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A system of N dilYusions on Rd in which the interaction is expressed in terms of the 
empirical measure is considered. The limiting behavior as N + a ,  is described by a 
McKean-Vlasov equation. The purpose of this paper is to show that the large 
deviations from the McKean--Vlasov limit can be described by a generalization of the 
theory of Freidlin and Wentzell and to obtain a characterization of the action 
functional. In order to obtain this action functional we first obtain results on 
projective limits of large deviation systems, large deviations on dual vector spaces and 
a Sanov type theorem for vectors of empirical measures. 
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1. INTRODUCTION 

In this paper we consider a system of N diffusions on Rd interacting 
via their empirical measure which enters the drift vector. Such a 

of Li.eiil;/j; i;iterilc.i~;i,g di$dsic;ns can be described by ,A{ ceup!ed 

It8 equations of the form 

where w,, . . . , w V  are independent Wiener processes and 

where Y(p)  is a diffusion operator on Rd with diffusion matrix 
;ui,;ix)f =o(;c)a"(x) aiid drifi v"c;l?r @ijx; @jJ = qx; 

In (1.2) the index k indicates that the corresponding operator acts on 
the variable x,. 

Given a solution x(t) =(x,(t), . . . , xN(t)) of ( ] . I ) ,  the associated 
empirical process XN(t) =E,, , ,  is a Markov diffusion process with state 
space .A, the space of probability measures on Rd. Several authors 
(see for example 117, 20, 251) have studied the limiting behavior of 
such systems as the number of particles N tends to infinity. In 
particular, under quite general assumptions the sequence (X,(.))  of 
.&-valued processes was shown to converge in law to a deterministic 
A-valued process p(.) provided that XN(0)4p(O) (McKrun-Vlasov 
limit). The measure-valued function p(.) can be characterized as a 
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weak solution of the McKritii-C'liisov equation 

Here Y'(p!* denntec t h e  formal adjoint of Y ( , u ] :  ,u!r) = ( d / d t ) p ( t ) .  
The motivation for the present paper is to investigate long-time 

phenomena such as tunnelling and metastability for systems like 
( I  . I ) .  The apprvpriate approach to study such phenomena consists in 
an infinite dimensional generalization of the Freidlin-Wentzell 
theory [16] .  Freidlin and Wentzell considered randomly perturbed 
(finite dimensional) dynamical systems in the case of small noisy 
disturbances. As an appropriate tool to investigate the long-time 
behavior of such systems. they developed a large deviation theory for 
them. Faris and Jona-Lasinio 1151 have considered related questions 
for a nonlinear heat equation with Gaussian noise. In their model 
they obtain the large deviation results by representing the solution of 
the nonlinear systcm 2-- the image ::rider :: cnntinuous m a m i n ~  . L  - c?f m 
infinite dimensional Ornstein-Uhlenbeck process and then using 
large deviation results for Gaussian processes due to Wentzell. 
- 
l anaka p i ]  has obtained a large deviation resuii fur the eiiipirica; 

measures on C([O, TI;  Rd) induced by a system of the form (1.1) in 
the special case in which a i j ( x )  = hi j ,  b ( x ;  p) = J B ( x ,  y ) p ( d y ) ,  and B  is 
bounded and sufficiently smooth. In this case it is again possible to 
represent the solution of the nonlinear system by a continuous 
mapping from a system of N independent Brownian motions and 
then to use a resuii ul' "uvrisker aiid Varadhaii. (See also :hc 
comment at the end of this section.) 

The purpose of this paper is to build a framework in which to 
study large deviations from the McKean-Vlasov limit in the generai 
case ( 1 . 1 ) .  In order to illustrate the analogy with the finite dimen- 
sional Freidlin-Wentzell theory, let us view A as an "infinite 
dimensional manifold". Then, in geometrical terms, the McKean- 
Vlasov equation (1.3) defines a dynamical system on A! driven by 
the "vector field" Y ( p ) * p .  The Markov process X, can be regarded 
as a random perturbation of this system. Indeed, the generator of X ,  
is of the form 

G - G ' ~ ) + N - ' G ( ~ ) ,  
N -  

where G"' and G"' act on "smooth" functions F ( p )  = f ((p, g , ) ,  . . . , 
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(p, g,)) according to the formulae 

Here (p, g) = J p(dx)g(x) and 

d 2g Sh  
(Vg, Vh) = 1 niJ( .) - -. 

I,,' 1 ?xi  ?xJ 

This means that G' ' '  is the generator of the (deterministic) flow on 
./I/ caused by the "vector iield" fL'(p)*p. The second order operator 
c") serx/es 3 s  a n  a n z ! c ? < ~ l ~ e  the second order par!ia! diErentia! EUV 

operator in the theory of finite dimensional diffusions. Therefore, the 
investigation of weakly interacting diffusions for N + m  leads to the 
study of a weak noise limit for Markov diffusions on I/H. 

Roughly speaking, our main result (Theorem 5.1) states that 

lim N - ' log Prob(X,(.) E A) = - inf {S(p(.)):p(.) E A, p(0) = v )  (1.4) 
N - x 
for a!! "regu!arn sets .A of continuous paths p(.):[Oj T]+.h' provided 
that X,JO) -+v. The action junctional S characterizes the difficulty of 
the passage of X,(tj near pjtj in the time interval LO, TI.  Indeed, 
according to (1.4), the probability of such a passage behaves like 
exp(- NS(p(.))) as N+m. The functional S will be shown to admit 
the representation 
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and 

By analogy with finite dimensional dynamical systems, nonlinear 
systems like (1.3) can exhibit a wide variety of qualitative behavior 
such as the existence of mulriple equilihriu (cf. [30]). To illustrate this, 
iet us consider a Curie-Weiss model with continuous spin givcn by 
the N-particle Hamiltonian 

xI, . . . , X ~ E  R, where U ( x )  =x3/4-x2/2 is a doublc-well potential 
having two global minima and 8 is a positive coupiirig coiisiaiii 
([9; !4]). The equi!lbriim distril?ution at temperature r r z > O  is then 
given by 

where Z is a normalizing constant. A natural stochastic dynamics 
with prescribed equilibrium distribution (1.7) is defined by the It6 
equations 

Since 

H 
x = - i - 6)x, + x; + - 1 x,, 

N 1 = l  

the stochastic model (1.8) can be viewed as a system of N anharmonic 
"oscillators" with internal noise and "mean-field" interaction. It fits 
in with our concept of weakly interacting diffusions for 

The Curie-Weiss model (1.6)41.8) serves as a mean-field approxi- 
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mation for nearest neighbor Ising models. It exhibits a typical 
ferromagnetic behavior ( [ 9 ] ,  [7 ] ) .  In [7]  the associated McKean- 
Vlasov dynamics (1.3) was shown to undergo a bifurcation at a 
critical temperature a:. More precisely, for aza,, (1.3) has exactly 
one equilibrium v,  which was shown to be globally stable and to 
correspond to mean magnetization zero. If a becomes smaller than 
a,, then the stability of v ,  will be lost and two new stable equilibria 
v +  and v -  will appear which correspond, respectively, to positive 
and negative mean magnetization. 

If N is large but finite, then the empirical process X, will 
normally follow the path of the dynamical system (1.3) which is 
attracted by one of the equilibrium points v +  or v - .  After that X ,  
will perform small fluctuations near this stable equilibrium. However, 
because of ergodicity. from time to time a transition from one stable 
equilibrium to the other one will occur via a large deviation. Such a 
transition is called a runneiiing. Following the ideas of Freidiin and 
Wentzell. we can introduce two quasipotentials which are defined by 

where stands for the functional (1.5) with integration over 
[ T I ,  T,] instead of [0, q. The idea of using such quasipotentials will 
be developed in a future paper in which we will investigate the 
phenomenon of tunnelling between multiple stable equilibria for 
systems like (1.6)-( 1.8) utilizing the relationship between the quasi- 
petentia!~ and the ~c t i on  filnctionz! zssockted to the equi!ibritm 
measures (1.7). 

For Curie-Weiss models with two spins + 1 ,  the investigation of 
the associated measure-valued process leads to a large deviation 
problem for one-dimensional Markov jump processes (cf. [4]) .  On a 
formal level of rigour, Ruget (see [27]) investigated a slightly more 
complex situation by arranging the magnets (with spins + 1 )  on a 
torus and allowing a "local" mean-field interaction which takes into 
account the geometrical structure of the system. This leads to an 
infinite dimensional extension of the Freidlin-Wentzell theory which 
is different from ours. Recently Comets [5]  succeeded in carrying out 
Ruget's program with complete proofs. 

We now sketch an outline of the development of our paper. 
Section 2 contains a list of frequently used symbols. In Section 3 we 
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develop some abstract ideas concerning large deviation systems 
which may be of independent interest (projective limit of large 
deviation systems, large deviations on dual vector spaces). Relying 
on them, we prove a mild generalization of the Sanov theorem for 
vectnrs of empirical measures (Theorem 3.5). In Section 4 we study 
large deviations for the empirical process 

in which x,(t), . . . , x,(t) are independent temporally inhomogeneous 
diffusions on Rd all associated with the same time dependent 
diffusion operator (Theorem 4.5j. That X ,  satisfies the large devj- 
ation principle is essentially a straightforward consequence of our 
Sanov type theorem (see Lemma 4.6) But this theorem provides a 
rather abstract expression ior the action functionai. The greater part 
-4- c-,.t;,... ", .,LLLllrlt 4 i~ thereffire devo!ed tc shewing that the action 
functional admits a representation analogous to (1.5). Unfortunately 
we have not found a direct proof. For this reason, applying the 
results of Section 3, we wiii derive a secotid absiraci expressioii for 
the action functional. After that the desired expression will be shown 
to be caught between these two. Many of the difficulties arising in 
this context originate in the fact that we allow the drift (and 
diffusion) coefficients to be strictly unbounded as in the case of the 
above Curie-Weiss model. In Section 5 we introduce the system of 
weakiy inieraciiiig diffiisioiis as a solu:ion of a martinga!e p:~b!em 
equivalent to (1.1). As the main result of the paper we present the 
large deviation theorem for the associated empirical process 
(Theorem 5.1), cf. (1.4) and (1.5). The idea of its proof rests on the 
observation that locally, along a fixed path j(-), the N-particle 
system (1.1) behaves for large N nearly as if it were a superposition 
of N independent copies of a diffusion process with diffusion matrix 
a(x)a*(x) and "frozen" drift vector 6(x, t )  = b(x; ji(t)). This allows us 
to convert the large deviation result for independent diffusions into a 
local large deviation result for interacting diffusions. A combination 
of this local statement with some global exponential bounds then 
leads to the final result. 

