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A system of N diffusions on R? in which the interaction is expressed in terms of the
empirical measure is considered. The limiting behavior as N—oc is described by a
McKean-Vlasov equation. The purpose of this paper is to show that the large
deviations from the McKean-Vlasov limit can be described by a generalization of the
theory of Freidlin and Wentzell and to obtain a characterization of the action
functional. In order to obtain this action functional we first obtain results on
projective limits of large deviation systems, large deviations on dual vector spaces and

a Sanov type theorem for vectors of empirical measures.
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1. INTRODUCTION

In this paper we consider a system of N diffusions on R? interacting
via thetr empirical measure which enters the drift vector. Such a

SysSicim of W(tu\t_y HlLtldLung ut/_/uoi(h“t‘\' can be described b_‘,’ N COUP! d
[t6 equations of the form
dx, =0(x,)dw, +bl(x,. ¢,) dt, k=1,...,N, (1.1)

where wy, ..., wy are independent Wiener processes and

N
_ N1 S
e,=N"13% 6,
k=1
denotes the Pmpll‘l(‘)l measure of the p/IrfJ(_!f‘ ((\nﬁgeriiQn X =
RTT xy) €(RNHY. The random evolution (1.1) is associated with the
N-particle generator
N
PYS N ANpa ~ A P Ny Y s o4
LV L Xy = ), D) JIX ., Xy, (L.2)
k=1

iffusion operator on R? with diffusion matrix
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In (1.2) the index k indicates that the corresponding operator acts on
the variable x,.

Given a solution x(1)=(x(t),...,xx(t)) of (1.1), the associated
empirical process X y(t)=¢,,, is a Markov diffusion process with state
space .#, the space of probability measures on R?. Several authors
(see for example [17, 20, 25]) have studied the limiting behavior of
such systems as the number of particles N tends to infinity. In
particular, under quite general assumptions the sequence (Xy(+)) of
A -valued processes was shown to converge in law to a deterministic
A -valued process u(-) provided that X ,(0)—u(0) (McKean—Vlasov
limit). The measurc-valued function u(-) can be characterized as a
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weak solution of the McKean—Vlasov equation
A1) =L (p(2))* ). (1.3)

Here #(u1)* denotes the formal adjoint of (u): futr) =(d/dr)u(t).

The motivation for the present paper is to investigate long-time
phenomena such as tunnelling and metastability for systems like
(1.1). The appropriate approach to study such phenomena consists in
an infinite dimensional generalization of the Freidlin—-Wentzell
theory [16]. Freidlin and Wentzell considered randomly perturbed
(finite dimensional) dynamical systems in the case of small noisy
disturbances. As an appropriate tool to investigate the long-time
behavior of such systems, they developed a large deviation theory for
them. Faris and Jona-Lasinio [15] have considered related questions
for a nonlinear heat equation with Gaussian noise. In their model
they obtain the large deviation results by representing the solution of

ge under 4 continuous mapping of an

the nonlinear system as the image under a contin 1

infinite dimensional Ornstein-Uhlenbeck process and then using
large deviation results for Gaussian processes due to Wentzell.
Tanaka [31] has obtained a large deviation resuli for the empirical
measures on C([0, T]; R% induced by a system of the form (1.1) in
the special case in which a(x)=4,;, b(x; u)=[ B(x, y)u(dy), and B is
bounded and sufficiently smooth. In this case it is again possible to
represent the solution of the nonlinear system by a continuous
mapping from a system of N independent Brownian motions and

then to use a resuli of Donsker and Varadhan. (See also thc

comment at the end of this section.)

The purpose of this paper is to build a framework in which to
study large deviations from the McKean—Vlasov limit in the general
case (1.1). In order to illustrate the analogy with the finite dimen-
sional Freidlin~Wentzell theory, let us view .# as an “infinite
dimensional manifold”. Then, in geometrical terms, the McKean-
Vlasov equation (1.3) defines a dynamical system on .# driven by
the “vector field” ¥(u)*u. The Markov process X, can be regarded
as a random perturbation of this system. Indeed, the generator of X
is of the form

GN=G(1)+NflG(2)’

where G and G'® act on “smooth” functions F(u)=f({st.g:>....,
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{u. g,») according to the formulae

r ‘!

GVF(u g0 g )i L()g:,

oxf N
’Ci X](<u’g1> ey </l,g,))<,u, (Vgh Vg;))

D=

o
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ij=1

Here <{u, g = u(dx)g(x) and

d . Cdg Ch
(V. Vi)=Y aii() ==

=1

Oxt ax?’

