#### Flies and regular subdivisions

#### Michael Joswig

TU Berlin & MPI-MiS Leipzig

14 Dec 2023



joint w/ Holger Eble Lisa Lamberti Will Ludington

©Thomas Endler

#### 1 Mathematics

epistasis fitness landscapes cluster partitions and dendrograms

2 Statistics significance test

Biology E.coli evolution Drosophila microbiome

Michael Joswig (TU Berlin & MPI-MiS)

#### Regular subdivision of a point configuration Epistasis [Bateson 1909]

- point set V in  $\mathbb{R}^n$ 
  - *n*-biallelic genetic system  $V = \{0, 1\}^n$
- lift to  $\mathbb{R}^{n+1}$  via height function  $h: V \to \mathbb{R}$ • phenoytpe • take upper convex hull and project back • yields subdivision S(V, h) of conv(V) • lift to  $\mathbb{R}^{n+1}$  via height (1, 0, 46.65) (0, 0, 53.25) (1, 1, 43.48) (0, 0, 53.25) (0, 1, 43.16)
- generic height function  $\rightsquigarrow$  triangulation
  - lifted points coplanar  $\iff$  no biological interaction

Michael Joswig (TU Berlin & MPI-MiS)

Flies and regular subdivisions

#### Epistasis and shapes of fitness landscapes

Beerenwinkel, Pachter & Sturmfels 2007

Consider *n*-biallelic system  $V = \{0,1\}^n$  with phenotype  $h: V \to \mathbb{R}$ .

- (relative) population = map  $p: V \to \mathbb{R}_{\geq 0}$  with  $\sum_{v \in V} p(v) = 1$
- allele frequency vector  $ho(p) := \sum_{v \in V} p(v) v$  contained in  $[0,1]^n$
- $\Delta_V :=$  set of all relative populations = simplex of dimension  $2^n 1$
- for fixed  $w \in [0,1]^n$ :

maximize 
$$h \cdot p$$
  
subject to  $p \in \Delta_V$  and  $\rho(p) = w$   $(LP(h, w))$ 

- if h and w generic then LP(h, w) has unique optimal solution, the fittest population p<sup>\*</sup> = p<sup>\*</sup>(h, w) = vertex of {p ∈ Δ<sub>V</sub> | ρ(p) = w}
- optimal value of LP(h, w) is  $h \cdot p^* = \sum \lambda_i(h(v_i))$
- piecewise linear function  $h^* \colon [0,1]^n o \mathbb{R}$ ,  $w \mapsto h \cdot p^*(h,w)$
- regions of linearity of  $h^* = \max$  cells of  $\mathcal{S}(V, h)$

Michael Joswig (TU Berlin & MPI-MiS)

#### The epistatic weight of a dual edge

Let V be vertex set of some *n*-polytope, equipped with generic height function h. Thus S = S(V, h) is a triangulation. For

$$s = \text{conv}\{v_1, v_2, \dots, v_{n+1}\}$$
 and  $t = \text{conv}\{v_2, v_3, \dots, v_{n+2}\}$ 

two adjacent *n*-simplices of S define

$$E_h(s,t) := \begin{pmatrix} 1 & v_{1,1} & v_{1,2} & \dots & v_{1,n} & h(v_1) \\ 1 & v_{2,1} & v_{2,2} & \dots & v_{2,n} & h(v_2) \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & v_{n+2,1} & v_{n+2,2} & \dots & v_{n+2,n} & h(v_{n+2}) \end{pmatrix}$$

The epistatic weight of the dual edge (s, t) is

$$e_h(s,t) := |\det E_h(s,t)| \cdot \frac{\operatorname{nvol}(s \cap t)}{\operatorname{nvol} s \cdot \operatorname{nvol} t}$$

statistics

## Cluster partitions and epistatic filtrations

Consider S = S(V, h), with dual graph  $\Gamma$ .