For systems like the above Curie-Weiss model, the approach of 
Tanaka [31] might also be applicable. But it seems to lead to similar 
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difficulties as in our more general approach. First of all, since in (1.9) 
the drift coefficient b(x;p) does not depend continuously upon p in 
the topology of weak convergence of probability measures, the 
mapping which converts the empirical measure of N independent 
wier?er prcresses into the empirical process of our interacting system 
is not continuous in the topology of weak convergence of probability 
measures on C([O, TI; R). It is even not defined for all such 
measures. One must therefore work with a stronger topology which 
makes that mapping continuous and then derive the large deviation 
result for the empirical measures of the Wiener processes in this 
stronger topology! The action functional obtained in this way has 
essentially the same form as S''' in Lemma 4.6 below. This again 
leads to the question how to derive the concrete representation (1.5) 
from such an abstract one. 

2. FREQUENTLY USED NOTATION 

A, aA 
a = {aij(x, t) f 

a = {aij(x)> 

B~ . 
b = {bl(x, t)) 

b = {bi(x; p ) )  

CdX) 

C(C0,Tl; X) 

C 
% 

%R 
ern 

Closure and boundary of the set A. 
Diffusion matrix for independent diffusions 
(Section 4.2). 
Diffusion matrix for weakly interacting diffusions 
(Section 5.1). 
Ball in Rd with center 0 and radius R. 
Drift vector for independent diffusions (Section 
4.2). 
Drift vector for weakly interacting diffusions 
(Section 5.1). 
Space of bounded continuous functions X+R 
endowed with the topology of uniform 
convergence. 
Space of continuous functions [0, q + X .  If X is a 
metric space, then C([O, TI; X) is equipped with 
the topology of uniform convergence. 
= C([O, q; Rd). 
= CKO, T T J ;  d l .  
= c(Co, 17; dR). 
= C([O, T T J ;  A,) furnished with an "inductive" 
topology (Section 5.1). 
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= C;.l(Rd x [0, TI). This is the space of continuous 
functions Rd x [0, TI R having compact support 
and being two times continuously differentiable 
with respect to the space variables and one times 
with respect to the time variable. 
Schwartz space of real test functions on Rd. 
Schwartz space of real distributions on R". 
Expectation with respect to P,.,; Ex = Ex,,. 
Family of diffusion operators on Rd (Section 4.2). 
(One-particle generator for a system of 
independent diffusions.) 
Family of diffusion operators on Rd (Section 5.1). 
(One-particle generator for weakly interacting 
diffusions.) 
N-particle generator for weakly interacting 
diffusions (Section 5.1 j. 
Space of probability measures on a metric space X 
endowed with the Prokhorov metric (which 
induces on &(X)  the weak topology). 
Siibspace of At(Xj consisting of all empirical 
measures of N-particle configurations on X 
(Section 3.5). 
= &(Rd). 
= &(N)(Rd). 
= {P ~ d : J q ~ ( x ) ~ ( d x )  5 R )  furnished with the 
subspace topologj ~f A. 
= { p  E A : ~  q(x)p(dx) < w) furnished with an 
"inductive" topology (Section 5.1). 
Probability law on C of a diffusion starting at time 
s at x governed by {Yt; t E [0, TI) (Section 4.2); Px 
= p x .  o- 
Probability law on C([O, TI; (Rd)N) of a system of 
N diffusions starting at time s at x (Sections 4.2 
and 5.1); PtN' = PZh. 
Probability law on %? (Section 4.2) or %?, (Section 
5.1) of the empirical process starting at time s 
at v associated to a system of N diffusions; 
g&N) = L y N )  

v, 0. 

d-dimensional Euclidean space; R = R'. 
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Action functional for the empirical process of 
independent (Section 4.2) and weakly interacting 
(Section 5.2) diffusions, respectively. 
Support of thc function 1: 
Semi-group of linear operators on C,(Rn) 
generated by ( P , , , )  (Section 4.3). 
Dirac measure with unit mass at point x. 
Empirical measure of the particle configuration x 
(Section 4.2). 
Lyapunov function for the system of weakly 
interacting diffusions (Section 5.1). 
Indicator function of the event A.  
Dual pairing: ( i)  If .x belongs to a vector space and 
x* to its algebraic dual, then (x*. x) is the value 
of the linear functional x*  at x. ( i i )  If p and j are 
a measure and a function on a measurabie space, 
r~cppct ive!~ .  thcn <J. f ' )  = [ f r!;! prnvidcd that thc - -- 
integral makes sense. ( i i i )  Ij' f E Y and 9 E W ,  then 
(9, f )  denotes the application of the test function 
1 A -  *L.. A:"*..:L..*.-- 0 
J L U  L I 1 G  U I S L I  I U U L L U I I  t7. 

Quadratic characteristic (for martingales). 
Gradient, norm, and inner product with respect to 
the Riemannian structure on R%hich is induced 
by the diffusion mairix u( . ,  i) (Section 4.2j. 
Gradient and norm with respect to the 
D;,,,"";.,n ,t,,.,t,.,, ,n rrpd ..,h;rh is  ; n A l l r d  h r ,  
, \ , , ,LI IU . I I I IUII  .,%I U V L U X , ,  X'L.  Y Y  I.... V.. ... Y U Y Y Y  " J  

the time-independent diffusion matrix 4. )  (Section 
5.1). 

3. ABSTRACT RESULTS ON LARGE DEVIATIONS 

3.1 Large deviation systems 

Let the following objects be given: 

X a Hausdorff topological space; 

(p,) a sequence of probability measures on X; 

(y,) a sequence of positive numbers tending to infinity; 
L a functional X+[O, a]. 

DE~INITION 3.1 (X,p,,j',) is said to be a [urge deciution SJ,'.Tttm with 
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reduce the infinite dimensional case to the finite dimensional one. 
Assume therefore that X is infinite d~mensional and let V  be an 
arbitrary finite dimensional linear subspace of X .  Denote by q ,  the 
canonicai pmjcctior. X*+ V* and set p , . ,=p ,  q; I .  (q , (x*)  is the 
restriction of the linear functional x * : X - + R  to the domain !!I 
Assumption ( i )  yields 

Hjv) = iim y; ' log exp(yiV(v*. u ) ) / L , , ~ ( ~ u * ) ,  c E V 
v* 

Since V  is finite dimensional, we can therefore apply Theorem 3.4 to 
the measures p, , ,  (instead of pN) .  Thus, ( V * .  p V , , , y N )  is a large 
deviation system with action functional 

3) Let % be the system of all f i nk  dimensional !inear subspaces 
of X .  9 is right-filtering with respect to the order c .  For V E V - ,  we 
furnish ihe aigebraic dua! V *  with the weak* topology and set 
X ,  = V*. Given I! W E  "t/- with V  5 denote by Fvw ihe canonical 
projection W * + V * .  Then ( X , , p , , )  is a projective system of top- 
ological spaces. Its projective limit can be topologically identified 
with X *  via the homeomarphism. 

Furthermore, for each N ,  p N - q - '  is the projective limit of the 
projective family ( p , ,  ,), ,, of probability measures. We can therefore 
apply Theorem 3.3 in order to check that ( X * ,  !I,\,, ydV) is a large 
deviation system with action functional 

L(x*) = sup L,(q,(x*)), x* E X * .  
V E V  

(3 .9 )  

4) It remains to show that the functional (3.9) coincides with (3.7) .  
But this easily follows from (3.8) and the definition of q,. 

In the case when X  is the space of bounded continuous functions 
on a Polish space E and Y is the space of probability measures on E, 



a result similar to Theorem 3.4 was stated in [I91 and has been 
applied to the study of large deviations for the occupation time 
measure and local times of Markov processes 1181. 

3.5 A Sanov type theorem 

Let X, Y,, . . . , Y, be Polish spaces. Denote by C,(X)  the space of 
hounded continuous functions on X  equipped with the supremum 
norm. Let . d ' ( X )  be the space of probability measures on X endowed 
with the topology of weak convergence. Given a natural number AT, 
set 

where A, is the Dirac measure ofi X with iiiiii mass at x. t c t  
; P,; x E X j be a Feller continuous family of probability measures on 
Y = Y, x . . . x Y,. (Feller continuity means that the integral 
JF(y)~, jdy)  depends cmtintious:y oil x for each F E C J Y ) . )  Given 
N Z I  and 

denote by QIN' the prn!xbi!ltji law of tile vector o i  empirical 
measures 

under P,, 0. . . @  P X N ,  where yk = (y:", . . . , yf ' ) .  More precisely, QLN' is 
the image of the measure P,, 0. .. @ PxN with respect to the map 
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The next theorem is a mild generalization of Sanov's theorem for 
empirical measures on Polish spaces (cf. [6,  10, 211). Sanov's result 
corresponds to r = 1 and P,  r P. We will present here a short proof 
relying on Thcorem 3.4. In principle it must also be possible to 
derive this generalization along the lines of [lo, 19, or 211. 

THEOREM 3.5 Given V, E .A%"N'(X), N 2 1, und v E ,X (X) ,  suppose that 
v N + v  in ,&(X). Then (.A'(Y,) x . . . x .AV(Y,), Q!:'. N) is a lurge detli- 
ation system with action functional 

Proof For i =  1, .  . . , r, we will view A'(x) as a topological sub- 
space of Cb(x)*, the algebraic dual of Cb(x) endowed with the 
weak* topology. Set E = Cb( Y,) x . . . x C,! Y,) and equip its algebraic 
dual E* with the weak* topology. Since the topological vector space 
E* can be identified with Cb(Y1)* x ... x Cb(Y,)*, A ( Y , )  x . -. x . l ( Y , )  
can and will be viewed as a topological subspace of E*. 

Using the representation 

and the Feller continuity of {P,;xEX) and remembering the defi- 
nition of Qt;', we obtain for all (f,, . . . , f,) E Cb(Yl) x . - . x Cb(Y,): 

H,( f , ,  . . . , f,): = lim N - log 1 ~ ~ ~ ' ( d ~ , ,  . . . , dpr) 

x exp ( N  <k. L)) 
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N 

log n fP,r)(dy:" ,..., dyL1)exp C A($)) 
k = l  I,  (1, ) 

=lim J v,(dx) log f ~,(dy"', . . . , Jyir') exp ji(y")) C r ,  j 
=f  v(dx) log f P,(dyU), . . . , dy(')) exp 1 , ) 

where (pi, J ; )  =fji(z)pi(dz). Hence, conditions (i) and (ii) of Theorem 
3.4 are satisfied. It remains to check condition (iii). To this end, let 
f *  =( f 7 . .  . . : f :) be an element of E* and suppose that 

1 
L.(.Iv:= sup I ,  - .  rl I< zi 

;; ,..... j , t e f i ; i ~ y i  
"'r'J - - '  

We must show that f* belongs to Al(YJ for i =  I ,  .. ., r. According to 
the Danieii-Stone theorem, this is certainly true, if the following 
conditions are satisfied for i = 1, . . . , r: 

a) (f7,f ')LO for fZO; 
I.\ / r* 4 \ 
U, \ j i ,  u ) = i ;  

C) (f:, f '")) +O as f '"'1 0 pointwise 

(see e.g. [I]). Suppose that f E C,( y), f 2 0, and ( f  i*, f) < 0. Then 

A( f 7 ,  f )  - J v(dx) log Px(dv"), . . . , dyf") exp(2f (y' '))) 

in contradiction to (3.12). This yields (a). In a similar way one 
proves (b). To verify (c), suppose that f '"'6 C,(x) ,  f '"'SO pointwise, 
and (,f :, f '")) 2 c > 0 for all n. Then for arbitrary I > 0: 

E,(f :, f (")) - J v(dx) log J P,(dy"', . . . , dy"') exp(Af '"'(y"')) S L,( f *). 