This means that GV is the generator of the (deterministic) flow on
# caused by the “vector field” £ (u)*u. The second order operator
G'? serves as an analogue of the second order partial differential
operator in the theory of finite dimensional diffusions. Therefore, the
investigation of weakly interacting diffusions for N— oo leads to the
study of a weak noise limit for Markov diffusions on .#.

Roughly speaking, our main result (Theorem 5.1) states that

lim N~ !'log Prob(Xy(-)e A)= —inf {S(u(-)):u(-) € A, s(0)=v}  (1.4)

N-ox

for all “regular” sets 4 of continuous paths u(-):[0, T]1—.# provided
that XV(O) v. The action functional S characterizes the difficulty of
the passage of Xu(r) near u(t) in the time interval [0, T]. Indeed,

according to (1.4), the probability of such a passage behaves like
NS(u(-))) as N—oc. The functional S will be shown to admit

exp(—
the representation
S(u(-)) = j (| (0) — 2 (u)*(0)|[7e, de, (1.5)
where
<8, >

HSIII‘ —S p< lVf|2



LARGE DEVIATIONS FROM McKEAN-VLASOV LIMIT 251

and

S A
IV/1 —i,jZI o )(wx" Oxd’

By analogy with finite dimensional dynamical systems, nonlinear
systems like (1.3) can exhibit a wide variety of qualitative behavior
such as the existence of multiple equilibria (cf. [30]). To illustrate this,
let us consider a Curie—Weiss model with continuous spin given by
the N-particle Hamiltonian

N H N
2
(X s Xy)= Z Ulx)+— Z (X, —x5)%, (1.6)
k=1 4N k.i=1
Xp,....xy€R, where U(x)=x*/4—x%2 is a doublc-well potential
having two global minima and 6 is a positive coupling constant
{{9,14]). The equilibrium distribution at temperature >0 is then

given by
w{dxy,...,dxy)=2

where Z is a normalizing constant. A natural stochastic dynamics
with prescribed equilibrium distribution (1.7) is defined by the Itd

equations

5
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-
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u,xk—u uwy VTl VA5 ooy ANJIUAE

Since
OH njOx, = — (1 —B)x, +x3 +

the stochastic model (1.8) can be viewed as a system of N anharmonic
“oscillators” with internal noise and “mean-field” interaction. It fits
in with our concept of weakly interacting diffusions for

d=1, o(x)=a, blxp=—U(x)—0f(x—yudy). (19

The Curie—-Weiss model (1.6)1.8) serves as a mcan-field approxi-
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mation for nearest neighbor Ising models. It exhibits a typical
ferromagnetic behavior ([9], [7]). In [7] the associated McKean—
Vlasov dynamics (1.3) was shown to undergo a bifurcation at a
critical temperature o2. More precisely, for 6 =g, (1.3) has exactly
one equilibrium v, which was shown to be globally stable and to
correspond to mean magnetization zero. If ¢ becomes smaller than
o,, then the stability of v, will be lost and two new stable equilibria
v, and v_ will appear which correspond, respectively, to positive
and negative mean magnetization.

If N is large but finite, then the empirical process X, will
normally follow the path of the dynamical system (1.3) which is
attracted by one of the equilibrium points v, or v_. After that Xy
will perform small fluctuations near this stable equilibrium. However,
because of ergodicity, from time to time a transition from one stable
equilibrium to the other one will occur via a large deviation. Such a
transition is called a runnelling. Following the ideas of Freidlin and
Wentzell, we can introduce two quasipotentials which are defined by

Q. =inf{Sr r,(u()):—0=T < T, <o, l(Ty)=vs, l(Ty)=v},

where S; 7, stands for the functional (1.5) with integration over
[T, T;] instead of [0, T]. The idea of using such quasipotentials will
be developed in a future paper in which we will investigate the
phenomenon of tunnelling between multiple stable equilibria for
systems like (1.6)«(1.8) utilizing the relationship between the quasi-
potentials and the action functional associated to the equilibrivm
measures (1.7).

For Curie-Weiss models with two spins +1, the investigation of
the associated measure-valued process leads to a large deviation
problem for one-dimensional Markov jump processes (cf. [4]). On a
formal level of rigour, Ruget (see [27]) investigated a slightly more
complex situation by arranging the magnets (with spins +1) on a
torus and allowing a “local” mean-field interaction which takes into
account the geometrical structure of the system. This leads to an
infinite dimensional extension of the Freidlin-Wentzell theory which
is different from ours. Recently Comets [5] succeeded in carrying out
Ruget’s program with complete proofs.