Picking threshold value  $\theta \ge 0$  yields

•  $\Gamma(\theta) = \Gamma$  minus dual edges of epistatic weight  $> \theta$ 



- induces partition of  $\Gamma(\theta)$  into  $\theta$ -clusters
- 0-cluster = single facet; ∞-cluster = all facets
- epistatic filtration  $\Gamma(0) < \Gamma(\theta_1) < \cdots < \Gamma(\theta_\ell) = \Gamma$ , linearly ordered by refinement

## Example: nonunimodular triangulation of $[0, 1]^3$

Consider triangulation  $S([0,1]^3, ttd)$  with five maximal simplices:

 $A = 000 \ 100 \ 110 \ 101 \quad B = 000 \ 001 \ 101 \ 011 \quad C = 000 \ 010 \ 110 \ 011 \\ D = 000 \ 110 \ 101 \ 011 \quad E = 110 \ 101 \ 011 \ 111$ 



Flies and regular subdivisions

#### Height functions as random variables

Fix simplices s and t with joint vertices  $v_1, v_2, \ldots, v_{n+2}$  and random variables  $X_{v_i}$ . We set

$$\lambda_i := (-1)^{n+i} \det(E_i) \cdot \frac{\operatorname{nvol}(s \cap t)}{\operatorname{nvol} s \cdot \operatorname{nvol} t}$$

Then the expectation of the random variable  $e_X(s, t)$  satisfies

$$\Big| \sum_{i=1}^{n+2} \lambda_i \mathbb{E}(X_{v_i}) \Big| \leq \mathbb{E}(e_X(s,t)) \leq \sum_{i=1}^{n+2} |\lambda_i| \mathbb{E}(X_{v_i}) .$$

If the random variables  $X_{v_i}$  are independent, then

• variance can be bounded, too.

If additionally, each random variable is normally distributed, then

• folded normal distribution

#### Significance test for one epistatic weight

Let (s, t) be a dual edge of S.

- distribution mean  $\mu = \mathbb{E}(e_X(s, t))$  of random variable  $e_X(s, t)$  not known exactly
- wanted: one-sided test of significance with null hypothesis  $\mu = 0$  vs. alternative  $\mu > 0$

Assumption: random variables  $X_v$  normally distributed (and independent)

• for sample mean  $Z=e_{ar{X}}(s,t)$  then

$$P(X \ge Z) = \int_{Z}^{\infty} \frac{\sqrt{2}}{\sigma_{e_{\bar{X}}(s,t)}\sqrt{\pi}} e^{-\frac{1}{2}\left(\frac{x}{\sigma_{e_{\bar{X}}(s,t)}}\right)^2} dx$$

Definition

dual edge (s, t) significant if  $P(X \ge Z) < 0.05$ 

Michael Joswig (TU Berlin & MPI-MiS)

Flies and regular subdivisions

#### A synthetic experiment

For  $V = \{0,1\}^5$ ,  $\eta(v) = 5$  (for  $v \neq 0$ ),  $\eta(0) = 5 - \eta_0$ ,  $0.8 \le \eta_0 \le 1.2$  the regular subdivision  $\mathcal{S}(V,\eta)$  is a vertex split.

- to each vertex we assign normally distributed random variable with mean  $\mu = 0$  and standard deviation  $0.1 \le \sigma \le 2.0$
- 100 realizations per vertex
- for fixed  $(\eta_0, \sigma)$  repeat experiment 100 times; try  $p \in \{0.05, 0.1\}$



Michael Joswig (TU Berlin & MPI-MiS)

Flies and regular subdivisions

## E.coli evolution. Data set: Khan et al. 2011



- significant 4D interaction: 00001+00000|01001|00101|00011+00010
- <u>ribosome-binding</u> <u>site</u> mutation = master regulator

Michael Joswig (TU Berlin & MPI-MiS)

Flies and regular subdivisions

# Marginal and conditional epistasis

#### parallel epistatic filtration



Michael Joswig (TU Berlin & MPI-MiS)

Flies and regular subdivisions

## Drosophila microbiome. Data set: Ludington lab



Lactobacilli = master regulators

Michael Joswig (TU Berlin & MPI-MiS)

## Conclusion

- new method to process epistatic data in biology
  - ties in with previous approaches
  - provides a test for statistical signifance
  - agrees with established biological results
- new way to visualize high-dimensional data
  - works for arbitrary regular subdivisions
  - e.g., tropical hypersurfaces (which are dual to regular subdivisions)

Holger Eble, Michael Joswig, Lisa Lamberti, and William B. Ludington, Cluster partitions and fitness landscapes of the *Drosophila* fly microbiome, J. Math. Biol. **79** (2019), no. 3, 861–899.