Letting n-+ co. we obtain Lc 5 L,(f *) < oo, which is not true for large 
I .  0 
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Let us add some comment. The assertion that ( A ( Y , )  x ... x .X(Y,). 
Q$ N )  is a large deviation system could be reduced to the case 
r =  1 by considering the emprical measure of the random vectors 
y , ,  . . . , y ,  instead of studying vectors of empirical measures 
and applying then Theorem 3.2 to the canonicai prcjcctior? 
.X(Y,  x x Y,)+..X(Y,) x . - -  x A(Y , ) .  But as a result, we would get 
a representation of the action functional L which is different from 
(3.1 1). The question would then arise to show that both represen- 
tations coincide. 

4. LARGE DEVIATIONS FOR INDEPENDENT 
DIFFUSIONS 

4.1 Preliminaries on distribution-valued functions 

We denote by 9 the Schwartz space nf test functions Rd+R having 
compact support and possessing continuous derivatives of all orders. 
We endow 6 with the usual inductive topology. Let 9' be the 
corresponding space of real distributions. For each compact set 
K c R d ,  gK will denote the subspace of 9 consisting of all test 
functions the support of which is contained in K. Finally, let ( 9 ,  f )  
denote the application of the test function f to the distribution 9 .  

DEFINITION 4.1 Let I be an interval of the real line. A map 
3 ( . ) : 1 + 9 '  is calied abso!ute!y continuous if for each compact set 
K c  Rd there exist a neighborhood U, of 0 in gK and an absdiiidy 
continuous function HK: I+R such that 

LEMMA 4.2 Assume that the map 9 ( - ) :  I + 9 '  is absolutely continuous. 
Then the real function ( 3 ( . ) ,  f) is absolutely continuous for each 
f €9. Moreover, the derivative in the distribution sense 

$(t)  = lim h - ' [ 9 ( t  + h) - 9( t ) ]  
h - 0  

exists for Lebesgue almost all t E I .  
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Proof Let U K  and HK be as in Definition 4.1. Since U ,  is 
absorbing in 9, for each K and U K g K = 9 ,  the first part of the 
assertion is immediate from (4.1). For each natural number n, let Kn 
denote the closed ball in Rd with center 0 and radius n. Let N ,  be 
the null set of points at which the function HKn is not differentiable. 
For each f  E 9, denote by N( f )  the null set on which the function 
(9 ( . ) ,  f )  is not differentiable. Fix an arbitrary countable dense 
subset 9'" of 9. To prove the second part of our assertion, it is 
enough to check that 9( . )  is differentiable in the distribution sense 
on I\N, where 

To this end, choose t ~ l \ N  arbitrarily. It then follows from (4,l) that 
for each n and all sutlkiently small ]hl, 

where 

U & = { A ~ 9 ; ~ : l ( l ,  f ) l = < l  for all f  c U K , )  

is the polar set of UKn in gKn, the dual of gKn. By the Banach- 
Alaoglu theorem and the separability of gKn, U i n  is sequentially 
corr.pact in 9;" i" ld~~libhed -- - -  with the weak* topology), see e.g. [26, 
Chap. 33. Thus, hK1[9(t + h) - 9(t )]  is sequentially compact in each 
9;" and, consequently, also in 9' for h+O. Furthermore, since t $ N ,  
the finite limit 

lim ( h e  ' [ 9 ( t  + h) - 9(t )] ,  f )  
h - 0  

exists for all f  ~ 9 ' " ' .  This proves that 9( . )  is differentiable in the 
distribution sense at point t. IJ 

Let C,"(Rd x [s, t ] )  be the space of functions Rd x [s, t ]+R having 
compact support and possessing continuous derivatives of all orders. 
Given a function f :  Rd x [s, t ]  +R, we will write f  (u ) (x )  = f ( x ,  u) and 
~ ' ( u ) ( x )  = ( a i a u ) m  u), (x ,  u)  E R~ x IS ,  ti. 
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L E M M A  4.3 (Integration by parts formula) For each absolutely 
continuous map 9(.):[s, t]-+9'  and each JEC?([W* x [ s ,  t ] )  i t  holds 

Proof At least formally, 

where the integrals 

and 

coincide by Fubini's theorem. This yields (4.2).  To make these 
computations rigorous, we must verify among other things that 

for all 9 ~ 9 ' .  But this follows from the fact that the integral Sidu f ( u )  
is the limit in 9 of Riemannian sums. Since the function <&u), f ( v ) )  
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is measurable in u and continuous in c, it is measurable in (u, c). 
There exist some compact set K C  Rd and some c>O such that 
f ( ~ , )  ECU,  for all I ? ,  where I: ,  is taken from Definition 4.1. Therefore 
(4.1) and Lemma 4.2 imply that 

f du(&u), f ( u ) )  = c Var H ,  < cr, 
s 

for all c E [s, f], where Var HK denotes the variation of H,. Hence 

which justifies the application of Fubini's theorem. By (4.3) and (4.4), 

(see Lemma 4.2) this implies the existence of the first integral or? the 
right of (4 2). The existence of the second one is obvious from the 
continuity of u++(3(u). f (u ) \ .  

4.2 The large deviation result 

Let . K =  .&'(Rd) be the space of probability measures on Rd ( d z  1) 
equipped with the Prokhorov metric which induces on A the 
topology of weak convergence [ 2 ] .  Fix T > 0 arbitrarily. We denote 
by C = C([O, TI ;  Rd) and % = C([O, TI ;  A') the spaces of continuous 
maps from [O, TI to Rd and 4, respectively, and furnish them with 
the topology of uniform convergence. Usually the elements of C and 
V will be denoted by x(.) and p ( . ) ,  respectively. Let Sd be the space 
of symmetric non-negative definite d x d real matrices. Given maps 
a: Rd x [O, T]-+Sd and 6: Rd x [(0, 7'l+Rd, let us introduce the diffusion 
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operators 

t E [0, TI,  where ai'(x, t )  and b i ( x ,  t ) ,  1 2 i, j 2 d, are the components of 
the diflusion matrix a(x ,  t )  and the drifi vector h (x ,  t ) ,  respectively. We 
impose the following assumptions on 9,: 

( A . l )  The matrix a(x , t )  is strictly positive definite for all 
(x, t ) ~  Rd x 10, TI. The (possibly unbounded) coefficients aij and hi, 
1 2 i, j 5 d, arc locally Holder continuous on Rd x [0, TI. 

( A 4  The martingale problem for {9t; t € [ O ,  T I )  is well posed. In 
other words, for each (x, s ) ~  Rd x [0, TI there exists exactly one 
probability measure P,,, on C having the fotlowing properties: 

i) P,.,(x(u) = x, u F [0, s ] )  = I ;  

is a local P,.,-martingale after time s (with respect to the canonical 
filtration on C) for all continuous functions f :  Rd x [0, T I - R  
possessing continuous spatial derivatives up to the second order and 
a c u i i i i n i i ~ ~ ~  time derivative of first order. 

Remark 4.4 The Holder continuity In Assumption (A. l )  will only 
be used in the proof of Lemma 4.11 below. For the purposes of 
Section 5 we must be able to handle the case in which the drift 
coefficients are continuous but not Holder continuous (at least with 
respect to the time variable). In Section 4.5 we will bhow hcw one 
can relax in a simple way the Holder continuity of the drift vector 
(but not of the diffusion matrix). In our preliminary technical report 
[8] we imposed instead of (A.1) the weaker condition that the 
diffusion matrix is non-degenerate and both the drift and diffusion 
coefficients are merely continuous. The proof of Lemma 4.1 1 below 
given in [a] without assuming Holder continuity follows the same 
lines as the proof presented here, but it requires in addition the 
application of Sobolev space techniques and Krylov bounds. 

The family {P,,,; ( x ,  s) E Rd x [0, T I )  defines a strong Markov- 
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Feller diffusion process on Rd ([29, Theorem 10.1.1 and Corollary 
1 1.1.51). Let us consider N independent copies of this process. This 
leads to the family of probability measures 

on the product space CN. Canonically identifying CN= C([O, TI; Rd)N 
with C([O, T ] ; ( I R ~ ) ~ ) ,  we will sometimes view P!J as a measure on 
C([O, TI; ( IRd)N) .  Given x = (x,, . . . , x,) E (Rd)N, set 

where fiZ denotes the Dirac measure at point z€Rd;  ex is the 
empirical measure of the 1%'-particle co1:figuration x. The set consisting 
of thc empiricai measures of all N-particle configurations wi!! be 
denoted by . K'.%'. The empirical process associated to N independent 
copies of the above diffusion process is given by a family {,YIN); 
v ~ . / h " ~ ) )  of probability measures or! %'. If  v=c,  f ~ r  mine ?i g(Rdj", 
then YLN' is the probability law of the process E , ( . ,  under PI;N)=PiN& 
In other words, YIN' is the image of the measure PiN' with respect to 
the map 

Since the family {P?';XG(R")")  is invariant with respect to  permu- 
tations of the initial configuration x = (x , ,  . . . . x,), the measures !?IN) 
are well defined. 

In this section we will present a theorem on large deviations for 
the probability laws 9LN' of our empirical process as N tends to 
infinity. Before stating the result, we need some further notation. 

Let V,, ( , ),, and I 1, be, respectively, the Riemannian gradient, the 
inner product, and the Riemannian norm in the tangent space of the 
Riemannian structure on Rd induced by the diffusion matrix a(., t ) .  
In global Euclidean coordinates x',  . . . , xd, 
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d 

(X, Y), = C a,(-, r)XiYj, /XI, = (X, X):I2, 
i , j :  1 

where {aij(x, t)) is the inverse of thc matrix (oij(x. t)). In particular, 

d .. a f a f  l ~ , f l , ? =  1 alj(.,t)--. 
i.j= I dx' dx' 

(Of course, if a(., t) is not sufficiently smooth, then there is not really 
a Riemannian structure associated with a(-, t). But the above for- 
mulae still makes sense in this case.) 

