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ANALYTIC ASPECTS OF MULTILEVEL
LARGE DEVIATIONS!

By D.A. DawsoN AND J. GARTNER
Fields Institute Toronto and Technical Unwwersity Berlin

This is a continuation of our paper [4] on multilevel systems of diffusions. Here
the focus is on multilevel large deviations for noninteracting diffusions. However,
the tools developed in this paper may also be used to include mean field inter-
actions. Given M N independent copies &;;(t), i =1,..., M, j=1,...,N, of a
non-degenerate R%valued diffusion, we consider the level II empirical processes
EMN () = M~ M, 555\7(0, where ZN (1) = N1 Ej\le S¢;; (1) denote the cor-
responding level T processes. Although the study of dynamical large deviations
was initiated in [4], the method there was in fact only applied to obtain an integral
representation of the rate function for a simple caricature of such a hierarchical
model. The main objective of this paper is to provide an appropriate integral
representation for the rate function describing the exponential decay of large de-
viation probabilities for the processes ZMN () as M, N — oco. This requires the
development of new tools which may also be of more general interest. In par-
ticular, we introduce an appropriate class of distributions on spaces of measures,
provide an analogue of the Weierstrass polynomial approximation for functions of
measures, and consider dual de Finett1 approximations.
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1. Introduction and statement of main result.

1.1. BACKGROUND AND MOTIVATION. Multilevel systems of diffusions were
introduced in Dawson and Gértner [3] in order to model and study equilibrium
and nonequilibrium phenomena. These models arise as a generalization of the
well-known mean field models but reflect more closely than do mean field models
the qualitative behavior of short and intermediate range systems. An impor-
tant feature of this class of models is that for large, but finite, system size the
corresponding effects are organized in multiple time scales, and in fact this pro-
vides a caricature of the behavior of short range systems at successively larger
spatial scales. Dynamical large deviations play an important role in the study
of these questions. A systematic study of multilevel dynamical large deviations
was initiated in Dawson and Géartner [4]. Although this was motivated by the
problem of two-level empirical measure processes coming from a system of in-
teracting diffusions, the method was in fact only applied to obtain an integral
representation of the rate function for a simple caricature of such a hierarchical
system of diffusions. This caricature involved the study of empirical measures
of diffusions in R?, and we were able to use the theory of distributions on R?. In
the present paper we now turn to the study of the multilevel system of diffusions
which requires the development of new tools for the study of multilevel empirical
measures. In particular, we introduce an appropriate class of distributions on
spaces of measures and distribution-valued functions which may also be of more
general interest. We also develop an analogue of Weierstrass polynomial approx-
imation for functions of measures and consider dual de Finetti approximations.
Here the focus is on multilevel large deviations for noninteracting diffusions.
However, the tools developed in this paper may also be used to include mean
field interactions as in Dawson and Gértner [2].

1.2. MULTILEVEL SYSTEMS OF INDEPENDENT DIFFUSIONS. Let (£(+), Py )
be a diffusion in R? on a fixed time interval [0, T] with time dependent generator

d

L-—1 s aﬁtiaz bata
7 Z ™, )8:1;aaxﬁ +Z S )ax—a

a,f=1 a=1

P, s is the probability law on the path space C([0,T];R¢) of the diffusion
with trajectories £(t) starting at a at time s. The family of probabilities
{P,s; (z,5) € R4 x [0,T]} will be considered as the solution to the martingale
problem for {L; t € [0,7]}. We will assume throughout that the coefficients
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a:RTx[0,T] - R?@ R? and b: R? x [0,7] — R? are continuous, the diffu-
sion matrix a(x,t) is strictly positive definite for all (x,¢), and the martingale
problem is well-posed. We will write P, instead of P, .

Let M(E) and C(]0,T]; E) denote the space of probability measures on
a Polish space E equipped with the topology of weak convergence and the
space of continuous paths [0,7] — E furnished with the topology of uniform
convergence, respectively. Given a natural number N, MY (E) will denote
the closed subspace of M(E) consisting of N-point empirical measures, i.e. of
measures of the form

1
(1.1) /,L:NZ&“, T1,...,eN € E,

=1

where ¢, denotes the Dirac measure at point x. The integral of a function ¢
with respect to a measure p and the application of a distribution g to a test

function ¢ will both be denoted by (u, ¢).

Given N independent copies &1(-),...,En(+) of our diffusion process, the
level I empirical process (EN(-),PIiV) is defined by

1 N
=V(t) = 5 > e
=1

This process lives in the space M; = M(R?). Given an initial measure
p € MY = MN(R?) of the form (1.1), 775 is the law of ZV(.) on C; =
C([0,T); M) under Py, @--- @ Py, .

Now, given natural numbers M and N, consider M independent copies

EN(), ..., =28 () of our level I empirical process ZV(-). Then the level II em-

pirical process (ZMN (), PMN) is defined by

1 M
=M = g7 2 0o
=1

This process lives in My := M(Mj). For v € M¥N = MM (ML) of the

form

M
1
V:MZ(SNM /“le"'v/uLMEM?fv
=1

PMN is the law of ZMN () on Cj; := C([0,T]; M) under 7751 Q- ® PliVM.
We will identify M¥Y with the subspace of MM (M) consisting of measures
which are concentrated on Mﬁv

Let us next review the behavior of the level I process =V (-). Assume that
the initial measures py = HN(O) € Mﬁv satisfy uny — po in My as N — oo.
Then, by the dynamical law of large numbers, =¥ () converges in distribution
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to a deterministic measure-valued process u(-) = p(-;po) given by the weak
solution of the Fokker-Planck equation

fi(t) = Lip(1),
M(O) = Ho,

where L} 1s the formal adjoint of Ly.

In Dawson and Gartner [2] it was shown that the level I family of probability
measures {73,])7; 1 € MY} satisfies the large deviation principle as N — co with
scale N and rate function S. The latter has the integral representation

12) S =5 [ WAt = il

if 1(+) € C; is absolutely continuous as a D'(R%)-valued function and S(u(-)) =
oo otherwise, where

(. 6)|”

(1.3) 19)12, = sup ——, 9 € D'(RY),
BT epy (1, [ VO
and
d
o6 0o
2 _ aB. d
(1.4) Vol —ﬁZZ (5 aps  ¢E€DRY.

We denote by D(R?) the Schwartz space of '™ functions on R¢ with compact
support and by D'(R?) the corresponding space of distributions. Note that the
supremum in the definition of || - Hi,t has to be restricted to such ¢ for which

(4, |qu|f> # 0. For simplicity of notation, we will not indicate this explicitly
here and in similar expressions later on.

Let us now switch to the level II picture. Assume that the initial measures
VMN = EMN(O) € M%N converge weakly to a measure v in My;. Then the
corresponding law of large numbers limit as both M and N go to infinity of
the level IT empirical process =M% (.) is given by the deterministic M j;-valued

process

(L5) ) = [ Suta vl

where p(-; o) is the level I law of large numbers limit. The measure-valued
path v(-) is also a weak solution of a differential equation

(1.6) D(t) = Liv(t).

In order to give a precise meaning to this equation we have to introduce new
spaces D(My), D'(M) of test functions and corresponding distributions on a
space of probability measures. Then the operator £; maps M into D'(M;j)
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and is the formal adjoint of the operator £; acting on functions f € D(My)
given by

Cif(p) = [ LDf)(e) da),

The derivative Df is defined by

Lim~y ™" [f((1 =y +v) — f(p)] = (v —p, Df(p))

40

for all p,v € Mj. Precise definitions of Df and corresponding higher order
derivatives will be given in Section 3.1 where we will also introduce and system-
atically study the Schwartz spaces D(M) and D'(My). These spaces will be
constructed in analogy with the ‘classical’ Schwartz spaces D(R?) and D'(RY),
except that the notion of compact support has to be replaced by a different
notion, namely, compact argument domain. A function f is said to have com-
pact argument domain if f(u) depends on the measure p only via its mass
distribution on a compact subset of R,

1.3. MULTILEVEL LARGE DEVIATIONS. INTEGRAL REPRESENTATION OF
THE RATE FUNCTION. We now turn to the investigation of large deviations for
the level II family {PMN; v € MMV} of probability measures.

THEOREM 1.1. The family {PMY: v € MMUNY satisfies the large deviation
principle as both M and N tend to infinity with scale MN and a certain rate
function S: Crr — [0,00]. More precisely, given vyyn € MUY and v € My,
suppose that vyyny — v in Myr as M,N — oo. Then

(1) for each open subset G of Cyy,

lim inf MlN log PMN (@) > —inf{S(Q(-)): Q(-) € G, Q(0) = v};

14
M,N—co MN

(11) for each closed subset F of Cry,

1
limsup 77 log Py (F) < —inf{S(Q(-)): Q(-) € F, Q(0) = v};

(111) for each compact subset K of My, the level sets

U(K:s):={Q(-) € Crr: S(Q()) < s, Q(0) € K}, 5 >0,
are compact.

This is a particular case of the multilevel large deviation results in Dawson and
Gartner [4]. That paper also provides us with several descriptions of the rate
function S which are either implicit or given in terms of complicated variational
expressions and do not reflect properly the Markovian structure of the level 11
dynamics as does formula (1.2) for the level I empirical process.
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The main objective of the present paper is to derive an analogous integral
representation of the rate function S. To this end, for Q € M;; and ¢ € [0, 7],
we define

’ GED/(MI)v

9 2
(1‘7) HQHZQJ = sup |< 7f>| -
sepen (Q.(u. |V D)) )

where (Q, (i, |[VDf(u )| )) is a shorthand for
[ @t [ utan) 1V DS,

THEOREM 1.2. The rate function S of the level II family {PMN: v € MMN
admaits the representation

dt
Q1)1

(18) sty =4 [ [ew oo

if Q(+) € Crr 1s absolutely continuous as a D'(My)-valued function. Otherwise
5(Q(+)) = oo.

As we already mentioned, the Schwartz spaces D(My) and D'(M;) will be
introduced in Section 3.1. Absolute continuity of D'(M)-valued functions will
be considered in Section 3.3.

The integral representation (1.8) expresses the rate function in terms of the
drift operator and the Riemannian metric formally associated with the diffusion

process HMN( -). To explain this, note that the generator £ of the level I
diffusion = (-) has the form

L3 () = 53 ZeD* F(0) + (LD f (), f € D(M),

where D?f is the second order derivative of f and ¥;: D((R9)?) — C(RY) is

defined by
d

Si(e)i= Y a5 o)
a,Bf=1

The process =" (-) then turns out to be a solution of the semimartingale
equation

d(=(t), f) = (2(t). £ f) dt + dMq(f),  feDMi),

1
VvVMN
where M(f) is a bounded martingale with quadratic characteristic ((M(f)));
given by

(19) G = [ Z@@) (1. ZdDF ) © DS )
= (20 (. IVDF(ID))
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This indicates that we are dealing with a random perturbation of the (infinite
dimensional) dynamical system (1.6). The drift operator (£LN)* is a singular
perturbation of the vector field £} governing the deterministic limiting dynamics
(1.6), and the Riemannian norm associated with the quadratic diffusion form
(1.9) coincides with || - ||=(¢),¢ which was defined in (1.7).

