employing the valuation map, one can
also tropicalize the polynomial f which defines the algebraic curve C. It is an essential
feature that, via polyhedral combinatorics, one can obtain the tropical curve T (C) also
directly from the tropicalization of f , which is a polynomial over the tropical semi-ring
(R,min,+); see [6].

To explain the concept let us look at the quadratic bivariate polynomial

f(x, y) = t+ x− tx2 + y + t2y2

with coefficients in the field C{{t}} of complex Puiseux series, which are power series in t
with rational exponents. The curve C defined by f is a conic. To visualize the shape of
C it is helpful, for a brief moment, to think of t as a small positive real number. Then
f would become a bivariate real polynomial whose real locus is a hyperbola. However,
we return to computing with Puiseux series. For any given ξ ∈ C{{t}} we can solve the
equation f(ξ, η) = 0, and we arrive at
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For instance, we can substitute ξ = t−3/2 and obtain
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The square root of −t−7/2 + 5/4t−4− t−1 now is a Puiseux series whose lowest order term
equals ±it−7/4, where i is the imaginary unit. This implies that η = −1/2t−2, up to terms
of higher order. Applying the valuation map to the point (t−3/2,−1/2t−2 ± it−7/4 ± · · · )
on the algebraic curve C gives the point (−3/2,−2) on the tropical curve T (C). This
tropical curve, which is a one-dimensional polyhedral complex in the plane such that each
edge receives 1 as its weight, is shown in Figure 1 (left). The same figure displays a more
interesting tropical curve on the right. There is software for computing with tropical
curves and more general tropical varieties, e.g., Gfan [8] and polymake [7].
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Figure 1. Left: tropical quadric T (C) discussed in the example with the
point (−3/2,−2) marked. Right: tropical hyperelliptic curve of genus three
and degree six. Two of its unbounded edges have weight two.

The theory of tropical geometry actually started with a breakthrough. Mikhalkin had
recognized [10] that tropical curves can replace complex algebraic curves in a geometric
counting problem which occurred in Kontsevich’s work on Gromov–Witten invariants of
symplectic manifolds; see [9] and §1.7 in the book under review. Since then there has been
a rapid development of tropical geometry into all possible directions. Interestingly, that
development even works backward in time. For instance, a result of Bieri and Groves on
the Krull dimension of a certain ring related to the logarithmic limit-set of an algebraic
variety [2], which goes back as far as 1984, is now seen as an early contribution to tropical
geometry. Furthermore, there is also a deep connection to optimization. This should
not be too surprising, as the tropical addition min (or max; there is no global agreement
among researchers in tropical geometry which one is to be preferred) is expressed in terms
of an optimization problem. For instance, the optimization of discrete event systems as
described in the monograph [1], is now seen as a part of linear tropical geometry (and
this is discussed in the book under review in Chapter 5). One possible way to sum up the
fruitful interaction between algebraic geometry and combinatorial optimization via trop-
ical geometry is the following: Optimization gains a unified view on aspects which were
previously perceived as unrelated, and algebraic geometry benefits from combinatorial
methods which are inherently algorithmic.
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Today it is impossible to describe all features of tropical geometry on a few pages or even
in a single book. Therefore, it is necessary to explain the approach taken by Maclagan
and Sturmfels. Let I be an ideal in a polynomial ring R in, say, d indeterminates and
with complex coefficients. If we assume I to be homogeneous, then each (generic) vector
in Rd gives rise to a term order on R. This entails that such a weight vector is associated
with a unique reduced Gröbner basis, defined by that term order. Conversely, for each
reduced Gröbner basis, we can collect all its weight vectors. Those form a relatively
open polyhedral cone. Taking all these cones and admitting non-generic weights, too,
yields the Gröbner fan of the homogeneous ideal I. The monograph [13] by Sturmfels
gives a comprehensive treatment of this topic, which includes the polyhedral geometry
background, algorithms and the relationship to solving systems of polynomial equations.
How is this related with tropical geometry? We return to our initial example of an
algebraic curve C defined by a bivariate polynomial f . However, now we assume that
f does have complex coefficients, which, by the way, are special Puiseux series whose
valuations are zero. This situation is known as constant coefficients, and in this case
the tropical curve T (C) can be recovered from the Gröbner fan of the principal ideal
I spanned by the homogenization of f : the points on T (C) correspond to the non-
generic weight vectors w such that the generalized initial ideal inw(I) does not contain
any monomial. This provides an approach to general tropical varieties (with constant
coefficients) which was pioneered by Speyer and Sturmfels in their celebrated paper on
the tropical Grassmannians [12]. The Chapters 2 and 3 of the book under review are
devoted to developing the theory of tropical geometry from this point of view. Here
the book greatly extends what was available in the literature previously, since it gives
the first comprehensive treatment to rigorously include the non-constant coefficient case.
Most importantly, this requires to replace the Gröbner fans by the more general Gröbner
complexes in §2.5, and this also includes the key algorithm for computing a general tropical
basis in §2.6 (which extends the method from [3] to non-constant coefficients). From this
outset it becomes clear that the book is organized around the tropicalization of varieties
with respect to a fixed embedding, and this allows for explicit computations.