We now sketch an outline of the development of our paper.
Section 2 contains a list of frequently used symbols. In Section 3 we
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develop some abstract ideas concerning large deviation systems
which may be of independent interest (projective limit of large
deviation systems, large deviations on dual vector spaces). Relying
on them, we prove a mild generalization of the Sanov theorem for
vectors of empirical measures (Theorem 3.5). In Section 4 we study

large deviations for the empirical process
N
Xy)=N"" kz Ot
=1

in which x,(1),..., x5(t) are independent temporally inhomogeneous
diffusions on R? all associated with the same time dependent
diffusion operator (Theorem 4.5). That X satisfies the large devi-
ation principle is essentially a straightforward consequence of our
Sanov type theorem (see Lemma 4.6). But this theorem provides a

rather abstract expression for the action functional. The greater part
is therefore devoted to showing that the action

e UovOorcGe 10 SHOWINE  ildl

of Scction 4
functional admits a representation analogous to (1.5). Unfortunately
we have not found a direct proof. For this reason, applying the
results of Section 3, we will derive a second abstract expression for
the action functional. After that the desired expression will be shown
to be caught between these two. Many of the difficulties arising in
this context originate in the fact that we allow the drift (and
diffusion) coefficients to be strictly unbounded as in the case of the

above Curie-Weiss model. In Section 5 we introduce the system of
weakly interacting diffusions as a solution of a martingale problem
equivalent to (1.1). As the main result of the paper we present the
large deviation theorem for the associated empirical process
(Theorem 5.1), cf. (1.4) and (1.5). The idea of its proof rests on the
observation that locally, along a fixed path j(-), the N-particle
system (1.1) behaves for large N nearly as if it were a superposition
of N independent copies of a diffusion process with diffusion matrix
o(x)o*(x) and “frozen™ drift vector b(x, t)=b(x; i(t)). This allows us
to convert the large deviation result for independent diffusions into a
local large deviation result for interacting diffusions. A combination
of this local statement with some global exponential bounds then
leads to the final result.

For systems like the above Curie-Weiss model, the approach of
Tanaka [31] might also be applicable. But it seems to lead to similar
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difficulties as in our more general approach. First of all, since in (1.9)
the drift coefficient b(x;u) does not depend continuously upon u in
the topology of weak convergence of probability measures, the
mapping which converts the empirical measure of N independent
Wiener processes into the empirical process of our interacting system
is not continuous in the topology of weak convergence of probability
measures on C([0, T];R). It is even not defined for all such
measures. One must therefore work with a stronger topology which
makes that mapping continuous and then derive the large deviation
result for the empirical measures of the Wiener processes in this
stronger topology! The action functional obtained in this way has
essentially the same form as S in Lemma 4.6 below. This again
leads to the question how to derive the concrete representation (1.5)

from such an abstract one.

2. FREQUENTLY USED NOTATION

A, 0A
a={a"(x, 1)}
a={a'%(x)}

Bg
b={b(x,1)}

b={b(x; u)}

Cy(X)

C([0, T]; X)

C
%
Cr
%

oo

Closure and boundary of the set 4.

Diffusion matrix for independent diffusions
(Section 4.2).

Diffusion matrix for weakly interacting diffusions
(Section 5.1).

Ball in R? with center 0 and radius R.

Drift vector for independent diffusions (Section
4.2).

Drift vector for weakly interacting diffusions
(Section 5.1).

Space of bounded continuous functions X »R
endowed with the topology of uniform
convergence.

Space of continuous functions [0, T]-X. If X is a
metric space, then C([0, T]; X) is equipped with
the topology of uniform convergence.

=C([0, T]; RY).

=C([0, T); A).

=C([0, TT; A g).

=C([0, T]; # ;) furnished with an “inductive”
topology (Section 5.1).
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c! =C2(RYx [0, T]). This is the space of continuous
functions R x [0, T]— R having compact support
and being two times continuously differentiable
with respect to the space variables and one times
with respect to the time variable.

7 Schwartz space of real test functions on R‘.

174 Schwartz space of real distributions on R.

Expectation with respect to P, ; E,=E, o.

{Z,;te[0,T]}  Family of diffusion operators on R (Section 4.2).
(One-particle generator for a system of
independent diffusions.)

{L(p);ue M} Family of diffusion operators on R4 (Section 5.1).
(One-particle generator for weakly interacting
diffusions.)