One of the obvious consequences of the Theorems 1.1 and 1.2 is the above
mentioned law of large numbers for =¥ (.) which we restate as a corollary.

COROLLARY 1.3. Suppose that vy n € MYN converges to a measure vy in

Miras M, N — oo. Then
pMN
VMN
weakly as M, N — oo, where v(-) € Crr s given by (1.5). The path v(-) s
absolutely continuous as a D'(My)-valued function and the unique solution of
equation (1.6) in D'(My) with initial datum vo. As a function of vg, it maps
M1 continuously into Cry.

— 5,,(.)

The only nontrivial aspect of the proof of the corollary is uniqueness which is
established in Lemma 4.7.

1.4. OVERVIEW OF THE DETAILED DEVELOPMENT AND PROOF. Let &;;(t),
1=1,...,M,35=1,...,N, be MN independent copies of our diffusion process
in R? with generator Ly. We begin by fixing N and viewing (£;1(t),...,&in(t)),
i=1,...,M, as a system of M independent (R¢)"-valued diffusions. Then as
M — oo, it follows from Dawson and Gértner [2] that the M((RY)Y)-valued
processes X M (.) defined by

M
1
MN
X (t) = M Z(S(gi,l(t)w'vgi,N(t))
=1

satisfy the large deviation principle with rate function

IN(u() = %/0 || a(t) — (Liv)*u(t)Hi(t)J dt

if u(-) € C([0,T]; M((RY)N)) is absolutely continuous and IV (u(-)) = oo oth-
erwise. Here )
HﬁHZ,t — sup |<197¢>|

oen(H) (11, [V |7

LY denotes the generator of our (R?)Y -valued diffusion, and VY stands for the
Riemannian gradient with respect to the corresponding diffusion matrix. Thus,
these quantities are defined in analogy with (1.3) and (1.4), but associated with
the (R%)Y-valued diffusion.

In order to recast this in the level II setting, we introduce the mappings

eV (RN - MY(RY)
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defined by
Ny, .. an) = %i(gn
=1

and the corresponding induced maps
N M((RHNY - M(MN(RY).

The next step is to obtain the rate function for large deviations of the level II
empirical processes ZMY () = &N (XMN () with N fixed and M — co. An im-
portant step carried out in Proposition 2.1 is to establish that the restriction of
N to M ((RHN), the space of measures p(dry,...,dry) on (RN which are
invariant under permutations of the variables xq,...,xn, is a homeomorphism.
In addition, in order to prescribe the rate function for Q(-) € C([0,T]; M1),
we must also introduce an appropriate class of distributions on M; = M(R?)
and the appropriate notion of absolute continuity of distribution-valued func-
tions, and this is carried out in Section 3. We prove in Lemma 4.4 that the
corresponding rate function for &V (XM (.)) is given by

N N P Ny* 2
sYQe) =5 | ew - whrem|
2 Jo Q1)1

for Q(-) € C([0,T]); M(ME)) being absolutely continuous as a D’ (M )-valued
path.

The proof of Theorem 1.1 is then based on the result of Dawson and Gartner
[4], Theorem 2.9, which implies that ZM ¥ (.) satisfies the large deviation prin-
ciple as M and N go to infinity with scale M N and rate function

epilim iSN =: 5.

N—oo
By definition, this means that liminfy_.o N71SN(QN(+)) > $°°(Q(+)) for each
Q(+) and each sequence QV(-) — Q(-) and limsupy_,. N71SNQN (")) <
5°°(Q(+)) for each Q(-) and at least one sequence Q¥ (-) — Q(-). The proof
that this epilimit coincides with the integral representation of the rate function

for ZMN(.) given in Theorem 1.2 is carried out in the Lemmas 4.5 and 4.6.

2. Empirical measures of finite exchangeable random vectors.
Given a Polish space X, we will denote by C(X) and M(X) the space of real-
valued bounded continuous functions on X equipped with the uniform topology
and the space of probability measures on X furnished with the topology of weak
convergence, respectively. For f € C3(X) and p € M(X), we will write (u, f)
for the integral of f with respect to p.

Given a natural number N, let ¢V denote the map which transforms N-particle
vectors into empirical measures:

(2.1) eNMa) =N 6y, ze(RYY
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Here and in the following x1,...,xn denote the components of a vector = €
(RN and dg; is the Dirac measure at z;. Let MY (RY) denote the space
of N-particle empirical measures, i.e. the closed subset of M(R?) consisting of
the measures (2.1). We will consider ¢ as a map from (R%)" onto MY (R?).
Throughout this section, N will be held fixed, and we will write ¢ instead of £™V.
Let Cb73((Rd)N) and M ((R?)Y) denote the subspaces of Cy((R%)Y) and
M(RHN) consisting of symmetric functions and measures, respectively. A
function f(x1,...,xy) or a measure u(dzy,...,dzy) on (RY)Y are called sym-
metric if they are invariant under permutations of the variables x1,...,zx.
The map &: (RH)Y — MY (R?) induces a map

£ My((RHY) = MMV (RY))
which transforms each symmetric probability measure p on (R4 into its image

Lo g?
following two propositions.

with respect to ¢. The main purpose of this section is to prove the

PROPOSITION 2.1.  The map &: M ((R)N) = M(MN(RY)) is bijective

and continuous wn both directions.

PROOF. The continuity of & is obvious from the continuity of . Choose
v € M((RHN) and assume that () = £(v), that is

(,hoe)=(v,hoeg) for all h € Cy( MY (RY)).

To prove injectivity we have to show that this implies ¢ = v. This will certainly
be true if we show that the equation

hoe=yg

has at least one solution h € Cp(MY(R?)) for each g € Cb73((Rd)N). For
functions % of the form h(yu) := (u®V, f), the last equation turns into

(2.2) (e(z)N, f) = g(a) for all z € (RN,
We will see in Proposition 2.2 (which is the hard part of our proof) that this
equation admits a (unique) solution f € Cy s((R%)N).
Let us next prove surjectivity. Given g € Cy s((R%)"), we define a continuous
function ¥, € Cp( MY (R?)) by
Uy(e(z)) = g(z),  ze(RYY.

By the Daniell-Stone Theorem (see e.g. Bauer [1]), for each Q € M(MYN(R?))

the formula

23 o= [ QB ge Gu(@)Y),
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defines a measure ;1 € M ((R)Y). Tt turns out that p is the preimage of Q
with respect to 2. Indeed, for each f € Cy( MY (R?)) the function f o s belongs
to C’b73((Rd)N) and ¥, = f. Therefore

(). f) = (u, f o) = / Q) ¥ e (v) = (@ f)

for all f € Cy( MYV (RY)).
Finally, the continuity of the inverse £~! follows from (2.3). O

We next introduce a linear operator T =T on C’b73((Rd)N) by
Tf(z):=(e(z)*N, f),  ze(RHY.

Note that the image of a function with compact support does not necessarily
have compact support. Therefore, instead of considering spaces of symmetric
continuous or C'*® functions with compact support, we need to introduce slightly
modified function spaces. For each compact K in R¢, we will denote by g?V,K
the linear space of symmetric continuous functions g: (R%)Y — R such that
g(z1,...,2n) does not change if x; varies outside of K. Let G%; be the union
of these spaces. We equip g?V,K and G with the supremum norm. By N K
and G5 we will denote the subspace of Q?V 5 consisting of C'*° functions and
the union of the spaces G55 ;- over all compzicts K, respectively. We endow the
spaces G i with the metric

N(f.9) =) 27" (lg = hllva A1),
n=0

where
9]l 5 n = sup {|0%g(z)]: z € (RN, |af <n}

and 0% denote partial derivatives of order |a|. This makes GF ;- into a separable
Fréchet space. Finally, we furnish G5 with the strongest 10c7a11y convex vector
space topology which induces the original Fréchet topology on G3 ;- for each
compact . For separability and representation by functions with compact
support we refer to Lemma 3.7 below. We may now consider T also as a linear
operator acting on g?V,Kv g, N K> or Gy

PROPOSITION 2.2. The linear operator T is a homeomorphism on each of

the spaces Cp s((R))N, G% 1) G%, G 5y and GXF for all compact sets K.

Set E :={1,...,N} and fix r with 1 <r < N arbitrarily. Given z € (RH)Y
and j € E", we will denote by z; the vector (zj,,...,%;, ). We will prove

Proposition 2.2 for the operator S := NV T instead of T. This operator has the

form
Sfle):= Y fl;). ze(®R)Y

JEEN
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We will only check our assertion for the space Cj ((R%)™). The necessary
changes for handling the other function spaces will be evident from this. Let
us therefore consider S as an operator on Cj s((R?)™). The continuity of S is
obvious. After showing that S is bijective, the continuity of S™! will follow
from the Open Mapping Theorem (or from the representation of S™1 given in
Lemma 2.4 b) below). Let us first prove injectivity.

LEMMA 2.3. Let f: (RY)Y — C be a symmetric function which satisfies

(2.4) Z flz;) =0 for all z € (RN,

JEEN
Then f vanishes identically.

PRrROOF. 19 We first show that our lemma may be reduced to the following
statement:
If g: EN — C is a symmetric function which satisfies

(2.5) Y glk))=0 forallkeEV,
JEEN

then ¢ vanishes identically.

Indeed, suppose that f: (RY)N — C is symmetric and satisfies (2.4). Fix
z € (RYN arbitrarily. Given k € EV, equation (2.4) holds in particular for
& = z;. In other words, the symmetric function

g(k) == f(z,), keEY,

satisfies (2.5). Hence, g vanishes identically and therefore f(z) = 0.

20 Before proving the above statement, we introduce some notation. Let
F(EN) denote the space of functions EY — C. F(E") is a (finite dimensional)
Hilbert space with inner product

keEN

We introduce functions ¢p: £ — C, { € E, by
_1/2 27TZ
er(k) =N exp Wkﬂ , keFE.
Given £ = ({1,...,ln) € BN we set

e(k) = er, (k1) ... eoy(kn), k= (k... ,kn) € EV.

The functions e, £ € EY, form an orthonormal basis in F(EY).
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3% Now let g: EY — C be a symmetric function satisfying (2.5). We repre-
sent ¢ as the Fourier transform of a symmetric function h: EV — C:

Substituting this in (2.5), we obtain

(2.6) Y h(0gr=0

LEEN
with
(2.7) bri= Y 9%
JEEN
and

G7(E) = eally) = er, (k) - eox (kjy).

49 Tt remains to deduce from (2.6) that the function h vanishes identically.
To this end we prove the following facts:

(i) If the N-tuple £ has more components equal to N than the N-tuple m,
then

(qbﬁv em) = 0.

(ii) Suppose that the N-tuples £ and m have the same number of components
equal to N. Then

(2.8)

Cm, 1if £1s a permutation of m,
(qbﬁv em) =Ya

0, otherwise,

where ¢, 1s a positive constant depending on m only.