For each ,u E Jt and t E [0, TI we introduce a normed linear space 

where the norm 11 I(,,, is defined by 

Here 9,,,={f ~ 9 : ( , u ,  lVtf f)#O). For each 9 ~ 9 ' ,  

Indeed, replacing the function f in (4.8) by c .  f and taking the 
supremum at first over all C E  R and then over f ~g,,,, we see that 
the expressions on the right of (4.7) and (4.8) coincide. 

For each VEA' we introduce a functional S,:V+[O, co] by setting 

if ,u(O)=v and ,u(-) is absolutely continuous (in the sense of Defi- 
nition 4.1) and S,(,u(.))= oo otherwise. Here Y: is the formal adjoint 
of 3, defined by (4.5). The operator 2: acts on 9'. We remark that 
the measurability of the integrand in (4.9) is a consequence of the 
fact that it suffices to take the supremum on the right of (4.8) over a 
countable dense subset of 9 and that, by Lemma 4.2, (,u(.), f )  is 
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absolutely continuous and ($ ( t ) ,  f )  = (d /d t ) (p ( t ) ,  f )  almost every- 
where for each f E 9. 

We are now ready to formulate our large deviation result. 

THEORFM 4.5 Given V,E.A"~'  unJ VEA, suppose that v,+v in A .  
Then (%, 817,  N) is a large deviation system with action functional S,. 

The proof of this theorem will be given in the next two sections. 
The assertion that (%,Pi:', N) is a large deviation system is a simple 
consequence of Theorem 3.5 (see Lemma 4.6 below). The difficulty 
consists in showing that the action functional has the form (4.9). To 
this end, we will apply the results of Section 3 in order to obtain two 
different expressions S!." and Si2' for the action functional (Lemmas 
4.6 and 4.7). The functional S, will then be shown to be caught 
between Sv' and SL2' (Lemmas 4.9 and 4.10). 

4.3 Two representations of the action functional 

We will denote by Ex.,  the expectation with respect to the proba- 
bility measure P,., defined in the preceding section. We will write Ex 
and P,  instead of Ex,,  and P,,,, respectively. In the following, C,(C) 
and A ( C )  will stand for the space of bounded continuous functions 
and the space of probability measures on C = C([O, T I ;  Rd), respec- 
tively. Given P E ,@(C), let n(t; P) = P 0 x ( t )  - I ,  t E [O, T I ,  denote the 
associated one-dimensional distributions. 

LEMMA 4.6 Given vN E N 2 1 ,  and v E A ,  suppose that vN+v in 
A. Then (%, 91;'. N )  is a large deviation system with action jiunctional 

where 

Ltl'(P) = sup [ ( P ,  F) - ( v ,  log E. e F ) ] ,  P E A(C).  
FEC,(C) 

Proof Given N 2 1 and 
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let QLN' denote the image of the measure P,, @ - . . @ P X y  with respect 
to the map 

where q,.,., is the Dirac measure on C with unit mass at 
map (4.6) is the composition of the map (4.12) and the map 

Therefore SLN) is the image of the measure Qy' with respect 

(4.12) 

x(.). The 

(4.1 3) 

to (4.1 3). 
The map (4.13) is continuous. For, suppose that P,+P in .H(C). 
Then 

(n( r; P,). f ) -+ /,ii(t: P!. f ' )  (4.14) 

for each L'E LO, T! and each f 6 C,(Rd). Moreover, the tightness 
criterion for probability measures on C ( [ I ,  Theorcm 8.21) implies 
that, for each K > O ,  

unifoiiiily ir? n, where o(.; x(.)) is the modulus of continuity of the 
path x(-)  E C. Combining (4.14) with (4.151, we find that the conver- 
gence in (4.14) is unifarm in t E [0, TI and, therefore, i r ( . ;  P,)+n(.: Pj 
in %. 

For r = l ,  X=Rd, and Y = C ,  Theorem 3.5 says that 
(A(C) ,  Qt:', N) is a large deviation system with action functional L?' 
defined by (4.11). Together with Theorem 3.2 this yields that 
(W,Y\r, N) is a large deviation system with action functional 
(4.10). 0 

Let us introduce the two-parameter semi-group (Us, , ;  Osssts T} 
of linear operators acting on C,(Rd) according to 

LEMMA 4.7 Given v, E .AtN), N 2 1 ,  and v E A', suppose that v,+v in 
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A. Then (%, 9'$:), N )  is u lurge deviation system with action functional 

Proof We first derive a large deviation result for the finite dimen- 
sional distributions of 91:'. Given N = >  1, O = r ,  S t ,  i .. - <tr  =< 7; X E  Rd, 
and 

let p , ( t , ,  . . .. 2,) and ZT'(:~, ..., t,) denote the probability law of 
( x ( t l ) ,  . . ., x(t,)) under P, and the probability law of ( ~ ( t , ) ,  . . ., p(tr)) 
under 9r'. Since {P,; x G Rd) is Feller continuous, the same is true 
for { p , ( t , ,  . . . , t,); x E Rd).  It follows from the definition of Pjjv) that 
xlN'( t l , .  . . , t,) is the image of the measure 

wi!h respect to the map 

where yk = (yil', . . . , yf ')  E (Rd)'. We can therefore apply Theorem 3.5 
for X = Yl = . . . = Y, = Rd, in order to obtain that (X,  xif'(t ,, . . . , t,), N )  
is a large deviation system with action functional 



We next show that the functional (4.19) coincides with (4.18) for 
p, = v.  An application of the Markov property of 

Abbreviate 

Then the functional (4.19) (with p, = v) has the form 
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Hence, we successively arrive at 

Taking into account the continuity of the operators U,,,, this gives 
(4.18). 

We already know from Lemma 4.6 that ( % , 9 $ 7 ,  N )  is a large 
deviation system. Let SL2' denote its action functional. It remains to 
show that S$2) has the form (4.17). Given N 2 1 and p E let $kN) 
denote the image of the measure 9hN) with respect to the continuous 
imbedding %-+,.MrO*T1. Here is the space of all maps 
[0, TI +A furnished with the product topology. By Theorem 3.2, 
(.VrO.T1,.$tT, N)  is a large deviation system. Its action functional Ti2) 
coincides with S12' on 'K and equals + co on .X1","l\,W. But 
(,X'O.T',B!:), N )  can be canonically identified with the projective 
limit of the large deviation systems ( .Xr ,  7c$t'(tl, . . . , t,), N) .  The index 
set of this projective system consists of all finite sets { t , ,  . . . , t,) of 
points from [O: TI with 5 as order relation. We can therefore apply 
Theorem 3.3 in order to obtain 

This proves (4.17). 0 

4.4 Coincidence of the action functional with S,. 

In Lemma 4.6 and Lemma 4.7 we have got two different expressions 
S$') and SL2) for the action functional of (%,PIT, N). To  finish the 
proof of Theorem 4.5, it will be enough to show that, for each VEA', 
the functional S ,  defined by (4.9) satisfies 

The present section is mainly devoted to the proof of (4.20). Let 
C:.' = C:*'((Wd x [0, T I )  denote the set of continuous real functions 
on Rd x [O, TI having compact support and possessing continuous 
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spatial derivatives of first and second order and a continuous time 
derivative of first order. We first derive the following representation 
of the fiinctional S,. 

LEMMA 4.8 Giuen v E .A' and p( .) E %, s u p p o s e  [hi ,ii(Oj = v .  Then 

S,,(P(.)) = sup I@(.);  f), 
f 4i.l 

where 

Proof Fix v E .dl and p( . )  E % arbitrarily and assumc iiia: p!0! = 1'. 

1) Given O s s < i i  r a n d  j " ~ C : , ' ( [ W ~ x [ s , t ] ) ,  set 

and 

Clearly I,,,( f )  = I (p( . ) :  f ) .  Let (&,j bc a sequence of smooth func- 
tions from [0, TI to [O, 11 such that R,(u)= 1 for all U E  [s, t j  and a!! 
n and A,LIIIs,,,, where I I I , , i l  is the indicator function of the interval 
[ s ,  r ] .  Then one easily checks that 

for all f E Ck2' '. Therefore 
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for 0 2  s < t 5 7: From (4.23) and (4.24) we conclude that 

for all f E Ci9 '  and C E  R. Taking on the left-hand side the supremum 
over all C E  R, we arrive at 

Here we have also used (4.25). 

2)  We next show that 

To this end, put an arbitrary smooth function j': W d  x [0, T]+R with 
compact support and suppose that S,(p(. ) )  < co. Then a combination 
of (4.8). (4.9), and Lemma 4.3 yields 

and we arrive at (4.27). 

3) After these preliminaries we start to prove (4.21). Because of 
(4.27) we can assume without loss of generality that 
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Let L2(s,t) be the Hilbert space of all measurable maps 
h: Rd x [ s ,  t ]  -+ Rd with finite norm 

Denote by L;(s, t )  the closure in LZ(s, t) of the linear subset L 
consisting of all maps (x, u)wV, f (x, u), f E C,Z,'(IWd x [s, r]). Since 
.f(.w, u)t-*VU f (x, U )  is a one-to-one correspondence between 
C:.'(Rd x [s, t ] )  and L, l,., can be viewed as a linear functional on L. 
(Actually t must he considered not as a set of functions but as a set 
of equivalence classes of functions coinciding /L(u, dx) @ du- -almost 
everywhere. But this is ~nessential, since !,,,(f) = is&) if V ,  f (r, u)  and 
V u g ( x ,  u )  belong to the same equivalence class which is immediate 
from (3.26) and (4.28).) Because of (4.26) and (4.28), the functional I,,, 
is bounded. Hence, by the Kiesz Represen!ation Theorem, there 
exists some h,,, E L$(s, t) such that 

Since I,,,(f) does not depend upon the values of f on the time 
interval i t ,  TI,  the last integral on the right-hand side vanishes 
identically. So we finally get the representation 
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t E [0, TI, f E c;' ', where h = ho, ,. Since h E L$(O, T ) ,  

4 )  Substituting (4.29) in (4.24) (for s=O and t=  T )  and taking into 
account (4.30), we obtain 

Therefore, in order to finish the proof of (4.21), it suffices to show 
that S,(p(.))  coincides with the integral expression on the right of 
(4.31). Comparing (4.23) with (4.29). we find that 

+ ( r ) ,  f) - (pis), f j =I (pf u!. Y3.! '+(h(u) ,  C, f ) , )  Ju (4.32) 
S 

for 0 5  s < r 5 T and all f E 2. This implies that p( . )  is absolutely 
continuous as a map from [0, T I  to 9'. Hence. using Lemna 4.2, we 
conclude from (3.32) ?ha: ? ~ r  each ,f E 9, 

for almost all t ~ [ @ ,  T I .  Since 9 is separable and the linear func- 
t ional~ on both sides of (4.33) belong to 9' for almost all t E [O, T I ,  
there even exists a null se! N c [O, Tj  such that (4.33) holds for all 
j ' ~ 3  and all tc[O, T]\N simultaneously. Together with (4.9), (4.83, 
and (4.30) this finally yields 



LARGE DEVIATIONS FROM McKtAN-VLASOV LIMIT 28 1 

L E M M A  4.9 S( ,"z  S, for all E A. 