P N-particle generator for weakly interacting
diffusions (Section 5.1).
H(X) Space of probability measures on a metric space X

endowed with the Prokhorov metric (which
induces on .#(X) the weak topology).

(X)) Subspace of .#(X) consisting of all empirical
measures of N-particle configurations on X
(Section 3.5).

M — (R,

M =///‘N)(I'Rd).

My ={pe M| p(x)u(dx) <R} furnished with the
subspace topology of 4.

M, ={pe M| p(x)u(dx) < oo} furnished with an

“inductive” topology (Section 5.1).
Probability law on C of a diffusion starting at time

. s at x governed by {&,;t€[0, T]} (Section 4.2); P,
= Px‘o.
P™ Probability law on C([0, T]; (R%)") of a system of

N diffusions starting at time s at x (Sections 4.2
and 5.1); PM=PM,.

PM Probability law on % (Section 4.2) or %, (Section
5.1) of the empirical process starting at time s
at v associated to a system of N diffusions;
PV =,

R4 d-dimensional Euclidean space; R=R".
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Action functional for the empirical process of
independent (Section 4.2) and weakly interacting
(Section 5.2) diffusions, respectively.

Support of the function f.

Semi-group of linear operators on C,(R?)
generated by {P, ,} (Section 4.3).

Dirac measure with unit mass at point Xx.
Empirical measure of the particle configuration x
(Section 4.2).

Lyapunov function for the system of weakly
interacting diffusions (Section 5.1).

Indicator function of the event A.

Dual pairing: (i) If x belongs to a vector space and
x* to its algebraic dual, then {(x* x) is the value
of the linear functional x* at x. (ii) If 4 and f are
a measure and a function on a measurable space,
respectively, then {u. f\,:l f du provided that the

mtegrdl makes sense. (ii1) If fe% and Y€ ¥, then
{9, f> denotes the application of the test function

e PSR RN
J to the distribution &.

Quadratic characteristic (for martingales).
Gradient, norm, and inner product with respect to
the Riemannian structure on R? which is induced
by the diffusion matrix a(-, i} (Section 4.2).
Gradient and norm with respect to the

Rismannian ctructurs an R4 “rhw\l‘\ ig indnced hy
nifmannian struduure on < H nguceed oy

the time-independent diffusion matrix a(-) (Section
5.1).

3. ABSTRACT RESULTS ON LARGE DEVIATIONS

3.1 Large deviation systems

Let the following objects be given:

X a Hausdorff topological space;

(uy) a sequence of probability measures on X;

(yn) a sequence of positive numbers tending to infinity;
L a functional X —[0, o0].

DEFinNITION 3.1

(X, pn. vy) is said to be a large deviation system with
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action functional L, if the following conditions are satisfied:

i) for each open subset G of X

liminfyy ! log uy(G) = — inf L(x); (3.1
xeG

ii) for each closed subset F of X

limsup yy ! log px(F) £ — inf L(x); (3.2)

xeF

iii) the sets ®(s)={xe X: L(x)<s}, s=0, are compact.

(By convention, the infimum of the empty set equals +00.)

Some authors call the action functional I-functional (according to
the notation of Donsker and Varadhan [10]), rate function [28], or
entropy function [13]. For an introduction to the basic ideas of large
deviation systems refer to [32] and for general properties of large
deviation systems refer to [16, Chapter 3]. We only remark that the
action functional is uniquely determined by (i)-(iii).

From (i) and (ii) we conclude that

limyy ! log pn(A) = — inf L(x)

xed

holds for all regular subsets A of X. Regularity of A means that A is
a Borel set such that the infima of the action functional over the
closure and the interior of A coincide. As a consequence of (iii), L is
lower semi-continuous. ,

We mention that all assertions of this section have a straight-
forward extension to arbitrarily indexed families {y;eeE} and
{yse€E}, if convergence of sequences is replaced by convergence
with respect to a filter on E.

3.2 The continuous image of a large deviation system

The following theorem is well known, at least for metrizable spaces
([16, Chapter 3, Theorem 3.1]). It is a simple consequence of our
definitions.
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THEOREM 3.2 Let (X, uy,7y) be a large deviation system with action
Junctional L. Let f:X—Y be a continuous map into a Hausdorff
topological space Y and set vy=pyo f 1. Then (Y,vy,yy) is a large
deviation system with action functional

L(y)= min [(x), ye¥.
xe NG

3.3 The projective limit of large deviation systems

Let (I, <) be a right-filtering ordered set. Suppose that we are
given a projective system (X,p;) of Hausdorfl topological
spaces, where p; is the identity map on X; (iel). Let X=
lim(X;,p;) be the corresponding limit (see e.g [3]) and
assume that it is non-empty. Denote by p; the canonical
projection X - X; (iel).