Note that (¢, ey ) is invariant under (separate) permutations of the N-tuples
¢ and m. Therefore, in order to prove (i) and (ii), it will be enough to consider
functions ¢, and e,, with

(=,....0,,N,...,N) and m=(mq,...,ms,N,...,N),

where 0 < r < s < N and {y,...,0, and my,...,m, are not equal to N. We
remark that ey = N~1/2,
To prove (i), we note that

(2.9) Sh(k) = N~V D¢, (k) eq, (k)

and

(2.10) em(k) = N~WN=92¢ (k1) ... em, (k).
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By assumption, r < s. Hence, for each j € EVN we find o € {1,...,5s} such that
the function (2.9) does not depend on the coordinate k.. But, since mq # N,

we conclude from this that qb% is orthogonal to e,,. Because of (2.7), this shows
that ¢, is orthogonal to €.

To prove (ii), suppose that r = s. Then, by similar reasoning, we con-
clude from (2.9) and (2.10) that qb% is orthogonal to e, if (j1,...,Jr) is not a
permutation of (1,...,r). Using this, we conclude from (2.7) that

(brem) = Y Z Z <¢Z(,1)7 ,ﬁ(r)’]m’ Aa eml,...,mT,N,...,N>

™ ]7’-|—1—1

o N—r
= N g <€£1,...,£T,N,...,N7emﬁ(l),...,mﬂ(,,),N,...,N>7

Y

where 7 runs over all permutations of (1,...,r). This yields (2.8) with ¢,
equal to NV~ times the number of permutations = for which (Mea(1ys - Mn(r))
coincides with (my,...,m,).

5° Now let m € EN be an arbitrary N-tuple with no component equal to
N. Then, evaluating the inner product with e,, on both sides of equation (2.6)
and taking into account the assertions (i) and (ii) from step 4° as well as the
symmetry of h, we see that h(m) = 0. Repeating this argument, we successively
find that h(m) = 0 for all N-tuples m with one component equal to N, two
components equal to N, and so on. Thus h vanishes identically. O

Given r with 1 <r < N, let B, denote the set of all tuples (J1,---yJr) € ET
with jo # jg for o # 5.

LEMMA 2.4. a) For each r, 1 <r < N, and each function g, € Cb73((Rd)”)
there exists a function f,. € 0573((Rd)") such that

(2.11) Y feley) = ) grlay)

jEET JEBL

for all x € (RYN. In particular, the operator S on Cy s((RHYN) is surjective.
b) The inverse of the operator S has the form

(2.12) ST (w1, an) =Y exg(@agrys s T(n)

Y

with certain coefficients ¢ € R, where m runs over all maps of E into itself.

PROOF. a) We prove the solvability of (2.11) by induction with respect to
r. Clearly f; = g1 is a solution for r = 1. To accomplish the induction step
from r — 1 to r, let us fix r with 1 < r < N and g, € 0573((Rd)”) arbitrarily.
We introduce the functions

(2.13) gs(T1,.. . 25) := Z gr(zj, .., xj.),
{j1,--0r }={1,...,8}
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1 < s < r. The sum on the right is taken over all r-tuples (j1,...,7,) € E”
such that the set {j1,...,7,} coincides with {1,...,s}. Clearly ¢; belongs to
Cy.s((R?)*) for each s. According to our induction assumption, we find functions

ps € Cp s((RY)?) such that

(2.14) Yopsla) =Y alzy),  ze®HY,
jeL” JeLy
for 1 <s < r. Let

(2.15)

! d\r
Wﬁ;ips(%)a z € (R,

where F':= {1,...,r} and FJ consists of all s-tuples (ky,...,ks) € F* with
ko # kg for a # 3. We claim that the function (2.15) solves (2.11). Indeed, for

this function we obtain

Zfr(ll) = Z Z Z gr(ll)

lEET s=1 kEE {]17 7jT}:{k17"'7ks}
r—1
_Z Nr— 3 Z Z ps —] E
s=1 ! kEF JEET
r—1
= D olz)+ ) | 2wl - D poley)
JEEL s=1 " kEE: jEES
= > gr(z;)
lEE;

for all z € (RY)Y. Here we have used (2.13), the fact that

> psllz)

JEET B

does not depend on k € F3, and (2.14).
Take r = N in (2.11) to see that the operator S is surjective.

b) Formula (2.12) follows from the inductive construction of the solutions to
(2.11) given in a). O

3. Preliminaries on distributions and distribution-valued func-
tions.

3.1. SPACES OF DISTRIBUTIONS ON M. Given a compact set K C R? let
Dy (RY) denote the space of real-valued C'*°-functions ¢ on R¢ with supp ¢ C K
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endowed with the usual Fréchet topology. Denote by D(R?) the union of the
spaces Dy (R?) furnished with the corresponding inductive topology. The topo-
logically dual space D'(R?) is the space of Schwartz distributions on R%. Ab-
breviate M := M(R?). The objective of this section is to introduce a Schwartz
space D(M) of test functions on M and a corresponding space D'(M) of dis-
tributions and to derive some properties of these spaces.

Given a measure ;1 € M and a Borel set B C R? we will denote by u|p
the restriction of p to B defined by p|p(A) := u(A N B). In general, functions
of the form f(p) = g((i, ®)), p € M, do not have compact support even if g
and ¢ have compact support. This forces us to replace the notion of compact
support by the following notion which will turn out to be more adequate for our
purposes.

DEFINITION 3.1. A function f: M — R is said to have compact argument
domain if there exists a compact set K C R? such that Ll = v|kx implies

Fp) = fw).

Let R := R? U {o0} denote Alexandroff’s one point compactification of R,
and let M := M(W) be the space of probability measures on R? endowed with
the topology of weak convergence. Given i € M and z € R%, define . € M
by p.(A) = p(A) 4+ p({oc})d.(A), ie. by shifting the mass at oo to point
z. Suppose now that f: M — R has compact argument domain. Then, for
sufficiently large |2|, the function f(j) := f(u.), it € M, does not depend on =z
and is a natural eztension of f onto M. Moreover, f is continuous if and only
if f is continuous. In the following we will denote the extension f again by f.

LEMMA 3.2. Assume that f belongs to Cyp(M) and has compact argument
domain. Then there exists a smallest compact set K C R® with the properties
stated in Definition 2.1.

This smallest compact set will be called argument domain of f and will be
denoted by argdom f. We remark that one finds functions f € Cy(M) for
which there is no smallest closed set F C R? with the property that u|p = v|r

implies f(1) = f(v).

PrROOF oF LEMMA 3.2. Fix f € Cy(M) arbitrarily, and let K denote the
system of compact sets K C R such that f(u) = f(v) for pu|x = v|x. We have
to show that the intersection of all sets K € K also belongs to K.

19 We first check that K is closed under finite intersections. Choose K, K, €
K and p,v € M with | g, nx, = V|Kk,nK, arbitrarily. We want to show that this
implies f(u) = f(v). To this end, we define probability measures iy, 1o € M
as follows:

pa(A)
p2(A)

(AN ED) 4 p(K§) 6 (A),
L(ANE) + 0 (K3) oo (A)
(A NK;nN I(z) + /,L((IX’l N I(z)c) (SOO(A)

7
7
7
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In exactly the same way we construct probability measures v, v, € M from v
by first ‘sweeping’ the mass outside of K7 to oo and then also ‘sweeping’ the
mass outside of Ky to co. Since p|g, = pi1|x, and p1|rx, = p2|r,, we have
f(p) = f(p1) = f(p2). Correspondingly, f(v) = f(r1) = f(r2). But pz = vz,
and therefore f(u) = f(v).

20 We show that the compact set

K:=()K

KekK

belongs to K. Let us first assume that K = (). Then we find a finite number
of compact sets Ki,...,K, € K such that K; N---N K, = (. By step 1°, this
implies that the empty set belongs to K. Now suppose that K # (). Let G
be an arbitrary open neighborhood of /. Then there exist finitely many sets
K,,...,K, € K suchthat K;N---NK, C G. According to step 1°, K;N---NK,
belongs to K. Hence, p|g = v|g implies f(p) = f(v). Now let p and v be such
that p|x = v|x. We want to show that this yields f(u¢) = f(v). To this end,
let (G,) be a sequence of bounded open sets such that G,, | IX. We construct
probabilities ji,, v, € M by ‘sweeping’, respectively, the masses of 1 and v in
G\ & to oo:

il A) = (AN (K U GS)) + G\ ) 6.0 (A).
vl A) = V(AN (KU G)) + 1(Go\K) 5 (4).

Since pnla, = vala,, we get f(un) = f(l/n).iOur assertion now follows from
the observation that p, — ¢ and v, — v in M and the continuity of f on M.
Therefore K indeed belongs to K. O

Given a natural number m, we denote by Cj (M x (R%)™) the space of
bounded continuous functions f: M x (R?)™ — R with the property that
f(p; 1, ... &) is symmetric in the variables xq, ..., 2z, € R%for every u € M.
For each f € Cy s(M x (RY)™) and each ;1 € M, we will denote by f(u) the
function in Cy s((R?)™) given by f(u)(z) := f(i;2), z € (RH)™.

DEFINITION 3.3. A function f € Cj (M x (R9)™) is said to have compact
argument domain if f(-;z) has compact argument domain for each z € (RY)™
and there exists a compact set K C R? such that argdom f(-;2) C K for each
z € (RY™ and supp f(p;-) € K™ for each u € M. The smallest compact
set X with this property will be called argument domain of f and denoted by
arg dom f.

Note that each function f € Cp (M x (R%)™) with compact argument do-

main allows a natural extension f € 0573(./\;1 X (W)m) which again will be
denoted by f.

Let Cr(M) and C s(M x (R?)™) denote, respectively, the vector spaces of
functions in Cy(M) and Cp (M x (R%)™) with compact argument domain. We
furnish Cy(M) and Cj (M X (R9)™) with the supremum norm. These spaces
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may be considered as the analogues of the spaces C(R?) and C’k73((Rd)m) of
continuous functions RY — R and symmetric continuous functions (R%)™ —
R with compact support, except that these functions have compact argument
domain rather than compact support.

The system of sets

{(1,7) € Mx M: (. dn) — o) < 1for b =1,...,0},

r €N, ¢1,...,0, € Cp(R?), forms the base of a uniform structure on M which
is compatible with the topology of weak convergence. We will consider M to be
equipped with this uniform structure. We furnish M x (R%)™ with the product

of the uniform structures on M and R In the same way, using functions
&1, ..., 0r € Cp(RY), one may define uniform structures on M and M x (R%)™.

LEMMA 3.4. All functions in Cr(M) and Cj (M x (RH™), m € N, are

uniformly continuous.

PROOF. If f belongs to C'y(M), then its extension f: M — R is continuous
and, since M is compact, even uniformly continuous on M. Consequently,
f is uniformly continuous on M. The same argument applies to functions in

Crs(M x (RH)™). O

DEFINITION 3.5. A function f € Ci(M) will be called differentiable if there
exists a function Df € Cy (M x Rd) such that

(3.1)
LA™ [f((1 =) +yv) = f()] = (v = p, Df())  forall p,v € M.