Proof Given v E ..K and p ( . )  E %. assume that S p ( p ( . ) )  < m. Then 
there exists a measure P,,,, E .  &'(C) with one-dimensional distri- 
butions p(r),  r E[O, TI,  for which the minimiim on the  right of (4 .10)  
is attained. Together with (4.1 1 )  this gives 

for all F E C b ( C )  Putting in (4 .34)  F ( x ( . ) )  = f ( x ( 0 ) )  and varying over 
all f E C b ( R d ) ,  one readily checks that p(O) = v. Now choose f ' ~  C,2.' 
arbitrarily. Since {P,,,; ( x ,  s) E Rd x [O, T I )  is the solution to the 
martingale problem for {Sfr ;  t E [0, T I } ,  

t ~ [ ! 2 ,  T I ,  is a bounded continuous Px-martingale for each x € R d  
with quadratic characterisiic ( [ 2 3 ,  Proposition 13.421) 

not depending on x. Put 

Then 

where I ( p ( . ) ;  f )  is defined by (4.22). Further, since exp(M-$((M))) 
is a Px-martingale (see e.g. 122, Chap. 3, Theorem 5.3]) ,  

We therefore derive from (4 .34)  that 
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for all f E Ct.'. Together with Lemma 4.8 this gives 
( A  1 1  2 ( A  1 .  
LEMMA 4.10 SL2)2 Sv for all v E .A'. 

The rest of !his section is devoted to the proof of Lemma 4.10. 
Given V E A  and p(.)~%', suppose that S,(p(.))< a. By (4.9), (4.8), 
(4.17), and (4.18), i t  suffices to show that 

for O s s < t g T  and all f €9. 
On a formal level of rigour. (4.35) is rcadily checked. Indeed, at 

ieast formally the function 

(n, u)  E R d €  LU, r ] ,  satisfies the backward Kolmogorov equation 

g(u) + 6P,g(u) = 0, g(t) = ef. 

Thus h(x, u) = logg(x, u) satisfies 

h(u) + Y,h(u)  +ilV,h(u)J,2 = 0, h(t) =J: 

Together with a formal integration by parts this yields 
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In general, the transformations in (4 .36)  do not make sense. The 
most striking reason for this is that the function h does not have 
compact support. One also has to keep in mind that we did not 
impose any restrictioils s n  the growth at infinity of the drift or 
diffusion coegcients. To circumvent these problems, we modify ihe 
proof. passing from the semi-group { U s . , )  to the semi-group ( U j R / )  
associated to the diffusion process which is killed as soon as it leaves 
the open ball B, = { x  G Rd: 1x1 c R } .  Let 7,(s):  C-+[O, co] be the stopping 
time of the first exit from BR after time s .  That is, 

t R ( s ) ( x ( . ) )  = min { t  E [s, 77: l x ( t ) l ~  R )  

if the minimum exists and r , (s)( .u(-))= oo otherwise. Then the semi- 
group { T-ib;)! acts or? functions f E c,(Rd) according to 

Here I, is the indicator function of the event A. Let supp f denote 
the support of :he function dC Instead of Lemma 4.10 (respectively 
(4 .35))  we will check the following. 

LEMMA 4.11 Given V E A  and , u ( . ) E @ ~ ,  suppose that S , ( ,U( . ) )<CO.  
Then for each R > 0, 

.for O s s < t i T  and all f €9 with f_IOand  supp f c B R .  

Inequality (4.38) implies (4.35). Indeed, letting R+m ir, (4.38), we 
find that (4 .35)  holds for all non-positive f €9. NOW choose a 
sequence (A,) in 9 so that 0 5 A,f 1 pointwise. Given f E 9 arbitrari- 
ly, set f, =A, .( f - ( 1  f I/), where 11 f 1 )  stands for the supremum norm of 
f: The functions ji belong to 9 and are non-positive. Hence (4.35) 
holds for f, instead of f: Letting n-+c0, we conclude that (4 .35)  is 
also true for f: We have therefore reduced the proof of Lemma 4.10 
to Lemma 4.1 1 .  

The function 

g ( x ,  s j  = UjR)(ef - 1 )(x), ( x ,  s)  E Rd x [0, T I ,  (4 .39)  
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appearing in (4.38) is the (unique) classical solution of the "initial" 
boundary value problem 

g(x, S )  = 0, ( x ,  S )  E dBR X [O, t ) .  (4.4oC) 

For, Assumption A.l ensures that the problem (4.40) admits a 
unique classical solution g (see [24, Chap. 4, Theorem 5.11). Since 
{P,, ,;  (x ,  s )  E Rd x [0, T I )  solves the martingale problem for 
{Y,; t E [O, T I ) ,  we conclude from this that g(x(u A r,(s)), u A z,(s)), 
u E [s, t ] ,  is a P,, ,-martingale after time s for each (x, s )  E B, x LO, t ] ,  
( U  A L' denotes thc minimum of u and 11). Hence, taking inio account 
(4.4Ob, c) and the definition of the stopping time T,(s), we obtain 

for (x, s ) ~  BR x [O,t]. Together with (4.37) this yields (4.39). 
The function (4.39) has compact support, but it is not smooth. It 

is even no? diRerestiab!e on dB,. To overcome this deficiency, we 
approach g by functions of the form 

where {k,)  is a suitable family of smoothing kernels and * denotes 
convolution on Rd. To be concrete, we put k,(x) = E - ~ ~ ( E -  ' x ) ,  where 
k belongs to 9, is non-negative, and satisfies j k(x) dx  = 1. The 
functions g, belong to 9. Of course, they do not satisfy Eq. (4.40a). 
However we do obtain the following bound. 

LEMMA 4.12 Given R > 0, t E (0,  T I ,  and f E 9 with supp f c B,, 
define g and g, by  (4.39) and (4.41), respectively. Assume in addition 
that f SO. Then, for a11 suflciently small E > O ,  there exists a 
continuous function r, on Rd x [0, t ]  vanishing outside of B,, x [O, t ]  
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such thut 

g, 5 r, on Rd x [0, t ]  (4.42) 

and 

r,+O uniformly on Rd x [0, t ]  us E+O. (4.43) 

Proof Integrating by parts, we obtain for (x, s) E iWde [0, t ] :  

where 

The index x in Yr' indicates that the operator TS acts on the 
x-variable; a denotes Lebesgue's surface measure on dB,; (dg/dn)(y, s) 
is the derivative of g with respect to the inner normal n(y)= 
(n , (y ) ,  ..., n,(y)) to dB, at point y. By assumption f SO. Hence gSO 
on BR x [0, t ]  (see (4.37) and (4.39)). On the other hand, g=O on 
dB, x [0, t ] .  Thus dg/Zn_lO. Consequently, the sum on the right 
of (4.44) is non-positive, and we arrive at (4.42). Clearly r, vanishes 
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outside of B,, x [O, t] ,  provided that E is suffic' iently small. Because 
of (4.40a), we further conclude from (4.45) that 

Letting E-+O, this yields (4.43), and the proof is dornplete. C] 

Proof of Lemma 4.11 The essence of this proof consists in a 
refinement of the formal transformations in: (4.36). Fix R>O, 
0 5 s  <t 5 T and f E 9 with /'SO and supp f c BR arbitrarily. Define 
g and ,Y, hy (4.39) am? (4.311, respectively. Let r i  be as in Lemma 
4.12. Set 

Then, applying Lemma 4.3 and using (4.42), we obtain 



LARGE DEVIATIONS FROM McKEAN-VLASOV LIMIT 287 

From (4.39), (4.41), and (4.46) we conclude that h,(s) -+log( 1 +g(s)) = 

log[l+ U:P)(af- I)] and h,(t)-+ f uniformly as E+O. We further know 
from Lemma 4.12 that (1 + g B ) - l r e  vanishes outside of B2,  x [O, t] 
for small F and converges io  zero miformly as &--to. Thus, letting 
E--+O in (4.47), we arrive at the desired estimate (4.38). Ci 

4.5 Relaxation of Assumption A. l  

The purpose of this section is to show that the assertion of Theorem 
4.5 remains true, if we relax Assumption A.l, assuming that the 
drift coefficients hi, 1 l i i d ,  are merely continuous instead of being 
locally Holder continuous. Assumption A.l has only been needed to 
prove Lemma 4.1 1. The non-degeneracy of the diffusion matrix a 
and the Holder continuity of u and h on B, x 10, t] ensured that the 
function g defined by (4.39) is a classical solution of problem (4.40) 
and that Lemma 4.12 is applicable. It is therefore enough for us to 
show that inequality (4.38) remains true, if the &if; coe%cients are 
continuous but not locally Holder continuous. This will be done by 
a limit procedure. 

To begin with, fix v e A  and ,u(.)~%? with S,(p( . j ) i  W, R:O, 
O s s < t s  7: and f €23 with f 5 0  and supp f c BR arbitrarily. Sup- 
pose that the drift vector h:Rd  x [O, T]-+Rd is continuous but not 
localiy Holder continuous. Then one can find a sequence of con- 
tinuous maps 6,: Rd x [O, TI -+Rd such that 6, is Holder continuoils on - 
a", x LO, TI,  b, = b outside of B,, x [O, TI, and b,+b uniformly. 
Denote by YF', us[O, TI, the diffusion operators wiih diEcsinn 
matrix a and drift vector On. Let (P?',; ( x ,  U ) E  Rd x [O, TI)  and 
{UL?;"); O s u < v s  T) denote the solution of the associated mar- 
tingale problem and the associated semi-group, respectively. Tha: 
the martingale probiem for j2r'; urs [!I, T I )  is well posed follows 
from Assumption A.2 by an application of the Cameron-Martin- 
Girsanov formula (cf. [29, Section 6.41 where' the case of bounded 
coefficients has been treated). Because of our assumptions on b,, 
inequality (4.38) holds with UjP,' and Yu replaced by UiRin' and Y r ) ,  
respectively; i.e. 