Let (ny) be a sequence of probability measures on X and define
ti.n=Hyopi *. Thus, for each N, py can be regarded as a projective
limit of the measures p; 5, iel. Finally, let (yy) be a sequence of
positive numbers with lim yy = co.

THeEOREM 3.3 (X, uy, y) is a large deviation system if and only if
(Xi 1, n» Yx) is a large deviation system for each iel. The correspond-
ing action functionals L and L; are related to each other by

L(x)=sup L{p(x)),  x€X, (3.3)
iel
and
L{z)= min L(x), .zeX, iel. 3.4
xep Mz}

* Proof (a) Suppose that (X, uy,7y) is a large deviation system with
action functional L. Then Theorem 3.2 implies that (X;, ; x, ya) is @
large deviation system with action functional (3.4) for each iel.

b) Suppose that (X, p; n,yx) is a large deviation system with
action functional L, for each iel. Let L be defined by (3.3). We show
that the conditions (i)—(iii) in Definition 3.1 are satisfied. Let ®(s)=
{xeX:L(x)<s} and define @(fs), iel, accordingly. Applying
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Theorem 3.2 to the continuous maps p;;:X;—X; and noticing that
Win=Hjnop;' (i£)), we see that {®(s); iel} is a projective system
of subsets for each s=0. Together with (3.3) this gives

O(s)=limPy(s), 520 (3.5)

By assumption, the sets ®@(s), iel, s=0, are compact. Hence, by

Tychonov's theorem, the sets ®d(s), s=0, are also compact. This
proves condition (iii).

To check (i), let G be a non-empty open subset of X and choose

x €G arbitrarily. Then we find some iel and an open subset G; of X;
such that p(x)eG; and p; '(G)<=G. The assertion now follows from

u(G)Z u;, ~G9), L(x) Z L{pdx)), and
liminfyy ot x(G)Z — L(p(d).

To verify condition (ii), let F be a non-empty closed subset of X
and choose s=0 so that F®(s)= . We nced only show that

limsup yy ' log up(F) £ —s. (3.6)

Since F is closed, we have F=lim F,, where F; denotes the closure of®
F;=p{F). Together with (3.5) this yields

FAd(s)=lim F,n®(s).

Since the sets F;ndys), iel, are compact and Fn®(s)=¢J, there
exists some iel such that

Find(s)=¢

(see [3; Section 1.9.6]). Hence, applying (3.2) for the large deviation
system (X, 14 n» Yn)» We Obtain

limsupyy log p; ;(F) £ —s.

Since pux(F) = p; x(F5), this yields (3.6). [
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3.4 Large deviations on dual vector spaces

Let X be a real vector space and Y a non-empty subset of its
algebraic dual X*. We furnish X* with the weak* topology o(X*, X)
induced by X (see e.g. [12]) and equip Y with the corresponding
subspace topology. Let (zy) be a sequence of probability measures
on Y, and let (yy) be a scquence of positive numbers with limyy=oc0.
Denote by {x*, x) the value of the linear functional x*€ X* at point
xeX.

TueorEM 3.4 Suppose that the following conditions are satisfied:

i) for each xe X, the limit

HOo) =lim 5 log { exp(rx®, XDty (dx*)

exists and is finite;

ii) the function H is Gateaux differentiable, i.e. the real function
t— H(x+1ty) is differentiable for every x,ye X.
Define

L(x*)=sup [{x*, x)— H(x)], x*eX*, 3.7)

xeX

and suppose further that
iii) {x*eX*:L(x*)<o}cY.

Then (Y, uty, vy) is a large deviation system. The corresponding action
Sfunctional is the restriction of the functional L to Y.

Proof (1) Suppose for the moment that the theorem is already
proved in the case Y=X* Then it is also true in the general case
Y & X*. Indeed, let vy be the image of the measure py with respect
to the canonical injection Y—X*, Then we can apply Theorem 3.4
to the measures vy instead of i in order to see that (X*, vy, 7y) is a
large deviation system with action functional L. Taking into account
assumption (iii), it then follows that (Y, uy,yy) is a large deviation
system with action functional L|,. We may and will therefore assume
in the following that Y=X*.