40

The function D f will be called (first order) derivative of f. Higher order deriva-
tives D™ f € Cj s(M x (RH)™), m = 2,3, ..., are defined recursively by

(3.2)
E%’V_l [Dm_lf((l - ’7)/1 + 7”)($17 e 7xm—1) - Dm_lf(/“‘)(xlv e 7xm—1)]

= <V_Mvaf(M)(xlv"'7xm—17')>
for all p,v € M and z,...,2,_1 € RL

Putting v = d,, € R%, and remembering that D f(u) has compact support,
we see that (3.1) defines Df uniquely. Moreover,

d

@f((l —Vptav) = —pDf(1—y)p+7v)) for 0 <y <1

(3.3) F0) = £00) = [ (0= 0. DA = 0)u-+ 60 09
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for all u,v € M. Replacing v by (1 —v)u + vv, we find that

UL =) ) — ()] = / (v — 1. DF((1 — By)ps + 670)) db.

Since Df is uniformly continuous (Lemma 3.4), we conclude from this that the
convergence in (3.1) is uniform in p,v € M. If the derivative D™ f exists for
some m € {2,3,...}, then it is unique and the convergence in (3.2) also turns
out to be uniform in p, v € M and z1,..., 2,1 € R%

LEMMA 3.6. Given f € Cip(M), suppose that the derivatives D™ f €
Crs(M x (RY)™) ezist form =1,2,..., M. Then

argdom f D argdom Df D --- D argdom DM f.

PROOF. Set K := argdom D™ ! f and let us show that argdom D™ f C K.
If 1| = p2| i, then we conclude from (3.2) that

<5l’m _Mlvaf(Ml)(xlv'"7xm—17')> = <5l’m _/~L27Dmf(/~L2)(x17'"7xm—17')>

for all z1,...,2,, € R% Since both D™ f(uy) and D™ f(us) have compact
support, this implies D™ f(p1) = D™ f(pz2). If x; ¢ K for some i € {1,...,m —
1}, then (3.2) yields

(3.4) (02,0 — 1, D" f(p) (@1, s ¥m—1,-)) =0

for all z,, € R% and we obtain D™ f(u)(x1,...,2m) = 0. For arbitrary
T1,...,2m—1 we also find that the left hand side of (3.4) does not depend on x,
outside of K. Hence, D™ f(u)(x1,...,24) = 0 for x,, ¢ K, and we are done.
U

Let us now turn to the introduction of the Schwartz space D(M) of test
functions and the corresponding space D'(M) of distributions.

A variable z € (R)™ is a vector x = (1,...,2,) with z; = (2},...,2%) €

R¢ for i = 1,...,m. Therefore, £ may be considered as a m x d matrix {:1;‘17} of

real variables. A m x d multi-index o = {oz{} i1s a m x d matrix of nonnegative

integers oz{ (¢t =1,....,m; 3 = 1,...,d). With each such multi-index « is
associated the differential operator

go .o 0L ot om0
T oxl Oxd ozl Ox

d
m

whose order is |af := 37, oz‘z. In particular, 0% f = f for |a| = 0.
Let D(M) denote the set of functions f € Ci(M) for which the derivatives
9°D™ f exist and are continuous on M x (RH)™ for all m = 0,1,2,... and all

m x d multi-indices o. On D(M) we define seminorms || - |[,, n = 0,1,2,..., by

[ £lln i=sup {|0° D™ f(10)(2)]: (j1,2) € M x (RY™, |a| +m < n}.
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These seminorms generate a metric
p(f,9):=> 27"(If —gln A1), f,g € DM).
n=0

For compact sets K C R%, we consider the subspaces
Dr(M) :={f € D(M): argdom f C K}.

With respect to the metric p, the spaces Dy (M) are (locally convex) Fréchet
spaces. To verify the completeness of D (M), let (f,) be a Cauchy sequence
in Di(M). Then there exist functions f(*™ such that D™ f,, — f(*™) as
n — oo uniformly on M x (R%)™ for all m and all multi-indices a. Clearly
flom e Cr(M x (RY)™) and arg dom f(*™ C K. Set f := 00 and fim) .=
f©m) Tt only remains to show that f(®™) = g*D™ f.

Passing to the limit as n — oo in

D™ ()1, Tme1) — D Fa (i) (2 )
- /01 (v — 11, D™ Fo((1 = )i+ B0) (21, .. 21, )) d6,
we find that
F D) (s wme) — FO () (@, )

— /1 <1/—/,L,f(m)((1 —9)/,L—|—91/)(:1;1,...,:1;m_1,-)> deé.

0

From this we successively conclude that f(™ = D™ f for m = 1,2,.... Given
m € 40,1,2,...} and p € M, (D™ f,(r)) is a Cauchy sequence in the Fréchet
space Dx ((RY)™) with limit D™ f(u). This finally yields f(*™) = 9*D™ f for
all .

We furnish D(M) with the strongest locally convex vector space topology
which induces on D (M) the original Fréchet topology for each compact set
K C RY. From now on we will consider D(M) to be equipped with this topology
and refer to D(M) as the Schwartz space of test functions on M.

The space D(M) has the following properties:

(i) A convex balanced set W is open in D(M) if and only if W N Dg (M) is
open in Dx (M) for each compact set K C R%

(ii) If E is a bounded subset of D(M), then E C Dg (M) for some compact
set K C RY.

(iii) If (fn) is a Cauchy sequence in D(M), then (f,) is a converging sequence
in Dy (M) for some compact set K C R,

(iv) D(M) is complete.
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The proof of (i)-(iv) is essentially the same as that of Theorem 6.5 in
Rudin [7]. Ounly part (ii) needs an explanation. We proceed indirectly. Let
E be a subset of D(M) and suppose that E lies in no Dx(M). Abbreviate
K, :=[-m,m]%, m € N. Then, for each m, we find a function f,, € E which
does not belong to Dy, (M). Hence, there exist measures fiy,, vy, € M with
Uml|,, = Vml|k,, and fu(ttm) # fm(vm). The sets

Vo = { 1 € DS 1FG0) = F0)] < 1) = ()

are convex balanced open neighborhoods of 0 in D(M). Moreover, V,, 2
Dy (M) for each compact set K and all m with K,, O K. Hence, for each
compact set (', the intersection of the sets Vi, N Dx (M) coincides with a finite
intersection which is open in Dg(M). This shows that

V::ﬂvm

is a convex balanced open neighborhood of 0 in D(M). Since f,, € E and
fm € MV, m =1,2,..., we conclude that E is not bounded. This proves (ii).

Let D'(M) denote the space of real-valued linear continuous functionals
on D(M) equipped with the weak™ topology. We will refer to D'(M) as the
space of Schwartz distributions on M. (A, f) will denote the application of the
distribution A € D'(M) to the test function f € D(M). Let us quote some basic
properties of D'(M) which are straightforward adaptations from the ‘classical’
situation:

(v) A linear functional A: D(M) — R belongs to D'(M) if and only if
(A, fn) — 0 whenever f,, — 0 in D(M).

(vi) Given A, € D'(M), n € N, suppose that the finite limit
AS) = nh—>nolo<A"’f>
exists for each f € D(M). Then there exists A € D'(M) such that

(A, ) = M) for all f € D(M).

3.2. BERNSTEIN AND DE FINETTI APPROXIMATIONS. The aim of this sub-
section is to prove a version of Weierstrass’ Approximation Theorem by showing
that each function in D(M) can be approached by Bernstein polynomials. This
will then be used to prove the separability of the Fréchet spaces Dy (M) which
is crucial for the proof of Lemma 3.14 in Section 3.3. Our Bernstein approxima-
tion also leads to a dual de Finetti approximation for distributions in D'(M)
and probability measures in M (M).

Let us begin with two technical lemmas. Recall that the maps ¢ = &'V, the
spaces g?V,K and G ¢, and the metrics py were introduced in Section 2. Each
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function g € QN 5 has a natural extension onto (Rd) which will be denoted by
the same symbol g. For fixed N € N, we set E := {1,..., N} and denote by E*
the set of all indices j = (j1,...,7¢) € B with j; < jo <---<jp, {=1,...,N.
For each such j and each z=(21,...,2n5) € (RHN we set xi= (2,75,

LEMMA 3.7. Fiz N € N and a compact set K C R? arbitrarily.
a) Fach function g € Q?VJ( admaits a unique representation of the form

(3.5) g@) =g+ Y > alz;), ze®RHY,

=1 ept

where go is a constant, g¢ € Ck s((RY") and suppge C K for { = 1,...,N.
Conversely, for any such functions gi1,...,g9n, the function g defined by (3.5)
belongs to G ;. Moreover, the map g v g from G% i into Ck ((RY)Y) is
linear and continuous for{=1,2... N. 7

b) The same holds true with g?V,K and Ck s(RY) replaced by gX i and
Dm78((Rd)£), respectively.

¢) The space GN i 15 separable with respect to pn. Moreover, G - is dense
mn g?V,K in the uniform topology.

PrROOF. a) Note that go in (3.5) coincides with the constant value of ¢

n (K¢)Y. We therefore will assume without loss of generality that ¢ = 0 on

(K°)" and prove the decomposition (3.5) for go = 0. Given g € G% - with this
property, take 7

gn(T1, . TN) 3:9($1,---7$N)
—I—Z Z g1y TG T, TN
JEEL
with x] := -+ := 2%, := oo. One easily checks that gy(co,z2,...,2n5) = 0.

Using this, one finds that g belongs to C s((R?)™) and supp gy € K. Hence,

g(z) =gn(z —I-Z Zh

n=1 lEE"

with h, € gn g forn=12.. N—1andh, =0 on (K" Now one may
apply the same decomposition to each of the functions h, (instead of ¢), and
one successively arrives at (3.5) with go = 0. The linearity and continuity of the
maps g — g is obvious from this. To prove uniqueness of the representation
(3.5) assume that ¢ = 0. Then, by letting all N variables tend to inifinity, we
conclude that gg = 0. After that, letting all but one variable tend to infinity,

we find that ¢, = 0, and so on.
b) The proof of b) is the same.
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¢) The separability of gx i with respect to py follows from assertion b)

and the separability of R and of the spaces Dm78((Rd)£), ¢=1,...,N. Since
Dm78((Rd)£) is dense in the subspace of Cy s((R9)%) consisting of functions g
with suppg € K¢ for £ = 1,..., N, we also conclude from a) and b) that 9% K
is dense in g?V,K' O

As before, we consider Ci(M) to be endowed with the supremum norm.
Given a compact K C R?, let C'x (M) denote the subspace of Cy.(M) consisting
of functions f with argdom f C K. Recall that the operators T = TV were
introduced in Section 2.