Here we have also used (4.8). Letting n-.m in (4.48), we arrive at 
(4.38). Indeed. from [29, Theorem 1 1 .l.4 and Lemma 1 1.1.21, we 
know that 

pointwise and boundedly as n+m. Therefore the expression on the 
left of (4.48) converges to the corresponding expression in (4.38). 
Concerning the right-hand side of (4.48), i t  suffices to notice that 

-- -: SUP 
j w u ) ,  (b,  -h, V , 4 , ) ( L  

iE2",", " M u ) >  lvu4:) 

and (,u(u), Jb,-bli)+O as n-.w uniformly in u. Here we have used 
the dcSiiitio~is or' 9::: and Y,, (4.71, and !he Cauchy-Schwarz 
inequality. 

5 .  LARGE DEVIATIONS FOR WEAKLY 
INTERFACING DIFFUSIONS 

5.1 The N-particle model 

In this section we introduce the model of weakly interacting 
diffusions, describe the famdy of probability laws of the associated 
empirical process, and formulate the assumptions under which the 
large deviation result will be established. 

We first define the state space . k', and the space of sample paths 
V ,  = C([O. 7'3;. K c  ) for the empirical process. As in Section 4, let , d l  

denote the space of probability measures on Rd furn~shed with the 
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weak topology, and let C([O, TI; .,K) be the space of continuous 
maps [0, T]-t,& endowed with the topology of uniform conver- 
gence. Let qx[Wd-+R be a non-negative, two times continuously 
differentiable iunctiori with !imlXi +, cn!x) = co. This function will serve as 
a Lyapunov function for our system of weakly interacting difiusions 
(cf. the Assumptions B.2 and B.3 below). Given R>O, we denote by 
A, the topo!ogical subspace of J& consisting of all p ~ , &  for which 
(p, cp) 5 R. We set 

and equip this space 
set G is open in A',, 

with an "inductive" topology. By definition, a 
if G n M ,  is open in .A@', for each R>O.  In the 

same way. furnishing C([O, Tj; .&,I, R>9,  with the subspace to- 
poiogy of C([O. TI: .&') and observing thar 

we define an "inductive" topology on C([O, TI;/&,). One easily 
checks that p,+p in ,dm if and only if pn+p in A and 
sup,(p,, 9) < m. Ananlogously, pn(-)+p(.) in C([O, TI; .A!,) if and 
only if p,(.)-+p(.) in C([O, TI; A"I)nci sup, suptEI,, (,u,(t), cp) < c ~ .  
??!though the topologies on A, and C([O, T];.A,) are not met- 
rizable, this fact does not lead ro serious !:mh!e. Tn this context we 
mention that a real-valued function on Rd x A', or on C([O, TI; -A/,) 
is continuous if and only if it is sequentially continuous. For further 
details about these topologies we refer to the appendix in [20]. 

We will frequently use the abbreviations 

Now suppose that we are given continuous maps a:Rd+Sd and 
h:Rd x M,-+Rd. (As before, Sd denotes the space of symmetric non- 
negative definite d x d real matrices.) We want to consider a system 
of N diffusions on Rd with diffusion matrix a =  {aii) and drift vector 
b =  {hi), interacting via their empirical measure which enters the drift 
vector. To this end, let us introduce diffusion operators 2 ( p ) ,  
p ~ . & , ,  and 2PN', N =  1,2 , .  . . , acting on functions on Rd and (Rd)N, 
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respectively: 

The index k indicates that the operator S?(E,) acts on the variable xk; 
E, = N - xt= 8% is the empirical measure of the particle configur- 
ation x = (x,, . . . , x,) E (Rd)N. The precise assumptions on the diffusion 
and drift coefficients will be given later. For the moment we assume 
only that for each N, the martingale problem for is well posed. 
Let {PiNJ;(x, Y)E(R~)'  x [0, TI)  be the associated family of solutions. 
Pi:; is nothing else than the joint probability law of N weakly 
interacting difusions (with diffusion matrix a and drift vector h) 
which starts at tlmes s at x=(x , ,  . . . , x,). Further, given N 2 1 and 
( x , s ) ~ ( R ~ ) ~  x [0, TI,  we will denote by Pi:s the probability law on 
%, of the empirical process E , ( . )  under PLY;. In other words, 81r,)s is 
the image of the measure P!:: with respect to the continuous map 

C([O, TI; (IWd),) 3 X(.)HE,(.) E C([O, TI; A,). 

Since the distribution of E,,., under Pi:: is invariant with respect to 
permutations of the initial configuration x = (.xi,. . . , xN) ,  the proba- 
biiity measures B$, (v ,  s) EA'~ '  x [0, n ,  are well defined. (As before, 
A'N) denotes the space of N-particle empirical measures.) For each 
N, the measures 81:: are concentrated on C([O, TI; A&"N)) and define 
a strong Markov-Feller process with state space A'N). The last fact 
follows from the strong Markov property of the family 
{P:::; (x, s) E (Rd)N x [ O , n )  (cf. [29, Theorem 10.1.1 and Corollary 
11.1.51, and [ l l ,  Theorem 10.13 and Remark 1 to this theorem]). We 
will write PiN) and BtN) instead of Pkyb and 8$,&, respectively. 

The joint diffusion matrix a of the operators Y(,u), PEA, ,  
induces a Riemannian structure on Rd. We will denote by V and I ( 
the Riemannian gradient and the Riemannian norm on the as- 
sociated tangent spaces, respectively. They are defined in the same 
way as in Section 4.2, where the time-dependent case has been 
considered. 



LARGE DEVIATIONS FROM McKEAN-VLASOV LIMIT 29 1 

Given N 2 1  and f ~ C i , ' ,  set F ( x , t ) = N - ' C F = ,  f(x,,t) for x =  
(.u,. . . . . xY) e ( R d I N  and t E [O, TI.  From the definition of P?' we know 
that 

t € [ O ,  TI, is a PkN'-martingale for each x e ( R d ) " .  The quadratic 
characteristic of this martingale does not depend on x  and has the 
form 

where the index k jndicatcs that the operator O acts on the kfh 
component of the space variabie (i.t [23. Proposition 13.421). Cleariy 
F(x ,  t )  = (E,, f ( t ) ) ,  L P ) F ( x ,  t )  = ( E , ,  Y ( s , )  f ( t ) ) ,  and C:, , IV,t.(x, rjl '  = 

N ~ ' ( ~ , , ! V f ( t ~ l ~ ~ .  Taking this into account and remembering the 
definition of the measures 9LN', we concitide from the above that 

is a B',jvj-martingale with quadratic characteristic 

for all N  2 1, f E C:' ', and v E A("). 
Throughout the rest of this paper we will assume that the 

following hypotheses are satisfied, in which cp denotes the same 
function as in the definition of A!,: 

(B.1) The matrices u(x), x E Rd, are strictly positive definite. The map 
a : R d + S d  is locally Holder continuous. The map b : R d x . l , ~ R d  
is continuous. 
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( B . 2 )  There exists some constant i.>O such that 

f a  dl; probabiiity measures p on Rd with compact topological 
zupport. 

(8.3) For each p( . )  E %, there exists some constant 2= I@(.)) > 0 
such that 

for all t E [O, TI. 

is sequentially continuous at p i n !  &.) =;l(.). 

For the Curie-Weiss model considered in the 1k-oduction, we 
have 

It is not difficult to check that in this case Assumptions (B.l)dB.4) 
are satisfied for ip(xj = 1 t x' and also for cpjx) - 1 + yx" with 
o<?  <(202)-'. 

We close this section with some comments on Assumptions (B.1)- 
(B.4). First of aii we remark that the local Holder continuity of the 
diffusion matrix a in Assumption (B.l) will only be 'used to apply 
Theorem 4.5. But as it has been pointed out in Remark 4.4, this 
supposition can be relaxed, requiring only that a is continuous. 
Assumptions (B.l) and (B.2) ensure in particular that the martingale 
problem for is well-posed for all N. Indeed, since: the drift and 
diffusion coefficients of LPN) are continuous and the diffusion matrix 
is non-degenerate, there exists at most one solution (129, Theorem 
10.1.31). Applying (B.2) to the empirical measures p = E,, x = 
( x , ,  . . . , x,) G (Ktd),, we find that .LPN'@ 5 A@ for the function 
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@(x) = (E, ,  c p )  = N - xrL q ( x L ) .  Hence the non-explosion condition of 
[29, Theorem 10.2.11, is fulfilled, which guarantees the existence of a 
solution to the martingale problem. The term J V q J 2  in Assumption 
(B.2)  will be needed to obtain the exponential bounds in Section 5.3. 
Assumption (B.3) is the analogue of Assumption (B .2)  fur indcpen- 
dent identical diffusions with diffusion matrix E(x, t ) = a ( x )  and drift 
vector 6 ( x ,  t )  = b(x;  ,ii(t)). Assumptions ( B . l )  and (B .3)  will allow us to 
apply Theorem 4.5 for the diffusion matrix a, the drift vector 6 ,  and 
the associated diffusion operators Yl = Y(,E(t)) .  Indeed, the relaxed 
form of Assumption ( A . l )  considered in Section 4.5 follows from 
( B . l ) ;  Assumption (A .2)  is a consequence of (B.3)  ( [29 ,  Theorem 
10.2.11). Finally, Assumption (B.4)  will allow us to approach our 
empirical process locally (along a fixed path ,ii(.)) by the empirical 
process of independent diffusions with diffusion matrix 5 and 
"frozen" drift vector 6. 

5.2 The main result 

Given p E .M, and 3 E 3, define 

where 9,={f ~ 9 : ( p , J V f l ~ ) # O ) .  One easily checks that ( 1  11, is a 
norm on the linear space T,= (9 ~2':/19/1,< m}. This allows the 
formal geometric interpretation that "X,  is a Riemannian manifold 
with tangent spaces T, and Riemannian norm I/ 11,. We introduce a 
functional S:%',+[O, m ]  by setting 

if P ( . ) E % ? ,  is absolutely continuous (in the sense of Definition 4.1)  
and S ( p ( . ) ) = m  otherwise. Y ( p ) *  is the formal adjoint of the 
operator Y ( p )  acting on 9'. The functional S is closely related to  
the functionals S,  defined in Section 4.2. Indeed, given ,E(.)E%,, set 
9 ,  = Y(,E(t)), t  E [0 ,  T I .  Then S(,E(.)) coincides with Sfio,(,E(.)) defined 
by (4 .7)  and (4.9), where the Riemannian structure on Rd has to be 
taken with respect to the diffusion matrix a ( - ,  r) = a ( . ) .  
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We are now in a position to formulate the main result of this 
paper which holds under Assumptions (B.t)-(B.4). 