2) The theorem holds if X is finite dimensional (see [19, Section
1] or [16, Chapter 5, Section 1]). Applying Theorem 3.3, we shall
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reduce the infinite dimensional case to the finite dimensional one.
Assume therefore that X is infinite dimensional and let V' be an
arbitrary finite dimensional lincar subspace of X. Denote by g, the
canonical projcction X*—V* and set u, y=pycqy - (gy(x*) is the
restriction of the linear functional x*:X—-R to the domain ¥)
Assumption (i) yields

H(v)=limyy 'log [ exp(yx<v*, D)y y(dv*),  veV.
Vt

Since V is finite dimensional, we can therefore apply Theorem 3.4 to
the measures pup y (instead of uy). Thus, (V¥ py y, 75 is a large
deviation system with action functional

L (v*¥)=sup [{v*, v)—H(v)], t*e V* (3.8)

vel

3) Let ¥ be the system of all finite dimensiona! linear subspaces
of X. ¥ is right-filtering with respect to the order <. For Ve, we
furnish the aigebraic dua! V* with the weak* topology and set
X, =V* Given V,We¥ with VS W, denote by P,y the canonical
projection W*—V* Then (X,,pyy) is a projective system of top-
ological spaces. Its projective limit can be topologically identified
with X* via the homeomorphism.

q-X* BX*H(X*IV)VE“V elim(Xy, pyw)-

Furthermore, for each N, pycq ! is the projective limit of the
projective family (1, y)y . of probability measures. We can therefore

apply Theorem 3.3 in order to check that (X* uy,vy) is a large
deviation system with action functional

L{x*)=sup Ly(qy(x¥)), x*eX* (3.9)

Vevy

4) It remains to show that the functional (3.9) coincides with (3.7).
But this easily follows from (3.8) and the definition of q,. [

In the case when X is the space of bounded continuous functions
on a Polish space E and Y is the space of probability measures on E,
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a result similar to Theorem 3.4 was stated in [19] and has been
applied to the study of large deviations for the occupation time
measure and local times of Markov processes [18].

3.5 A Sanov type theorem

Let X,Y,,....Y, be Polish spaces. Denote by C,(X) the space of
bounded continuous functions on X equipped with the supremum
norm. Let .#(X) be the space of probability measures on X endowed
with the topology of weak convergence. Given a natural number N,

set
f N
AV(X) = l’\”‘ Y 9, ..,xNeX},

where o, is the Dirac measure on X with unit mass at x. Lect
X

{Px;xeX} be a Feller continuous family of probability measures on
Y=Y, x-xY,. (Feller continuity means that the integral
fF(v\Px\{’y,- depends continuously on x for each FeC,(Y).) Given

N2=1and

denote by Q'™ the probability
measures

under P, ®---® P, where y,=(y}", ..., 3i"). More precisely, Q{" is
the image of the measure P, ®--® P, with respect to the map

PQETE I W T

N

.
(V1 3 st £ dp)esv -y

The measure Q™ does not depend upon the concrete rcpresentatlon
@Ga0yofv. - o
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The next theorem is a mild generalization of Sanov’s theorem for
empirical measures on Polish spaces (cf. [6, 10, 21]). Sanov’s result
corresponds to r=1 and P,=P. We will present here a short proof
relying on Thecorem 3.4. In principle it must also be possible to
derive this generalization along the lines of {10, 19, or 21].

THEOREM 3.5  Given vye #/'"V(X), N=1, and ve .#(X), suppose that
vy—=v in M(X). Then (M(Y,)x - x.#(Y,), QN N) is a large devi-
ation system with action functional

Lv(#b T .ur)

= sup ,:Z | pldz) fiz
Y.

!/’XA,...f')eCk(Y!;K - X("h(Y,';

(3.11)
(Uyyeens ) EM(Y) X - X M(Y,).

Proof For i=1,...,r, we will view .#(Y,) as a topological sub-
space of C,(Y)*, the algebraic dual of C,(Y) endowed with the
weak* topology. Set E=C,(Y;)x -~ xC,(Y) and equip its algebraic
dual E* with the weak* topology. Since the topological vector space
E* can be identified with C,(Y})* x---x Co(Y,)*, #(Y;) x -+ x M (Y,)
can and will be viewed as a topological subspace of E*.