LEMMA 3.8. Fiz N € N and a compact set K C R? arbitrarily.
a) The linear operator F defined by

FNf.=foel

is continuous and surjective both as map from Cx (M) into GS; ;- and as map
from Dy (M) into OGN K-
b) The linear operator GV defined by

GNg(p) == (N, T g),  peM,

is continuous and injective both as map from G, - into Cx(M) and as map
from QJOVC”K into D (M).
¢) FN o GN is the identity operator on g?V,K'

PROOF. a) Clearly f o belongs to g?V,K for each f € Cx (M) and the
map FV: Cx(M) — g?V,K is continuous. Using the definition and properties
of the derivatives D™ f, one verifies that f oe® is smooth for f € Dx (M) and
that the map F/V: D (M) — QJOVC”K 1s continuous.

b) According to Proposition 2.2, the linear operator T~ is well-defined and
continuous both as operator on g?V,K and on GF 5. Moreover, by Lemma 3.7,

the function f(p) := (u®V, h) is the sum of a constant and of functions f () =
(1%, go) with go € Ck s((RY)Y) and supp gy C K* (resp. g¢ € Dm78((Rd)£)) for
h € Cx(M) (resp. h € Dg(M)), £ = 1,...,N. But these functions clearly
belong to Cx (M) (resp. Di(M)). Moreover, the maps h — f, ( =1,... N,
are linear and continuous. This proves the linearity and continuity of GV .

¢) Assertion c) is obvious from the definitions of T, F¥, and G¥. It also

yields the surjectivity of FV and the injectivity of G. O
We now introduce Bernstein operators BY : Cr(M) — Cr(M), N € N, by
BN f(u) = (N, foe),  peMm.

More explicitly, this may be written as

(3.6) BN f(p) Z/---/f (%Z&;) p(day) ... pl(day).
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We will call BY f Bernstein polynomial approzimation of f of order N. Com-
bining assertion a) of Lemma 3.8 with Lemma 3.7, one finds that BY f has
indeed a polynomial structure:

N

BYf(u) =) (u®gni),  mEM.

£=0

Thereby, if f € Cg(M) then gy, € Ck73((Rd)£) and suppgn,¢ C K* for
¢ =1,...,N. If f € Dg(M), then gy, € Dm78((Rd)£). By convention,
(u®°, gn o) := gn,o is a constant. Moreover, those lemmas tell us that the maps
f — gn,¢ are linear and continuous for £ = 0,1,..., N. From this we conclude
that the Bernstein operators B are linear and continuous both as operators
on Cx (M) and as operators on Dg (M) for each compact K.

THEOREM 3.9. (Weierstrass’ polynomial approzimation)
Let K be an arbitrary compact in R%.

a) BN f — f in Cx(M) for each f € Cr(M).
b) BN f — f in D (M) for each f € Di(M).

PROOF. a) The uniform convergence BY f — f is a simple variation of the
law of large numbers. To see this, fix f € Cx(M) and § > 0 arbitrarily. Since

f is uniformly continuous (Lemma 3.4), we find r € N and ¢y, ..., ¢, € Cy(R?)
such that

(3.7) ) = F) < 8/2 for (jv) €U,

where
U:={(p,v) e M x M: |(,05) — (v, o) < lfor k=1,...,r}.

Abbreviating as before e(2) = N 7! Ef\;l dz; and denoting the supremum norm
of f by || fllo, we obtain

[BY £(p) = f(p)]

[ [+ [ [ 1) = sl mdan).ptden)

(e(z),p)eU (e(z),p) U
)

IA

< g + 2| fllo 1™ ((e(2), 1) £ U)

<2 2lfllo Y (i (6x — (.07

k=1

IA
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In addition to (3.7), we have also used Chebyshev’s inequality. For large N and
all 1 € M, the expression on the right is smaller than 4, and we are done.

b) Let us now assume that f € Dgx(M). We already know that then
BN f € D (M) for all N. We next want to find appropriate expressions for the
derivatives of BY f in terms of the derivatives of f. Recall that the function

N
1
(3.8) gn(T1, ., 2N) ::f(NZ;&“), T1,...,en € RY

belongs to G i for each N. We introduce difference operators AU =
0,1,2,..., which act on functions g € G%7 ;- according to the following rules:

APyg:=g,

A(m)g(:li1,...,:1iN) =(N-m+ 1)[A(m_1)g(:1;1,...,:Jcm,...,:sz)
—A(m_l)g(:pl,...,x;,...,xN)] form=1,2,..., N,

Almg.=0 for m > N.
Here 2] := --- = 2}y := 00. As a function of its first m variables z,..., 2y,
A(m)g(:pl, ...,xn) Is symmetric and has compact support contained in K™,
m=1,2,...,N. Moreover, A(m)g(:pl, ..., &N ) will not change if we vary one of

the variables ©p,41,..., 2N outside of K. Using this, (3.6), and (3.8), we find
that

(3.9) 0°D™BN f(u)(x1, ...,

T )
:/---/aaNm)gN(xl,...,xN),,L(dme)...,,L(de)

form =0,1,...,N and all m x d multi-indices a. Using (3.8), the definition of
the operators A™) | and (3.3), we obtain

N(N=1)...(N—m+1)

A(m)gN(:L'l, CeLEN) =

Nm
1 1 1 N m 0,
D" | — O, — (oo — Oz ey T ) dly ... dOy,
<[ [ o § 2 3 5 (e =) | o) 0
successively for m = 1,2,..., N. From this and the uniform continuity of the

derivatives 9% D™ f (cf. the proof of Lemma 3.4), we derive that

(3.10)

N
1
A gy (ey,. . an)=0"D™f (N 25) (214 ) +0u(1)

form =0,1,..., N and all m x d multi-indices a. Here 9,(1) denotes a function
which, for fixed m and «, tends to zero as N — oo uniformly in zq,...,zxN.
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Note that in the above integral expression for A™ gy the differentiation with
respect to the variables z1,..., 2, in the argument

N m

1 05
N2ty

leads to a factor N1, so that these derivatives may be neglected asymptotically.
Therefore in (3.10) the differential operator 0% does not act on the variables in
N=137§,,. Substituting (3.10) in (3.9), we finally arrive at the representation

(3.11) 9°D™BY f(u)(xy,. .., 2m)

:/---/8aDmf (%Z(SL) (21, o an) p(depyr) ..o p(den) + 0y (1)

form =0,1,..., N and all mxd multi-indices a. Thereby, for fixed m and «, the
function 0,(1) tends to zero as N — oo uniformly in g € M and x1,..., 2, €
RY.

In order to show that BY f — f in Dy (M), it only remains to check that
9°D™ BN f — 9°D™ f uniformly as N — oo for all m and a. Since 9°D™ f
is uniformly continuous, this now follows from (3.11) in the same way as the
uniform convergence BY f — f was derived from (3.6) in the proof of part a).

O
We are now ready to state our separability result.

LEMMA 3.10. The following is valid for each compact subset K of R
a) The Fréchet space Dy (M) is separable.
b) Di(M) is dense in Cr (M) with respect to the uniform topology.

PROOF. a) Fix f € D (M) arbitrarily and consider the polynomial approx-
imations fx := BY f which have the form

(3.12) In(p) = (Y, gn),

with gy € GF . According to Lemma 3.7 ¢), the spaces g are separable
with respect to the metric pn. For each N, let Sy i be a countable dense subset
of G% ;. Choose gy € Sn i so that

(3.13) PN(gNagN) < e N

and consider the polynomials
(3.14) f(p) = (™Y ).

Since these polynomials are taken from a countable collection of functions in

Dy (M) which does not depend on f, the separability of Dg (M) will be shown
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as soon as we will have proved that fy — f in D (M). According to The-
orem 3.9 b), fv — f in Dx(M). Therefore it will be enough to check that
9°D™ fy — D™ fn — 0 uniformly as N — oo for all m and o. We know from
the proof of part b) of Theorem 3.9 that

D™ () (@1, m)
:/.../8“A(m)gN(:1;1,...,:I;N)/,L(dxm+1).../,L(d:1:N).

The same is true for fy and gy replaced by fn and gn, respectively. But from
the definition of AU™ and (3.13) we conclude that

‘8QA(m)§N(:L'1, Ce N — 8QA(m)gN(:L'1, e ,J}N)‘ < NmoN+lal=N

for all m, all m x d multi-indices o, N > |a|, and z1,...,zy € R% Since the
expression on the right tends to zero as N — oo, this finally yields the uniform
convergence 0“D™ fny — D™ fny — 0.

b)If f € Cx (M), then gy € g?V,K' According to part ¢) of Lemma 3.7, GF 1
is dense in g?V,K in the uniform topology. Hence, for each N we may choose
JN € QJOVC”K so that |Gy — gn]||n 0 — 0. Then the functions fN defined by (3.14)
belong to D (M). Comparing (3.12) with (3.14), we obtain fv—fn = 0
uniformly. Since fy — f uniformly by Theorem 3.9 a), we conclude that

fx — f uniformly. In other words, f may be approached uniformly by functions
from Dy (M), and we are done. O

We next need the following fact.
LEMMA 3.11. The space M(M) is a topological subspace of D'(M).

PROOF. Clearly M (M) may be considered as a subset of D'(M), and the
topology of weak convergence is at least as strong as the subspace topology
induced by D'(M). To prove that it is not strictly stronger, let us fix a prob-
ability measure Qg € M (M) and a uniformly continuous function f € Cy(M)
arbitrarily. We will show that there exist functions fi, f» € Cx(M) such that

(3.15)

{Q € M(M): (@ —Qo, )l <1} C [ J{Q € M(M): [(Q —Qo, fi)| < 1}.

=1

The desired assertion will then follow from this and the observation that, ac-
cording to Lemma 3.10 b), D(M) is dense in Ci(M) in the uniform topology,
so that in (3.15) f1 and f3 may be replaced by functions from D(M).

Let (1) be a sequence in C.(R?) such that 0 < 1, < 1 and ¢,, T 1 pointwise.
Given n € N and p € M, define F,, () € M by

(Fa(p), 0) := (1. nd) + (.1 = ¥0)0(0), &€ Cy(RY).
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One readily checks that F},: M — M is continuous, F,,(u) — p for each yu € M,
and f o F, belongs to C(M) with argdom f o F,, C supp ¢, for each n. Given
n € N, abbreviate

‘I’n(ﬂ) = </“L71 - 77Z)n>7 H S M

Note that ¥,, € Cx(M) for each n and ¥,, — 0 boundedly and pointwise.
Since f is uniformly continuous and because of the structure of the functions

F,,, one finds § > 0 such that

{1 € M: (1) — f o Ful)] > 1/8} € {pr € M: W, () > 8}

for all n. Hence,

(Q = Q0. 7)1 < 1Q ~ Qo. fo F)| +1(Q ~ Qo, £ f o )
< (@~ Qo fo Fu)
1201l [Q(%s > 6) + Qo > )

for each n and all @ € M(M). Here ||f|lo denotes the supremum norm of f.
By Chebyshev’s inequality,

QT > 8) + Qo(T, >38) <6 HQ,T,) + 3 Qo, Ty)
<5THQ = Qo, U,)| 4+ 207HQo, T,).