THEOREM 5.1 (u) Given vN E and V E A , ,  suppose that vN+v in 
A,. Then 

lim inf N - ' log 91T(G) 2 - inf ( S ( p ( . ) ) :  p ( . )  E G,  p(0)  = v j 
N- c€' 

for all open sets G in W,. 

b)  Given vN E and v E A',, suppose that v, -+ v in A,. Then 

lim sup N - log P~:'(F) - inf { S ( p ( . ) ) : p ( . )  E F, p(0)  = v }  
N-  m 

for all closed sets F in %,. 

c )  For each compact set K in .M, and each s z  0 ,  t h ~  set 

The proof of Theorem 5.1 will be divided into two parts. In 
Section 5.4 we will derive the following "local" version of Theorem 
5.1. 

THEOEE~~; 5.2 Given V,E&": and V E ~ , ,  suppose that vN+v in 
A , .  Then the following assertions are valid for each P(.)E@, with 
,li(O) = v. 

a) For each open neighborhood V  of ,li(.) in W,, 

lim inf N - ' log @:)( V) 2 - S ( p ( . ) ) .  
N - t ,  

b )  For each y > O  there exists an open neighborhood V of b ( . )  in W ,  
such that 

lim sup N - ' log P\:)( V )  _I - S ( p ( - ) )  + y 
N- m 

(5 .3)  

provided that S ( p ( . ) )  < a. If S ( p ( , ) )  = m, then this assertion holds with 
the expression on the right of (5 .3 )  replaced b y  - y. 
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In Section 5.3 we will derive the following exponential bound for 
StN' which will allow us to convert the "local" result into a "global" 
one. 

THEOREM 5.3 For all positive numbers r and s there exists a compact 
set X in W, such that 

We complete this section by showing how Theorem 5.1 can be 
derived from Theorem 5.2 and Theorem 5.3. 

Proof of Theorem 5.1 Applying assertion (a) of Theorem 5.2 for 
V = G  and all f i ( . ) ~ G  with p(O)=v, we immediately arrive at 
assertion (a) of Theorem 5.1. 

We next prove assertion (b). Given v , ~  E A'P~' and v E .dl , ,  suppose 
that v N + v  in ,/t, Let F be an arbitrary non-empty closed subset of 
%,, We set 

S =  inf {S (p ( . ) ) :p ( . )  E F ,  p(0) = V) 

and assume that s< co. The case s=  ar, can be handled analogously. 
From Theorem 5.3 we know that there exists a compact set X' in 
%, such that 

lim sup N -  ' log B\T(%?,\X) $ - s. 
N-m 

(5.4) 

Now fix y > O  arbitrarily. By assertion (b) of Theorem 5.2, we find for 
each p ( . ) ~  F n X  an open neighborhood V of p(.) such that 

limsup N- ' logBLT(VnX)s  - s + y .  
N- m 

Since F n X  is covered by a finite number of such neighborhoods, 
this yields 

Combining (5.4) and (5.5), we obtain 

limsup N-'logB:T(F)g - s + y .  
N-m 
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Since y>O may be chosen arbitrarily small, this yields the desired 
result. 

To prove assertion (c), fix s z O  and a non-empty compact set K in 
..N, arbitrarily. Choose r>O so that K s..& ,,,. By Theorem 5.3, 
there exists a compact set X in (8, such that 

lim sup N - ' log sup P~N'(Wx\X) < - s. 
N-4, 

(5.6) 
v s  .M, n . H ( ~ '  

We claim that @,(s)sX.  To prove this, we choose ~ ( . ) E W , \ X  
with p(0) E K arbitrarily and show that p(.) does not belong to @,(s). 
We can find measures v , E A ~ ~ A ' ~ '  such that vN+p(0) in A,.  
Since ~ ( O ) E A ~ , , ,  this follows, for example, from the law of large 
numbers for the empirical measures of independent random vectors 
with distribution p(0). By assertion (a) of Theorem 5.2, 

Combining (5.6) with (5.7), we conclude that S(ji(-))>s or, what is 
the same, ji(-) $ @,(s). Thus @,(s) 5 X.  We have therefore shown that 
@,(s) is relatively compact. 

Given p(.) E W, and f E Ci' ', define 

One easily checks that the functions p(-)-l(p(.); f ) ,  f E Ci.', are 
sequentially continuous on %?,. Hence, they are continuous, and the 
sets @$!s) = ( p ( . )  E V,: l(p(+); Jl'j 5 S, p(0) E K )  are closed. But from 
Lemma 4.8 we know that 

Therefore 

This clearly proves that O,(s) is closed, and we are done. 
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5.3 Some exponential bounds 

The purpose of this section is to prove Theorem 5.3. We denote by 
C,(Rd) the space of real-valued continuous functions on Rd having 
compact support and endow it with the supremum norm. We need 
the following compactness criterion. 

L E M M A  5.4 Let Jf,; n= 1,2,. . .) be a countable dense subset of 
Ck(Rd). A set .f is relatively compact in V,, if and only if it is 
contained in a set of the form 

where R > 0, 

a d  K ,  are compact subsets of C([O, TI; R). 

Proof First of all we remark that a set X is relatively compact in 
W, if and only if it is relatively compact in W and entirely contained 
in WR for some R>O (cf. the Appendix of [20]). It will therefore be 
enough to show that a set N' is relatively compact in W if and only 
if it is contained in a set of the form 

where 

and 

Here K> and K ;  denote compact subsets of A? and C([O, Tf; R), 
respectively. Since V is metrizable, the last assertion is readily 
checked by proving sequential compactness instead of compactness. 
For details the reader is referred to [20]. 0 
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LEMMA 5.5 For any positive numbers r, R and all N. 

sup .PkN'(%, \gR) 6 exp( - NR,), 
V G . U , ~ . . U ' ~ '  

where K, = R exp( - i.T) - r and ;I is taken ,from Assumption (B.2). 

Proof Let a,@(.)) = inf { t  E [O, T]:p(t) q! A"N)), where, by conven- 
tion, in f4= GO. Note that a, is a stopping time with respect to the 
right-continuous extension of the canonical filtration on (em. Define 

! E LO, TI,  where E. and cp are taken from Assumption IB.2) and r A o, 
denoics the minimum o f t  and a,. The stopping time a, ensures that 
the expression on the right makes sense for all p(.)~%,. From (5.1) 
and (5.2) it follows that. for each N and each v ~ J 1 1 ( , ) ,  M is a 
continuous local S!,N'-martingale with quadratic characteristic 

(with respect to the right-continuous extensiex of the canonicai 
fiitration). Using Assumption (B.2), we obtain for all N and all 
E &, n .xPN): 

N 
exp( - iLt)(p(t), cp) 5 r + M,-- ((M)),, t E [G, T j ,  8;''-a.s. 

2 

Hence, for all N and all v E ,41r n A'(,), 

WW~\W,)  =PP( sup (p(t), B) > R) 
tsl0. TI 
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Since exp[NM - ( N 2 / 2 ) ( ( ~ ) ) ]  is a non-negative B!N)-supermartingale 
(see, for example, [22, Chap. 3, Theorem 5.2]), the assertion now 
follows by an application of Doob's supermartingale inequality. 0 

LEMMA 5.6 For all R >O, s > 9, urid f E 9 there ~ x i s t s  a cornpuct 
subset K ofC([O,  T I ;  R) such that 

9!"'(VR\Xf) 5 exp( - Ns) 

for all N and all v E J&'(~), where 

Proof Fix R > 0, s>  0, and f E 9 arbitrarily. Applying the 
Markov properiy, x e  derive for any 6 ~ ( 0 ,  TI21 and p > O  the 
estimate 

Here qR. ,, = C([0,2d]; A',); [T/6] denotes the integer part of T/6.  
Clearly 

sup ( ~ 7  I ~ ( , U ) f I + ~ I V f l Z ) ~ ~ < ~  

for some constant K. It therefore follows from (5.1) and (5.2) that 
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for all 720 ,  p(.) E%'R,2a, and t E [o, 261. Using this, we obtain for all 
N and all v E .  lVN' the estimate 

In the last step we have applied Doob's inequality to the exponential 
L'P~N'-martingalc e ~ p [ N ~ M - ~ - j i V ~ ~ ~ , i 2 ) ( ( , 4 . i ~ > > ]  (cf. [22, Chap. 3, 
Theorem 3 j ) .  .Mir?irnizing :he expis\\-lor? en !he right of (5 . /2 j  wiih 
respect to ;,gO, we get for p > 4 ~ f i .  

Combining (5.1 I )  with (5.13) and (5.14), we finally find that 

for all 6 E (0, T/2] and p > 4 ~ h .  
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Let (6,) and ( p , )  be arbitrary null sequences satisfying 6 , ~ ( 0 ,  TI21 
and p,>4~6,  for all n. By the Arzela-Ascoli theorem, the set 

is compact in C([O, TI; R). Define Xf by (5.10j. Then (5.1 5) yields 

To finish the proof, let us assume w~thout loss of generality that s>  1 
and K >  T i. I t  then suffice: rc? choose the null sequences (d,,) and 
ipnj  in such a way that. for each N ,  the sum on the right of (5.i6) 
does not exceed exp(- Ns). To see that such a c'norce i.; puss~blc, we 
pick 

Then 6, E (0, TI23 and p, > 4 ~ 6 ,  for all N. Moreover, we get for all N: 

S exp( - Ns). 

This completes the proof of Lemma 5.6. C7 

Now, combining the Lemmas 5.4-5.6, we are at last in a position 
to prove Theorem 5.3. 

Proof of Theorem 5.3 Let us fix arbitrary positive numbers r and 
s and let { f,; n= l , 2 , .  . .) be a countable dense subset of 9. For .X 
we put the compact set 2 defined by (5.8) and (5.9), where R and 
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K, will be specified in the course of the proof. Then we get 

We choose R so large that 

sup 91N'(%,\%R) 5 exp( - Ns) (5.18) 
v e R , n . ~ ( ~ )  

for all N. This is possible because of Lemma 5.5. By Lemma 5.6, we 
can choose for each n the compact set K,cC([O, TI; R) so "large" 
that 

for all n and N, where X, is defined by (5.9). Combining (5.17) with 
(5.1 8), we arrive at the desired result. 

5.4 Proof of the local result 

The present section is devoted to the proof of Theorem 5.2. Locally, 
along a fixed path P(.)E%?,, the mpirica! process of our system of 
weakly interacting diffusions may be regarded as a small pertur- 
bation of the empirical process for independent diffusions with the 
same diffusion matrix a(x, t)=a(x) and the drift vector 6(x, t )= 
b(x;j(t)) which is "frozen" along M.). This observation allows 
us :G rediice the proof of Theorem 5.2 essentially to an application 
of Theorem 4.5 and an estimation of the deviation of the perturbed 
process from the unperturbed one. The deviation can be measured 
with the help of the Cameron-Martin-Girsanov formula. That it is 
small in a narrow vicinity of fi(-) will be shown to follow from 
Assumption (B.4). 