\_\_\_\_\_, Master regulators of biological systems in higher dimensions, Proc. Natl. Acad. Sci. USA **120** (2023), no. 51.

#### **Epistatic Filtrations Calculator**

This is an online client for computing higher-order epistatic interactions as detailed in the articles [1] and [2]. It was implemented as polymake extension and can be found online on GitHub. If you found this useful for your scientific work, please cite our paper [1].

The input is a sequence of genotype-phenotype maps, where several phenotypes for the same genotype are considered as independent measurements, thus giving rise to a distribution of phenotypes. Genotypes are 0/1-vectors (i.e., here we are treating the bialletic case only), and phenotypes are real numbers. The entire dataset is supposed to be contained in a single file of type csv (ASCII text, comma separated values). Such files can be exported from standard spreadsheet software.

#### Upload csv file

The input csv file must be in the precise format shown in the exemplary screenshot on the right hand side:

 The genotypes are placed in the first data row. Their coordinates are separated by vertical bars, e.g. 0|0|1|0.

 Right below the genotypes, the measured data is placed accordingly. The columns are allowed to be of varying size.

Browse... No file selected.

UPLOAD

Please upload a file.

|     | A                | 8                | c                | D                | t                |                   | 0                 |
|-----|------------------|------------------|------------------|------------------|------------------|-------------------|-------------------|
| 1   | 0000             | 1000             | 01.00            | 11100            | 0810             | 1010              | 21110             |
| 2   | 22.9011017579997 | 30.9429507160622 | 27.5756949723774 | 26 6000502668911 | 36.7774537313254 | 29.4425522009011  | 35.6519903130113  |
| 5   | 35.7168337876638 | 39.4011308564725 | 37.8786810917444 | 35 0368667221781 | 38.8792772637526 | 35.1163150123822  | 39.7506324557508  |
| -4  | 36,240245765099  | 36,2515009646465 | 37.5617934985354 | 35.229167702089  | 38 6345799259873 | 38.1129600113049  | 35.5900446834222  |
| 5   | 29.0687752625806 | 29.9291290095442 | 27.2644548653486 | 28.0117702941225 | 27.7644532082566 | 25.0454675513194  | 39.6216432905179  |
| 6   | 38.0834665530048 | 38.330890345412  | 39.8803917421471 | 37.4698135176683 | 35.940(139433083 | 38 9668985711843  | 38.0256440801781  |
|     | 25.1713755956474 | 37.1191609050133 | 36.5322243977312 | 38.2965453696180 | 37.0087054975879 | 37.5509956277705  | 35.9481420294800  |
| 8   | 22.5489929542906 | 37.6426247872546 | 37 9277208092285 | 27 3254379722526 | 28 8948244285202 | 25.9725726517754  | 22.051150200948   |
| 9   | 37.7496381965728 | 35.4837(03438088 | 37.4540499177455 | 38.4314249995784 | 38.9149488132751 | 39.9132877353811  | 35.4452752842768  |
| 10  | 25.4993005214004 | 36.2580243443468 | 35 2123307167015 | 37.2742929473003 | 36.5375024085427 | 35.1063841542794  | 37.9563033572926  |
| 11  | 35.3509087766303 | 30.6660674103255 | 37.4319904175584 | 36 7947660146652 | 38 1114785410874 | 35.2675834159263  | 36.3637769571392  |
| 12  | 37.4133626630753 | 36.0725553603472 | 36.5276838079649 | 36.3250549637007 | 38 9680191714715 | 33.3706940642357  | 35.0580652815287  |
| 53  | 25.0000076071246 | 28.777803507902  | 25.4238306465004 | 37 5199671000006 | 28 0743237822859 | 35.0782189823433  | 35.2114000755889  |
| 14  | 38.4185698015464 | 39.9038900426152 | 35.1274856820988 | 36.4735729672026 | 38 8147023382591 | 39.064741849961   | 35.5249813127721  |