Thus, we obtain

{Q = Qo, F)| < Q= Qo, [ o Fn)|

n % + 20 Fllo6 ™ [Q = Qo V)| +2(Qo, T,)].

Since ¥, — 0 boundedly and pointwise, we may fix n so large that
4| Fllod ™ Qo Tn) < 1/4.
For such n and all @ € M(M),

Q= Qo )l < 5+ 1@~ Qo. f)l + 1 1(@ — Qo 1),

where f; :=4foF,, and f; := 8]/ f|lod~' ¥, and both functions belong to C(M).
This implies the desired inclusion (3.15). O

Let us now introduce the de Finetti operators ®~ on D'(M) as the adjoints
of the Bernstein operators B on D(M). Given N € N and A € D'(M), we
will call ®VA de Finetti approzimation of A of order N. Note that ®V maps
M(M) into M(M?Y) and

N =2V (/ TR Q(d/,a)> for Q € M(M).
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The map £V : M ((R)Y) = M(M?Y) was defined in Section 2, and M (M)
is considered as closed subspace of M(M). Clearly ®% is also continuous as
a map from M (M) into M(M?Y). The following corollary is an immediate
consequence of Theorem 3.9.

COROLLARY 3.12. (De Finetti approzimation)
a) For each Q € M(M), ®VQ — Q in M(M).
b) For each A € D'(M), ®YA — A in D'(M).

3.3. PRELIMINARIES ON DISTRIBUTION-VALUED FUNCTIONS.

DEFINITION 3.13. A function 6(-): [0,T] — D'(M) will be called absolutely
continuous if for every compact K in R? there exist a neighborhood Ux of 0 in
Dy (M) and an absolutely continuous function Hy : [0,7] — R such that

(3.16) (0(s), f) = (0(1), /)| < [Hk(s) — H(t)]
for all s,¢t € [0,T] and f € Uk.

Note that this is a straightforward adaption to our situation of the definition
of absolute continuity of D’(R%)-valued functions given in Dawson and Gértner

[2], Section 4.1.

LEMMA 3.14. Let 6(-): [0,T] — D'(M) be absolutely continuous. Then
the real-valued function (0(-), f) is absolutely continuous for each f € D(M).
Moreover, there exists a Borel measurable function 6(-): [0,T] — D'(M) such
that

O(t) = im ' [6(t + h) — 6(t)]  in D'(M)

h—0
for Lebesgue almost all t € [0,T].

PROOF. This is mainly a repetition of the proof of Lemma 4.2 in Dawson
and Gartner [2], where D'(R%)-valued functions have been considered. The
proof essentially relies on an application of the Banach-Alaoglu Theorem and the
separability of the Fréchet spaces Di (M) proved in Lemma 3.10. The existence
of a Borel measurable version of 9() is a consequence of the Borel measurability
of the real-valued functions <9(), f), f € D(M), and the separability of D} (M)
with respect to the weak* topology for each compact K C R?% Note that the
separability of D}-(M) is also caused by the separability of Dy (M). O

LEMMA 3.15. (Integration by parts)
Assume that 6(-): [0,T] — D'(M) is absolutely continuous and f(-): [0,T] —
D(M) is continuously differentiable. Then

(3.17)
(6(T), F(T)) — (8(0), F(0)) = / (B(u). £(u)) du + / (6(u). f(u)) du.

Here 9(u) and f(u) denote the derwatives of 8(u) and f(u) in D' (M) and
D(M), respectively.
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PROOF. Let Uk and Hg be as in Definition 3.13. The sets {f(u): v €
[0, 7]} and {f(u): u € [0,T]} are compact and, in particular, bounded in D(M).
Hence, both images are contained in Dx (M) for some compact . Moreover,
there exists a positive constant ¢ such that these sets are contained in ¢Ug.
From this and (3.16) we conclude that

(3.18) (B(u), f(0))| < c|He(u)]
and
(3.19) (B(u), f(0))] < c|Hre(u)]

for Lebesgue almost all u € [0,T] and all v € [0,T]. Note that the bound on
the right is Lebesgue integrable on [0, T.

Let us next check that the integrals on the right of (3.17) are well-defined.
The function <9(u),f(v)> is Borel measurable in u and continuous in v and
therefore jointly measurable. In particular, the first integrand on the right of
(3.17) is Borel measurable. Because of (3.18), it is also Lebesgue integrable.
The second integrand is continuous.

Clearly the function u — (6(u), f(T')) is absolutely continuous with deriva-
tive <9(u), f(T)), and u — (6(0), f(u)) is continuously differentiable with deriva-
tive <9(0),f(u)> Therefore

{0(T), £(T)) — (6(0), f(0))
= (8(T) = 6(0), f(T)) + (8(0), F(T) = f(0))

:/0 <9‘(u),f(T)>du+/0 (6(0), f(w)) du
:/0 <é(u),f(u)>du+/0 (6(u), F(T) = f(u)) du
+/0 <9(u),f'(u)>du—/0 (6(u) = 6(0), f(u)) du

Now, for each u € [0,T], v — (6(u), f(v)) is continuously differentiable with
derivative (6(u), f( )) and v — (8(v), f(u)) is absolutely continuous with deriva-
tive (6(v), f(w)). Thus,

(3.20) /0 T<9'(u) F(T) = flu)) du = / / )) dv du

and

(3.21) /OT<9(u) —0(0), f(u)) du _/ / )) do du.

The integrand <9(u),f(v)> is Borel measurable in v and continuous in v. Be-
cause of (3.19), it is jointly Lebesgue integrable. Hence, we may apply Fubini’s
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Theorem to see that the integrals (3.20) and (3.21) coincide, and we arrive at
(3.17). O

LEMMA 3.16. Suppose that 6(-): [0,T] — D'(M) is absolutely continuous.
Then the de Finetti approzimations ®V0(-), N € N, are also absolutely contin-
UOUS.

PROOF. Since (®V0(¢t), f) = (6(¢), BN f) for all t € [0,T] and f € D(M),
our assertion is immediate from the definition of absolute continuity and the
continuity of the Bernstein operators BY on Dy (M). O

According to Proposition 2.1, the map £V induces a one-to-one correspon-

dence between M ((RY)Y)-valued and M (MY )-valued paths. Given a mea-
sure 1 € M((RHN), we will call the measures ul? € M,((R%)?) defined by
pOA) = p(A x (RHYN=H, ¢ = 1,...,N — 1, partial marginals of y. For
convenience we set u(V) := 1 and define (19, g) := g to be a constant.

LEMMA 3.17. Given a measure-valued path p(-): [0,T] — M ((RHY), con-
sider the path Q(-): [0,T] — M(M?N) defined by Q(t) := N (u(t)), t € [0,T].
Then Q(-) is absolutely continuous as D'(M)-valued function if and only if p(-)

and all its partial marginals are absolutely continuous as D'((RY))-valued func-
tions, { =1,...,N.

ProOF. 1° Suppose that the measure-valued paths p(9(-), ¢ = 1,..., N,
are absolutely continuous. This means that, for each compact K in RY, there

exist open neighborhoods U%) of 0 in Dm78((Rd)£) and absolutely continuous
functions H%) : [0, T] — R such that

(3.22) (O (s), ) — (O (), o) < |H O (s) — HO (1)

for s,t € [0,T], g¢ € U%), and all ¢ = 1,..., N. We want to show that this
implies the absolute continuity of Q(-).
Fort € [0,T] and f € D (M), we have

(3.23) (Qt), f) = (u(t), F f),

where the map F™: Dg (M) — GX k 1s continuous by Lemma 3.8 a). Combin-
ing this with statement b) of Lemma 3.7, we find that (3.23) may be rewritten
in the form

N

(3.24) Q). ) = (1), g0).

=0
Thereby g¢ belongs to Dm78((Rd)£) and the maps f — g, from Dy (M) into
Dm78((Rd)£) are continuous for £ = 1,..., N. The intersection Uy of the preim-

ages of the sets U%) with respect to these maps is therefore an open neighbor-

hood of 0 in Dg(M). Combining (3.24) with (3.22), we obtain
(Q(s), f) —(Q(1), )l <|Hk(s)— Hr(t)
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for s,t € [0,T] and f € Uk, where

N
Hi =Y Hy
(=1

is absolutely continuous, and we are done.
20 Now suppose that Q(-) is absolutely continuous. We want to show that
then the paths /,L(é)('), ¢ =1,...,N, are also absolutely continuous. To this end,

we introduce symmetrization operators S : Dye ((R4)*) — Gk (=1,...,N,
by
1
S0 . = e
qb(xlv ,J}N) N(N_l)(N_K_I_l)zﬂ-:qb(xﬂ'(l)? 71;77(4))7
where the sum runs over all injective maps =: {1,...,¢} — {1,...,N}. Using
(3.23) and Lemma 3.8 ¢), we find that
(3.25) (u9(t), ) = (Q(t), G 0 SV g)

for t € [0,T] and ¢ € Dye((RY). Since both GV and S are continuous,
GN o SO Dyt (RH) — Dy (M) is also continuous. But this together with
(3.25) implies the absolute continuity of p(9(-). O

4. Identification of the rate function.

4.1. EMPIRICAL PROCESSES OF N-TUPLES. Let &;(¢), ¢ = 1,..., M,
j=1,...,N,be MN independent copies of our diffusion process in R¢ with gen-
erator L;. We begin by fixing N and viewing (i1 (¢),...,&n(t)), i =1,..., M,
as a system of M independent diffusions in (R%)" described with generator

N
N . _ .
Ly = E Ly,
J=1

where L; ; is the operator L; applied to the j-th coordinate. The probability
laws of these processes on C([0,T];(R%)Y) will be denoted by P, (z,s) €

(RHN % [0,T], and we will write P instead of P.,. We consider the associated

empirical processes X MV (.) defined by

M
1
MN A
=1

The probability law on C([0, T]; M((R%)N)) of the process XM (.) starting at
v € MM((RHN) will be denoted by QM.
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It follows from Dawson and Gértner [2], Theorem 4.5, that the family
{QMN. 1 ¢ MM((RHN)} satisfies the large deviation principle as M — oo
with scale M and rate function IV : C([0,T]; M((R9)Y)) — [0, ] given by

(4.1) PN =5 [ = E )

if 4(+) is absolutely continuous as a D'((R?)Y)-valued function and IV (u(-)) =
oo otherwise. Here

19 2
W2, = sup IO
seD(R)N) (11, [V 0ly)

where

N
VNl = |V 0l
j=1

with |V]qb|? being the application of (1.4) to the j-th coordinate of ¢.
Given 1 € M((RHN), let us denote by ps € M ((RY)Y) its symmetrization:

Hs = %Zﬂoa_lv

where the sum runs over all permutations o: (R)YN — (RY)Y of the N coor-
dinates. We next prove the following symmetry property of the rate function

IN.
LEMMA 4.1. For each u(-) € C([0,T]; M((RHN)), we have

I () = min {I%(v()): v(0) = (0), vs(-) = ps()} -

The peculiarity here is that the minimizer is not symmetric if ;(0) is not
symmetric.