Fix fi(.) E W, arbitrarily and define 
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where the index k in Y k ( h ( t ) )  indicates that this operatdr acts on the 
variable x,. It follows from Assumptions (B.l) and ('B.3) that the 
niartiiigalc pr&!em f ~ r  { . P j N ) ; ~ [ O >  T I ]  is well posed for: each N. This 
can be shown in the same way as it has been done for 9"' in 
Section 5.1. Let (PLNj; (x, s) e(Rd), x [0, T I )  be the assdciated family 
of probability laws on C([O, TI; ( R * ) ~ )  = C([O, TI; Rd)N. It is not hard 
to check that 

for all N ,  x = ( x , ,  . . . , x,) E (Rd)N, and s E [0, TI,  where P i , ,  = Piti is the 
solution of the martingale problem for (Y(P( t ) ) ;  t E [0, TI) .  Let 
! ~ ( N ! . ( Y ,  s)EA'(~) x LO, T I )  denote the family of probability laws on \ r 3. 

%? of the empirical process E , ~ . ~  induced by the measure$ gri. CIeariy 
Theorem 4.5 is appiicabk tn the meascre ~ ! " = ~ ~ ~ ~ .  

The operators 2'(N' and PIN) coincide up to differens drift vectors, 
and the associated martingale problems are well-posed. This implies 
that, for each N and xE(Rdj", Liie measure Piv' : is absolutely 
continuous with respect to PLN)=PLN&. In the Riem!nnian metric 
induced by the joint diffusion matrix, the squared dis'tance between 
the drift vectors of Yip'N' and PIN) at point (x, ~ ) E ( I W ~ ) ~  x [0, TI 
equals N ( E , ,  Jb( . ;  E,)  - b(.; ji(t))j2 j. Iience ihe Ca~ercn-Martin- 
Girsanov formula yields for the Radon-Nikodym derivative 

where WN' is a ~ ~ n f i ~ w u  !om1 PLN)-martingale wit:h MbN'=O. Its 
quadratic characteristic does not depend on x and has the form 

In the case of bounded drift and diffusion coefficien:ts, these asser- 
tions can be found, e.g. in [29, Section 6.41. The case of unbounded 
coefficients can be reduced to the previous one by ipatial localiza- 
tion, using the second part of Theorem 10.1.1 in [29]. 
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We now have all the ingredients necessary for the proof of 
Theorem 5.2. Given v N ~ , K f N ' ,  suppose that vN+p(0) in .A!,. Pick 
x, E ( R d ) N  SO that cXN = vN.  Fix ;I > 0 arbitrarily. 

We first prove assertion (a). To this end, we assume without loss 
of generality that S ( j ( - ) ) <  co and consider an arbitrary open neigh- 
borhood V of p(.). By the definition of the measures 3'tNN', it is 
certainly enough to show that 

lim inf N - ' log P:;)(E,(.) E V )  2 -S(p(.)) - y. 
N-m 

Assumption (B.3) guarantees that Lemma 5.5 is applicable to c?kv) 
instead of .YtN' with R replaced by 2. Consequently, there exists some 
R > 0 such that p ( - )  E gR and 

We next choose p , q >  1 with p - ' + ( ! - I =  I and S>0 so that 

Because of Assumption (B.4) and (5.21) there exists a neighborhood 
W  of p(.) in %? such that W n V R s  V and ((M'N')),< NG on 
{E,(.,E W n g R j .  Thus, applying (5.20) and Holder's inequality, we 
obtain for all N: 
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Here denotes expectation with respect to Piv'. Since 

is a Pi:'-supermartingale with expectation not exceeding one ([22, 
Chap. 3. Theorem 5.2]),  we arrive at 

Now (%, P!;', N) is a large deviation system by Theorem 4.5. The 
value of the corresponding action functional at f i ( . )  equals S ( j i ( . ) ) .  
From this and the definition of 3tN! we coricliide that 

Combining (5.25) with (5.26) and (5.23) and taking Into account 
(5.24), we finally arrive at (5.22). 

We now turn to the proof of assertion (b). Ryeca~se ef Lemma 5 5 
and the definition of the measures PIN', it suffices to show that, for 
each R for which ji(.)%', there exists an open neighborhood W of 
p( . )  in V such that 

lim sup N - ' log ~ ~ ~ ' ( e , , . ,  E W n %,) 5 - S( f i ( . ) )  + 7 .  (5.27) 
N- 

To this end, we pick p, q> I with p l + q - I  = 1  and 6 > 0  so that 
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We choose W so "small" that 

for all N and 

Inequality (5.29) can be achieved for "small" neighborhoods W of 
f i ( - )  because of Assumption (B.4) and (5.21). That assertion (5.30) 
holds for "small" W- follows from the definition of the measures .Py', 
the fact that (Vl@\;): N) is a large deviation system, and the 
observation that the value of the corresponding action functional at 
p i9  equais Siu! . ! ! .  Appiying !5.20). !5.20!, and Hdder's inequality, 
we &?air! fcr I!! N: 

Since exp(pM',N)- +((p M'N')) ,) is a PL:)-supermartingale with expec- 
tation not exceeding one, we arrive at 

A combination of this estimate with (5.30) and (5.28) finally yields 
(5.27). 

The proof of Theorem 5.2 is now complete. 



Acknowledgement 

We would like to thank an anonymous lefeicc f ~ r  2 suggestion which led to the 
formulation of a Sanov-type theorem in Section 3.5. 

References 

[ I ]  H. Bauer. Probahiliry Theory and Elements of Measure Theory, Academic Press. 
London, 1981. 

[2] P. Billingsley, Concrgncr oj Probability Mrasures. John Wiley & Sons. New 
York, 1968. 

[3] N. Bourbaki, 6lements de mathematique, prem. part, fax .  11. iivre 111: 
Topdogie ghPrale. Hermann. Paris, 1961. 

[4j M. Cawandro. A. Galves. E. Olivieri and bi. E. Vares, Metastable behavior ot  
stochastiu dynamics: 9 pathwise approach, J. Siaiisi. Phys. 175 ji984i. 603- 534. 

i5] 1. i'cmeh, Tinne!!ir?p and nucleation for a iocai mean field :nodel, Preprint, 
1985. 

[6] 1. Csiszir, Sanov property, generalized I-projection and a conditional limit 
!heorem, Ann. Prnb. !2 !!9R4). 768-793. 

[7] D. A. Dawson, Critical dynamics and fiuctuaiioils for a mean field mode! of 
cooperative behavior, J. Stutist. Phys. 31 (1983), 29-85. 

L8] D. A. Dawson and J. Gartner, Long-time fluctuations of weakly interacting 
diffusions, Technical Report Series of the Laboratory for Research in Statistics 
and Probability. No. 47, Carleton University, Ottawa, 1984. 

191 R. C. Desai and R. Zwanzig, Statistical mechanics of a noniineai stochastic 
model, J. Slarist. Phys. 19 (1978), 1-24. 

[I01 M. D. Donsker and S .  K. S. Vara6h~n. .Asymptotic evaluation of certain 
Markov process expectations for large time-111, Corn. Pure Appl. Math. 29 
( 1976). 389-461. 

[ I  I]  E. B. Dynhin. Mnrkoc Proresses. Vol. 1 .  Springer-Verlag, Berlin, 1965. 
[l2] R. E. Edwards. Funcrional Analysis, Theory and .4pplications, Holt, Riflehart and 

Winston, Ncw Yo&, 1965 
1131 R.  S. Ellis, Entropy, Large Deviations and S~atistical Mechanics, Spriiigei-Ver!ag, 

New York, 1985. 
[14] R. S. Ellis and C.  M. Newman, The statistics of Curie-Weiss models, J .  Statist. 

Phys. 19 (1978), 149-161. 
[I51 W. G. Faris and G. Jona-Lasinio, Large fluctuations for a nonlinear heat 

equation with noise, J. Phys. A: Math. Gen. 15 (1982), 302553055. 
[I61 M. I. Freidlin and A. D. Wentzell, Random Perturbations oJ Dynamical Systems, 

Springer-Verlag, New York, 1984. 
1171 T. Funaki. A certain class of diffusion processes associated with nonlinear 

parabolic equations, Z. Wahrsch. verw. Gehiete 67 (1984), 331-348. 
1181 J. Gartner, On the logarithmic asymptotics of large deviation probabilities (in 

Russian), Dissertation, Moscow, 1976. 
1191 J. Gartner, On large deviations from the invariant measure, Theory Probab. 



308 D. A. DAWSON AND J. G ~ ~ R T N E R  

[20] J. Gartner. On the McKean-Vlasov limit for interacting diffusions, Preprint. 
1985. 

1211 P Groeneboom, J. Oosterhoff and F. H. Ruymgaart, Large dev~ation theorems 
for empirical probability measures, Ann. Probab. 7 (1979), 553-586. 

[22] N. Ikeda and S. Watanabe, Stochastic Differential equations and Diffusion 
Processes, North-Holland, Amsterdam, 1981. 

[ 23 ]  J. Jacod, Calcul stochasrique et problernes de martingales. Lecture Notes in 
Math. 714, Springer-Verlag. Berlin, 1979. 

[24] 0 .  A. LadyZenskaya. V. A. Solonnikov and N. N. Ural'ceva, Linear and 
quasilinear equations of parabolic type, Amer. Math. Soc. Translations of Math. 
Monographs, No. 23, Providence, 1968. 

1251 C. Leonard, Une loi des grands nombres pour des systemes de diffusions avec 
interaction et a coefficients non bornb, Technical Report Series of the 
Laboratory for Research in Statistics and Probability. No. 48. Carleton 
University, Ottawa, 1984. 

[26] W. Rudin. Functional Analysis McGraw-Hill. New York. 1973. 
1271 G. Rugt.  Grandes deviati~ns c? dpnamiqtie bes piiiiiilaiioiis, Preprinr, i98t. 
[28] D. W. Stroock, in Introduction to the Theory @f Large Det'iations, Springer- 

Verlag, New York, 1984. 
[291 D. W. Stroock and S. R. S.  Varadhzn, Mu!ti&linwnsioiml Diffusion Processes, 

Springer-Verlag, Berlin, 1979. 
1301 Y. Tamura, On the asymptotic behavior of the solution of a non-linear diffusion 

equation, J. Fac. Sci. Unit.. Tokyo, Sect. IA, Math. 31 (1984), 195-221. 
[31] H. Tanaka, Limit theorems for certain diffusion processes with interaction, Proc. 

Taniguchi Int. Syp. Stoch. Anal., 1982. 
[32] S. R. S. Varadhan, Large deviations and applications, CBMS-NSF Regional 

Confrence Seres in Applied Mathematics Vol. 46, SIAM, Philadelphia, 1984. 