Using the representation

N
vy=N"1! Z (stN)
k=1

and the Feller continuity of {P,;xe X} and remembering the defi-
nition of Q™, we obtain for all (f,,..., f,) € Cy(Y;) x -+ x Cy(Y.):

VN

Hv(fl!"'?_fr)::limN“ llog,‘.QiZ)(duh""d,ur)

xexp (N b <ui,fi>>
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N r
=hmN ! log n foim(dy}(l L y) exp <Z (1) )

k=1Y

=lim fup(dx)log [Pdy'™..... dy") exp( WAL )
i=1

= [v(dx)log | P (dy'", ..., dy") exp( Zr: f;_(y(i\))’

where {u; f;> ={ f{z)uidz). Hence, conditions (i) and (ii) of Theorem
34 are satisfied. It remains to check condition (iii). To this end, let
f*=(f%.....f¥) be an element of E* and suppose that

L{f*):=sup l ? FEf>—HU(fr o, f) I< (3.12)
VTR f ek Lz~ 1 J
We must show that f¥ belongs to .#(Y) for i=1,...,r. According to

the Daniell-Stone theorem, this is certainly true, if the following
conditions are satisfied for i=1,...,r

a) {f&/>20 for f20;

b {fE=1

) SESP>—0 as  f™]0 pointwise

(see e.g. [1]). Suppose that feCy(Y), f=20, and {f¥, /> <0. Then

[¢]

ASE S = [rdx)log Pdy'h), ... dy") exp(Af(y7))

=00 as Ao —®

in contradiction to (3.12). This yields (a). In a similar way one
proves (b). To verify (c), suppose that f™e C,(Y), f™ {0 pointwise,
and ([}, f™>2c¢>0 for all n. Then for arbitrary 4> 0:

ACSE S — fvdx)log [ P (dy'™, ..., dy™)y exp(Af (y) < L(f*).

Letting n— o0, we obtain Ac <L (f*)< co, which is not true for large

Ao O
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Let us add some comment. The assertion that (#(Y;) x - x #(Y,),
QL’:’, N) is a large deviation system could be reduced to the case
r=1 by considering the emprical measure of the random vectors
Vi--.,yn instead of studying vectors of empirical measures
and applying then Theorem 3.2 to the canonical projection
MY, X x YY) M(Y;) X x M(Y,). But as a result, we would get
a representation of the action functional L which is different from
(3.11). The question would then arise to show that both represen-

tations coincide.

4. LARGE DEVIATIONS FOR INDEPENDENT
DIFFUSIONS

4.1 Preliminaries on distribution-valued functions

We denote by & the Schwartz space of test functions R‘—R having
compact support and possessing continuous derivatives of all orders.
We endow & with the usual inductive topology. Let 2 be the
corresponding space of real distributions. For each compact set
KcRY 2y will denote the subspace of 2 consisting of all test
functions the support of which is contained in K. Finally, let <3, >
denote the application of the test function f to the distribution 3.

DEerINITION 4.1 Let I be an interval of the real line. A map
3(-):I-2" is called absclutely continuous if for each compact set
K = R? there exist a neighborhood Uy of 0 in 2 and an absolutely

continuous function Hg:I—R such that

(Hu), 15— W), fO|S|H(u)— Hg(v)] (4.1)

for all u,vel and f e Uy.

LEMMA 4.2  Assume that the map 3(): -2’ is absolutely continuous.
Then the real function {3(‘), ) is absolutely continuous for each
f€2. Moreover, the derivative in the distribution sense

9(t)=1im h~'[9(t +h)— 8(1)]
h—0

exists for Lebesgue almost all tel.



266 D. A. DAWSON AND J. GARTNER

Proof Let Ugx and Hg be as in Definition 4.1. Since Uy is
absorbing in Zx for each K and ( Jx Zx=2, the first part of the
assertion is immediate from (4.1). For each natural number n, let K,
denote the closed ball in R? with center 0 and radius n. Let N, be
the null set of points at which the function Hy_ is not differentiable.
For each fe2, denote by N(f) the null set on which the function
{3(-), f> is not differentiable. Fix an arbitrary countable dense
subset 2 of 2. To prove the second part of our assertion, it is
enough to check that 3(-) is differentiable in the distribution sense
on I\N, where

N=N,u | N().

€99

To this end, choose re I\N arbitrarily. It then follows from (4.1) that
for cach n and all sufficiently small ||,

h™'[9(t+h)— )] e(1 +|Hg (D) UR,,

U ={4eDy :[<A fH|<1 forall feUy}

is the polar set of Uy in Zy, the dual of 9. By the Banach-
Alaoglu theorem and the separability of Z, U?(n is sequentially
compact in Zy (furnished with the weak* topology), see e.g. [26,

........