PRrROOF. 1° We know from Dawson and Géartner [2], Lemma 4.6, that
(42) () = min {T¥(Q): Qo' = ()},
p(-) € C([0,T]; M((RY)Y)), where

TN(Q) = sup [<Q,F> —{(Qo W()_l,logE,NeFﬂ ,
F
Q € M(C([0,T]; (RY)N)). Here the supremum is taken over all bounded contin-
wous functions F on C([0, T]; (RHN), m¢: C([0,T]; (RHYN) — (RH)N, ¢ € [0,T],
denote the canonical projections, and Eév stands for expectation with respect
to PN,
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As a Legendre transform, IV is convex. Since the family of diffusion laws
PN is permutation invariant, IV is also permutation invariant. This implies
that IV is convex and permutation invariant. Moreover, if () is symmetric,
then the measure @) for which the minimum in (4.2) is attained, may also be
chosen symmetric. For, if () minimizes the expression on the right side of (4.2),
then, by convexity and permutation invariance, its symmetrization is also a
minimizer.

20 Given a path u(-) with IV (u(+)) < oo and a minimizer Q for (4.2), we next
show that @) is absolutely continuous with respect to P,i\(fo) = [ 1(0)(dz) Pév and

(4.3) N (u() = <Q,log d;%> :

1(0)

To prove this, we use the following estimate:

Q) = sup (Q, F) = (n(0).log BN e")]

2 sup (Q. Fy) —log E,jgc" >}
= sup (Q, Fy)
/
= sup (u(T), (1)) = {u(0), £(0))

The last three suprema are taken over all functions f: (R%)" x [0,7] — R with
compact support which are twice continuously differentiable with respect to the
spatial variables and continuously differentiable in time. In that expressions,
Fy := Fy 1, where

Fra(z() :=f(z(t), 1) — f(2(0),0)
- s (g ) et + IV o0

t € [0,T]. We have first used Jensen’s inequality, then the fact that e’ is an
exponential Pﬁo)—martingale for each f, and finally a variational representation
of IV (u(+)) from Dawson and Gértner [2], Lemma 4.8. Since, by assumption,

TN(Q) = IV (u(+)), all expressions in our estimate are in fact equal to IV (yu(-)).
The second variational expression is Sanov’s rate function for empirical measures
of i.1.d. random variables with law Plf\(fo). Since it is finite, we conclude that )
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is absolutely continuous with respect to P,i\(fo) and the considered expression

equals (@, log dQ/dP,i\(fo)% see e.g. Deuschel and Stroock [5], Lemma 3.2.13. In

this way we arrive at (4.3).

The above estimates also show the following. For each @ € M(C([0,T];
(RHN) and p(-) := Q o 77! such that @ is absolutely continuous with respect

to P,i\(fo)v we have
dq
(4.4) 1Y () < { Q. log —92 Y
dP
#(0)
3% As a consequence of the convexity and permutation invariance of IV, we

obtain
(4.5) I (ps() < IV (u()

for all p(-). Now fix a path u(-) with I™V(us(+)) < oo arbitrarily. We want to
construct a path v(-) € C([0,T]; M((RY)N)) so that v(0) = 1(0), vs(+) = ps(-),

and

(4.6) IN(u() < I ().

A combination of (4.5) and (4.6) then yields the assertion of our lemma.
We know from 2° that there exists a symmetric measure Q5 € M(C([0,T];
(RYH)N)) such that Qs o 77! = u4(+), Qs is absolutely continuous with respect

to P,if(o)v and
dQs
(4.7) IV (ps(4) = ( Qs log ——— ) -
dPus(O)

Note that 1(0) and all its permutations are absolutely continuous with respect
to 115(0). As a consequence, P,i\(fo) is absolutely continuous with respect to P,i\j(o)v

and
dP,o) ~ dp(0) N
(4.8) T (z(+) = ) (z(0)), P, (o) as.

for any version of du(0)/dus(0), and analogous formulas are valid for the per-
mutations of P,i\(fo)' We define a measure Q@ € M(C([0,T]; (RH)N)) by fixing a
version of du(0)/dus(0) and setting

dQ _ du(0)
aQ, dp1+(0)

The symmetrization of @) coincides with @),. Set

v(-):=Qo x L.

(4.9) (2(-) (2(0),  Q.as.
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Then v(0) = 1(0) and vs(-) = ps(-). It remains to verify (4.6). Using (4.8)
and (4.9) together with the fact that @, is absolutely continuous with respect

to P,if(o)v we find that () is absolutely continuous with respect to P,i\(fo) with
dQ = dQ, PJY )-a.s
N = TpN 1(0) 8-S+
aPutoy  TPio0)

for any version of dQs/dPﬁ(O). Moreover, the density on the right is permuta-
tion invariant Pﬁo)—a.s. Together with (4.4) from step 2°, this yields

d dQ, 0.

1(0) #:(0) 1:(0)

Combining this with (4.7), we finally arrive at assertion (4.6). O

4.2. LEVEL Il LARGE DEVIATIONS AS M — oco. The level II empirical

process =MV (.) will now be considered as a process in M(MY). Tts laws on

C([0, T); M(M¥N)) will be denoted by PMN v € MMV The original laws PMN
are then obtained as measure images with respect to the continuous embedding
C([0,T); M(MMN)) — Crr = C([0,T); Mys). Using the notation of Section 2,
we find that

(4.10) EMN# =N XMN(t)),  te[0,T],

where £V is considered as continuous map from M ((R?)") into M(MY). By
an application of the contraction principle to the large deviation principle of
Section 4.1, we will conclude from this that, for fixed N, the family {7534N; v e
MMNY satisfies the large deviation principle as M — oo. The aim of this
subsection is to derive an integral representation for the associated rate function.
To this end we need two auxiliary lemmas.

First recall that the operator ,C,]fv: D(M1) — Crp(My) is defined by

£ ) = 5 (. SuD? () + (. LDF (1),

where 3;: D((R%)?) — Cr(RY) is given by

d
N 0
thb(l') = Z a 7ﬂ($7t)axaayﬁ($,$).
o,f=1

LEMMA 4.2. For each N, t € [0,T], and f € D(My), we have
Ly (foe™)= (LY foe™

and
VY (Fo ) = (N VDAY
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The first identity shows that £V is the ‘restriction’ of the Feller generator of
the level I empirical process ZV(-) to D(M). To see this, note that =V (¢) =
eN((&(1),. .., En(1))) and the diffusion (&(+),...,En (1)) is governed by L.

PROOF OF LEMMA 4.2. We know from Lemma 3.8 a) that f o c® belongs
to G37. Therefore our expressions are well-defined. A simple calculation shows
that

0 w10 .
9:7 (foe™)(z)= Naanf(g (2))(;)
and
02 N 1 N |
Genga? 1 0% ) = praga DI ()
1 O?
+ ¥ gmeay D E @) s w),

where the partial derivatives 8/9z% and 9/3y” act on the spatial variables
and y in Df(u)(z) and D?f(u)(x,y) only. Substituting the above expressions
in the definitions of LY and V', we obtain the desired identities. O

Y

The functions of the form f o e, f € D(M/), are smooth but, in general,
do not have compact support. They belong to the space G introduced in
Section 2. This forces us to modify the representation (4.1) of the rate function

.
LEMMA 4.3. Fiz u(-) € C([0,T); M(RHYN)) arbitrarily. If the path p(-)
and all of its marginals are absolutely continuous, then
. 2
/T [(1(t), ) — (u(t), LY )|
sup
0

S vl

N | —

(411) V() =

Otherwise IV (u(+)) = oo.

Even if ¢ € G5 does not have compact support, (fi(t), @) is well-defined.
For, according to Lemma 3.7 b), each ¢ € G3¥ has a unique representation of

the form N
P(x) = ¢o + Z Z @@l)

=1 ert
with ¢y € De((RY)) for ¢ =1,..., N. Let /,Lﬁ(-) denote the marginals of () with

respect to the variables x;, j € Ei. If these paths are absolutely continuous,

then we may define
(4.12) (at), o) ==Y > (i), é0)

which makes sense for all ¢ € GF7 and Lebesgue-a.a. t € [0, 7.
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PROOF OF LEMMA 4.3. Let pu(-) be an arbitrary symmetric path.

If IV (u(+)) < oo, then yu(+) and all of its marginals are absolutely continuous.
To see this, observe that the empirical processes associated with the marginals
of (€1(),...,&n(+)), e =1,..., M, satisfy the large deviation principle as M —
0o. Since the corresponding rate functions may be identified by an application of
the contraction principle to XM (.), their values at the marginal paths /,Lﬁ(-) do

not exceed I'V(pu(-)) and are therefore finite. This implies the absolute continuity
of pf(:).

Now suppose that p(-) and all of its marginals are absolutely continuous.
Given an arbitrary time interval [s,t] C [0,T], we consider large deviations for
the process X MY (.) on [s,¢] as M — oo. The associated rate function Iivt has
the form

(4.13) ) =5 [ i) - @ (., o

For each ¢ € G%,

exp {oletu)) — ol - [ o [2¥6ato) + 5196 alo)] |

u € [s,t], is a bounded P,i\(fs) ,-martingale, where PY | = [ u(s)(dz) Pé\js. From

1(s),s
this we conclude that

BN 2 ul0): ) = ). 0) = [ du () 236+ 19012,

cf. step 29 in the proof of Lemma 4.1 or [2], Lemma 4.9. Using definition (4.12),
we also get

(u(t).6) = (). ) = [ dutitw). o)

Hence,

B 2 [ g0 - g 20+ 319708
Comparing this with (4.13), we conclude that
(4.14)
5 i) — (L) 1) [y = (i), 6) — (), LY+ SV VL)

for Lebesgue-a.a. u € [0,T] and all ¢ € GF°. Since the spaces G% ;- are sepa-
rable (Lemma 3.7 ¢)), the corresponding Lebesgue null sets are contained in a
universal set of Lebesgue measure zero. Hence, on the right of (4.14) we may
take the supremum over all ¢ € GF to obtain

i)~ 30y > sup L= ) EEO
T vegz (), IV VL)
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for Lebesgue-a.a. u € [0,T]. Since y(-) is symmetric and Ds((RY)Y) C G2, the
expressions on both sides are in fact equal a.e., and we are done. O

We are now ready to identify the rate function of the level II process ZM V()
as M — oo.

LEMMA 4.4. For each N, the family {753“\7; v e MMUN satisfies the large
deviation principle as M — oo with scale M and a rate function SV which
admaits the representation

N Iy . 2
N _ Ny *
sY@e =5 [ [ew-wiren|,, @
if Q(-) € C([0,TY; M(M)) is absolutely continuous as a D' (M)-valued func-
tion and SN(Q(+)) = oo otherwise.