| 15  | 35.5777906426054 | 35.5647294263056 | 36.1378778090499 | 37 0528464225353 | 35.5050369557953 | 35.75867799629369 | 35.4580723130438  |
| .16 | 29.2921600047848 | 29.5180894517565 | 30.6653411005724 | 29.962918477217  | 29.7022922439352 | 37.7563995004641  | 37.0434471903429  |
| 17  | 35.9655221071829 | 39.0226847796473 | 39.9962528371282 | 37 2030652107921 | 38 3554573230555 | 38.0184653867856  | 38.9175696832118  |
| 10  | 37.5506272374200 | 35.4350052579078 |                  | 37 9332778877411 | 38.6008730454563 | 35.2471145318018  | 37.3474593815     |
| 19  | 29.6145310905821 | 35.0892525417399 |                  | 28.8557107915229 | 36 3913452157316 | 25.6201885646564  | 37.7360899201575  |
| 20  | 39.7270979634429 | 35.2171801496024 |                  | 38 2014358454111 | 38 0935381604434 | 37.8628655647553  | 39.4821339305088  |
| .21 |                  | 37.2729918209062 |                  | 35 2994345605805 | 37.6454481907297 | 38.1657533111825  | 38.5417742406547  |
| 22  |                  | 37.1605709623179 |                  | 29.4302551729912 | 26.31637347766L9 | 25.297645807723   | 25.6120H16179612  |
| 23  |                  | 36.5784218762513 |                  | 38 9503943547888 | 35.547135933012  | 35.4381099060005  | 35.3175127333538  |
| .24 |                  | 35.8974501963318 |                  | 38.8633929681687 | 39.8946172111015 | 35.8141790292366  | 36.3377264963351  |
| 25  |                  | 20 1891979067362 |                  | 25.3473067911909 | 27.8207056002459 | 29.950489972051   | 20.6252620505209  |
| 26  |                  | 37.4812358724338 |                  | 38.3828387630611 | 35.521075713351  | 38.3135424200262  | 38,7243317903409  |
| 27  |                  |                  |                  | 36 8439009762065 | 36.4501258100312 | 37.0099157911208  | 35.0953553142873  |
| 25  |                  |                  |                  | 25.4764364777506 | 29.4202185649121 | 28.8922650720825  | 26.621622730845   |
| 29  |                  |                  |                  | 38 8988105329605 |                  | 36.254271881395   | 37.7025040998132  |
| 20  |                  |                  |                  | 37 1190709187300 |                  | 38.1199634023067  | 37.0940735819822  |
| 31  |                  |                  |                  | 35 2396182935233 |                  | 37.6289864390294  | 29.0259507828365  |
| .22 |                  |                  |                  |                  |                  | 35.0643715665375  | 35.5312490094993  |
| 33  |                  |                  |                  |                  |                  | 25.0646900957207  | 25.7202N54465538  |
| 34  |                  |                  |                  |                  |                  | 37.3870714399827  | 37.2359827716766  |
| Z.  |                  |                  |                  |                  |                  | 37.6252663216045  | 37.3294063964268  |
| 36  |                  |                  |                  |                  |                  | 25.0085677234521  | 37.7671256824527  |
| 37  |                  |                  |                  |                  |                  | 39.6658312515066  | 35 7209273900335  |
| .20 |                  |                  |                  |                  |                  | 37.7254462995063  | 36.9473395264768  |
| 39  |                  |                  |                  |                  |                  | 38.7993452213677  | 35.0542535443458  |
| -40 |                  |                  |                  |                  |                  | 38.2285826330847  | 39.60823556220103 |