Chapter 4 carries the title “Tropical Rain Forest”. That name is motivated by the fact
that the combinatorics of metric trees occur quite naturally in the context of tropical
geometry. The core pieces of the chapter are the two sections §4.3 on the tropical Grass-
mannians and §4.4 on tropical linear spaces. Classically, the Grassmannian Gr(k, n) is an
algebraic variety which parameterizes the k-dimensional subspaces of an n-dimensional
vector space, over some field K. For K = C (so we are back to constant coefficients), Speyer
and Sturmfels [12] studied a tropical analog. Due to the homogenization the case k = 2
corresponds to lines in projective (n−1)-space, and their tropicalizations are the trees with
n marked leaves. Generic metric trees are those where each interior node has valence 3.
They naturally occur in phylogenetics, a field in (not only computational) biology which
seeks to derive ancestral relations among given species or individuals. These phylogenetic
trees are the tropical linear spaces, corresponding to the points on the tropicalization of
Gr(2, n). For higher values of k they generalize into (duals of) regular subdivisions of a
class of convex polytopes, called hypersimplices. This part of the theory is closely related
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to matroid combinatorics (which is why §4.2 gives an introduction to matroids). The spe-
cial case of tropical linear spaces for k = 3 is deferred until §5.4. The fifth chapter offers a
geometric perspective on the linear algebra over the tropical semiring. Finally, Chapter 6
contains an in-depth discussion of the relationship between tropical and toric geometry
[5]. This includes a detailed discussion of the moduli space M0,n of n labeled points on the
projective line. Its tropicalization is the space of phylogenetic trees which, up to lineality,
occurs as tropical Gr(2, n) in Chapter 4. The Deligne–Mumford compactification M0,n of
stable genus zero curves with n marked points is explicitly described in tropical and toric
terms. This is a highlight in the book.

Who should read the book? Everybody who wants to learn what tropical geometry can
be about. If you are unsure, look at the introductory chapter: it displays a multitude of
connections of tropical geometry to other areas of mathematics. Who can read the book?
The authors specifically mention the text books by Ziegler [14] (on polytopes) and Cox,
Little, O’Shea [4] (on commutative algebra) as prerequisites. This background is certainly
necessary, but the non-expert reader needs to be prepared to occasionally follow a few
more links (given in the book). Sometimes it could have been useful to have even a few
more references for more details on the historical context. What is missing in the book?
Abstract tropical curves are only mentioned in passing, and the ramifications into opti-
mization are only scratched. Further, there is barely any enumerative geometry, mirror
symmetry, real algebraic geometry or patchworking. This is no complaint. To the con-
trary, these omissions help to give the book a clear shape. The result is a straight path to
tropical geometry via combinatorial commutative algebra and polyhedral combinatorics.
In this way, the book by Maclagan and Sturmfels will become a standard reference in the
field for years to come.

References

1. François Louis Baccelli, Guy Cohen, Geert Jan Olsder, and Jean-Pierre Quadrat, Synchronization
and linearity, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical
Statistics, John Wiley & Sons Ltd., Chichester, 1992, An algebra for discrete event systems.

2. Robert Bieri and J. R. J. Groves, The geometry of the set of characters induced by valuations, J.
Reine Angew. Math. 347 (1984), 168–195.

3. Tristram Bogart, Anders N. Jensen, David Speyer, Bernd Sturmfels, and Rekha R. Thomas, Com-
puting tropical varieties, J. Symbolic Comput. 42 (2007), no. 1-2, 54–73.

4. David A. Cox, John Little, and Donal O’Shea, Ideals, varieties, and algorithms, fourth ed., Under-
graduate Texts in Mathematics, Springer, Cham, 2015, An introduction to computational algebraic
geometry and commutative algebra.

5. David A. Cox, John B. Little, and Henry K. Schenck, Toric varieties, Graduate Studies in Mathe-
matics, vol. 124, American Mathematical Society, Providence, RI, 2011.

6. Manfred Einsiedler, Mikhail Kapranov, and Douglas Lind, Non-Archimedean amoebas and tropical
varieties, J. Reine Angew. Math. 601 (2006), 139–157.

7. Ewgenij Gawrilow and Michael Joswig, polymake: a framework for analyzing convex polytopes,
Polytopes—combinatorics and computation (Oberwolfach, 1997), DMV Sem., vol. 29, Birkhäuser,
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