ProoF. Fix N arbitrarily. We want to apply the contraction principle with
respect to the map (4.10). To this end, we consider an arbitrary sequence of
initial measures v € M%N such that vy — 19 In M(Mﬁv) Then we find
measures iy € MM((RHYN) such that &V (up) = va for all M. In general,
the measures fiy; are not symmetric and do not converge in M((R?)"). But,
because of Proposition 2.1, their symmetrizations converge to the symmetric
preimage of vy with respect to V. Therefore the sequence (13/) is tight, and
each limit point po is mapped by &V to vp.

Now fix Q(-) € C([0,T); M(MY)) with Q(0) = v arbitrarily. Because of
Proposition 2.1, there exists a unique path us(-) € C([0,T]); M ((RHY)) such
that

(4.15) Q(t) = B¥(us(t))  forallt € [0, 7).

For each subsequence (p137, ) with pipg, — 1o for some o € M((RHY), we may
apply the contraction principle with respect to the continuous map (4.10) to
find that the sequence (75%4"”]\7) satisfies the large deviation principle as n — oco.
The value of the corresponding rate function at Q(-) is

min {I(()): 1(0) = po. jis(-) = 1al-)}

According to Lemma 4.1, this minimum is independent of the particular limit
point po (having symmetrization 11,(0)) and coincides with IV (y4(-)). This
shows that {7534N; v € MMNV indeed satisfies the large deviation principle as
M — oo with scale M and rate function SV given by

(4.16) SMQ() = 1M (ps(-)),

where p5(+) is defined via (4.15).

We know from Lemma 3.17 that Q(-) is absolutely continuous if and only if
ts(+) and all of its marginals are absolutely continuous. Hence, supposing that
Q(-) is absolutely continuous, we obtain

(f15(t), foe™) = <Q(t),f> Lebesgue-a.e.
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for each f € D(M), where the expression on the left may be defined by (4.12),
cf. also Lemma 3.14. Moreover, an application of the formulas in Lemma 4.2
shows that
i 2
[(j1s(8), 0 &™) = (g (8), LN (F 0 N[ N\<Q(t),f> - <Q(t),/3ivf>\

() 19N (F oM ) (). .1V DF()17))

for Lebesgue-a.a. t and all f € D(My). But, according to Lemma 3.8 a), the
transformation f — f oe” maps D(M) onto G3F. Hence, using Lemma 4.3,
we find that

N N 4 : Ny * 2
) =5 [ |ew-whren|
0 Q(t)7t
Together with (4.16) this yields the desired integral representation of S™(Q(-))
provided that Q(-) is absolutely continuous. If ((-) is not absolutely contin-
wous, then p4(+) is also not absolutely continuous, and therefore S™(Q(-)) =
I¥(us()) = o0, D

4.3. COMPLETION OF THE PROOFS. The laws of the level I empirical
processes =V (-) satisfy the large deviation principle with scale N. We may
therefore apply assertion ¢) of Theorem 2.9 in [4] with respect to the canonical
projection M(Cy) — Cys to conclude that the laws PM Y of the level II processes
=MN(.) satisfy the large deviation principle both for fixed N as M — oo with
scale M and for M, N — oo with scale M N. That theorem also tells us that
the associated rate functions SV and S are related to each other by

1
epilim =SV = S.

N—oo

In particular, this proves Theorem 1.1.

As a straightforward consequence of Lemma 4.4,

1 N 1 P Nyx 2

(417) @ =3 [ ew-wirew|
if Q(+) belongs to C([0, T]; M(MZE)) and is absolutely continuous as a D' (M )-
valued function. Otherwise SN(Q(-)) = oo. The final step in the proof of
Theorem 1.2 is to show by using (4.17) that the above epilimit is given by
the appropriate integral representation. This is achieved by the following two
lemmas.

Let S°(Q(-)) denote the desired representation of our rate function which

is equal to the expression on the right of (1.8) if Q(-) is absolutely continuous
and +oo otherwise. Recall that Crr = C([0,T]; Mr).
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LEMMA 4.5. Given QN (-) € C([0,T); M(ME)) and Q(-) € Crr, suppose
that QN (-) — Q(-) in Cr;. Then

.1 .
lim inf = 5™(QY () = §(Q()).
LEMMA 4.6. Given Q(-) € Cyy, let QN(t) := ®NQ(¢t), t € [0,T), be the

corresponding M(MY)-valued de Finetti approzimations. Then Q™ (-) belongs
to C([0, TJ; M(MT)), QN(-) = Q(-) in Crs, and

(4.18) limsup +5V(QY () < S¥(Q().

N—oo

PROOF OF LEMMA 4.5. Fix QV(-) € C([0,T); M(M¥)) and Q(-) € Cyr
with Q™ () — Q(-) in Cj; arbitrarily. Denote by C! := C([0,T); D(M))
the space of continuously differentiable maps [0,T] — D(M). Consider the
functionals

TV = QY@ AT) ~ (@ (0. 50) - | L (@ . (G +e) o)

_ %/OTdt (Q¥(0). (w1 V D))

f € C*. Define J(f) in the same way but with Q™ (¢) and LY replaced by Q(t)
and L, respectively. Arguing as in the proof of Lemma 4.8 in Dawson and
Géartner [2] but using our Lemmas 3.14 and 3.15 in place of the Lemmas 4.2
and 4.3 of [2] and taking into account Lemma 3.10, we obtain

LY@V = sup 1Y)

fect
and
(4.19) S=(Q()) = sup J(f).
fect
Hence,
1
(4.20) liminf TSN (QV() = m JV(f) = J()

for all f € C!. Here we have used that QV(-) — Q(-) in C;; and LY f(t) —
Lif(t) in Cp(My) uniformly in ¢ € [0,7]. Combining (4.20) with (4.19), we

arrive at the desired assertion. [
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PROOF OF LEMMA 4.6. 1° By definition, the measures Q% (t) = ®NQ(t)
are concentrated on M(MPY). Since the operators ®V are continuous, the
paths Q™ (-) are continuous in D'(M) and, by Lemma 3.11, also in M. To
show that Q™ (-) — Q(-) in Cyy, it suffices to check that Q™ (ty) — Q(to) in
M1 whenever ty — to. Since the de Finetti operators ®V are adjoint to the
Bernstein operators B and because of the Weierstrass approximation theorem
(Theorem 3.9), we get

<QN(tN)7 f> = <Q(tN)7 BNf> — <Q(t0)7 f>
for each f € D(My). Together with Lemma 3.11 this yields the convergence
QN(tN) — Q(to) in M][.
20 As key for the proof of assertion (4.18), we next show that

(4.21) BYLN =£,BY  on D(M).

Remembering the definition of BY, we obtain

LDBY f(u)(a) = Y <,,L®<N—1>,Lt7j(f 0 eM)(.... :1;)> .

J=1

The operator L; ; under the sum is nothing but the operator L; acting on the
J-th coordinate (which is x), whereas integration with resprect to p@WN=1 g
taken over the remaining N — 1 coordinates. Hence, using the definitions of £,
and LY and taking into account the first part of Lemma 4.2, we find that

LB f(u) = (u, LiDB™ f(11))
= ("N LY (foe™))
- </~L®N7(’Ci\ff) O€N>
= BYLY f(p).

This proves (4.21).

3% We are now going to prove (4.18). Let us assume without loss of generality
that S*(Q(:)) < oo. Then Q(-) is absolutely continuous and, by Lemma 3.16,
the de Finetti approximations Q™ (-) are also absolutely continuous as D’ (M )-
valued paths. As a consequence of (4.21) and the duality between ®V and BY,
we find that

(422)  (QV() = (L) QN (). f) = (@) - £iQ(), B )

for all f € D(My) and Lebesgue-a.a. t € [0,T]. Here we have also used
Lemma 3.10 a). We next claim that

(4.23)
(Q¥ @), (19 DS = Q1) (1w, IV DBY f(y)17) )
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for all f € D(My) and t € [0,T]. For,
N
vDBY f( Z< ®(N_1),Vj(foeN)(...,:1;,...)>,
7=1

where V; is the Riemannian gradient V acting on the j-th variable (which is
x) and integration is again taken over the remaining N — 1 variables. From this
we conclude that

N
VDB f(u) z< SN (F oM a,)

Together with the second formula in Lemma 4.2 this yields

(1 IV DBY f)l}) < N (1Y, VN (Fo =)
= (1N (N IVDFENID )

The expression on the right is the image of the function (g, |VDf(/,L)|?> with
respect to BY. Therefore integration of both sides by Q(#)(du) leads to assertion
(4.23).

Using (4.22) and (4.23), we find that

el - KEOEIC0A]
Q¥4 sepy) (@), (1 IV DFIT))
() - ciu. BY )|
< sup
rep(Mn) (Q(t), . |VDBN f(u)[7) )

< ot - o),

QN

for Lebesgue-a.a. t € [0,7]. Because of (4.17) and the corresponding integral
representation for S>°(Q(-)), this implies (4.18). O

The proof of Theorem 1.2 is now complete. It only remains to derive Corol-
lary 1.3. It is obvious from Theorem 1.2 that a path v(-) € Crr is a minimizer
of the rate function S if and only if v(-) is absolutely continuous as a D'(My)-
valued function and satisfies

(4.24) p(t) = Liv(t)  in D'(M))

for Lebesgue-a.a. t € [0,T]. The law of large numbers stated in Corollary 1.3 will
therefore be an immediate consequence of the large deviation result presented in
Theorem 1.1 provided that the solution v(-;1g) to equation (4.24) with initial
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datum 1 is unique for each g € Mjy;. Once uniqueness is established, a
straightforward computation shows that v(¢;19) is given by formula (1.5). The
continuous dependence of v(-;1g) on vy then follows from the continuity of
to — (-5 po) considered as map from My into C([0,T]; My). The latter is
a consequence of the Feller continuity of the semigroup associated with the
diffusion operator Ly. To finish the proof of Corollary 1.3 it remains to verify
uniqueness.

LEMMA 4.7. For each vy € My the absolutely continuous solution v(-) of
equation (4.24) with initial datum v(0) = vo is unique.

PROOF. Let v(-) be an arbitrary absolutely continuous solution of (4.24).
Then the de Finetti approximations vV (-) = ®V () are also absolutely contin-
uous and solve

(4.25) oN() = (NN () in D(My).

This follows from Lemma 3.16 and our key identity (4.21). According to Propo-
sition 2.1, we find a unique path p™(-) € C([0,T]; M((R)Y)) such that
vN () = eNuN (). By Lemma 3.17, the paths ¢ (+) (and their partial marginals)
are absolutely continuous. Therefore, taking into account the first formula in
Lemma 4.2 and Lemma 3.8 a), we deduce from (4.25) that p™ () satisfies

AN = (L)1) i D(RY).

But the initial value problem for this Fokker-Planck equation is known to be
unique, see Gértner [6], Appendix B. This implies the uniqueness of the initial
value problem (4.25) for each N. Since v™¥(t) — w(t) for each t € [0,T] by
Corollary 3.12 a), we conclude from this that the initial value problem for (4.24)
is also unique, and we are done. [
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