Chap. 3]. Thus, h ™ '[3(t+h)—3(1)] is sequentially compact in cach
Y%, and, consequently, also in 2’ for h—0. Furthermore, since t¢ N,

the finite limit

lim Ch™ ' [8(t+h)—9(0)], f>

exists for all fe2“. This proves that 3(-) is differentiable in the
distribution sense at point t. []

Let C¥(R?x [s,t]) be the space of functions R?x [s,t]—R having
compact support and possessing continuous derivatives of all orders.
Given a function f:R?x [s, t]—=R, we will write f(u)(x)=f(x,u) and
F(u)(x)=(0/0u) f(x, u), (x,u)e R* x [s, 1].
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Lemma 4.3 (Integration by parts formula) For each absolutely
continuous map 9(-):[s,1]» 2" and each [ e C(R*x [s,t]) it holds

(), f(0)) —<3(s), f(s)) = fdu<l9(u) S+ §dudd), flayy. (4.2)

Proof At least formally,
8(2), S(8)> —<(s), f(s)>
= {(Ht) = 9(s), F(1)) +<Hs), f(O)— [ (s

— J duu). £10) +§ dvcois), 1)
= [ dudd(w), fw)>+ | dv<S(v), ()

+ [ du<S(w. O — (@)~ [ do<S(e)~ 9(s), F0)),
where the integrals

dul ), f(—fu)>= fdujdv(g(u) F D)

ARV

@ Sy

and
[ dv<Se)—8(s), Fe)> = dv | du¢S(w), fie)>

coincide by Fubini’s theorem. This yields (4.2). To make these
computations rigorous, we must verify among other things that

Co.fau 1)) ~faucs, ) 43)

for all 3¢ 2". But this follows from the fact that the integral | du §L0))
is the limit in 2 of Riemannian sums. Since the function {3u), f(v))
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iIs measurable in u and continuous in v, it is measurable in (4, ).
There exist some compact set K<R? and some ¢>0 such that
ftvYecUyg for all v, where Uy is taken from Definition 4.1. Therefore

(4.1} and Lemma 4.2 imply that
fdu(.g(u),f'(v)>=cVar Hy<xc

for all ve[s, t], where Var Hg denotes the variation of Hy. Hence

du dv|(3(u), f(v))>| <0, (4.4)

XS
0 ey

which justifies the application of Fubini’s theorem. By
Jdul<B. 110 10| <o
Together with
idul<9(u>, T

(see Lemma 4.2) this implies the existence of the first integral on the
right of {4.2). The existence of the second one is obvious from the

continuity of ur— {Hu), f(w)>. O

4.2 The large deviation result

Let .# =.#(RY) be the space of probability measures on R? (d=1)
equipped with the Prokhorov metric which induces on .# the
topology of weak convergence [2]. Fix T>0 arbitrarily. We denote
by C=C([0, T];R% and ¥ =C([0, T]; .#) the spaces of continuous
maps from [0, T] to R? and .#, respectively, and furnish them with
the topology of uniform convergence. Usually the elements of C and
% will be denoted by x(-) and u(-), respectively. Let S be the space
of symmetric non-negative definite d x d real matrices. Given maps
a:R*x [0, T]->S*and b: R? x [(0, T]—R?, let us introduce the diffusion
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operators

d 0? ﬁ
; 9“]+Zb( 0= (4.5)

C‘x

2

te[0, T, where a'(x, t) and bi(x,t), 1<i,j<d, are the components of
the diffusion matrix a(x,t) and the drift vector b(x, t), respectively. We
impose the following assumptions on %

(A.]) The matrix a(x,t) is strictly positive definite for all
(x,1)eR?x [0, T]. The (possibly unbounded) coefficients ¢ and b',
1<i,j£d, are locally Hélder continuous on R? x [0, T].

(A.2) The martingale problem for {%;te[0, T]} is well posed. In
other words, for each (x,s)eR¥x[0, T] there exists exactly one
probability measure P, on C having the following properties:

) P (x(u)=xue[0,s])=1

t /A \
i) f(x(0. 0~ (£+ z) Fx.w)du,  te[s. T]

is a local P, -martingale after time s (with respect to the canonical
filtration on C} for all continuous functions f:R?x[0, T]-R
possessing continuous spatial derivatives up to the second order and
a continuous time derivative of first order.

Remark 4.4 The Hoélder continuity in Assumption (A.1) will only
be used in the proof of Lemma 4.11 below. For the purposes of
Section 5 we must be able to handle the case in which the drift
coefficients are continuous but not Hdélder continuous (at least with
respect to the time variable). In Section 4.5 we will show how one
can relax in a simple way the Holder continuity of the drift vector
(but not of the diffusion matrix). In our preliminary technical report
[8] we imposed instead of (A.l) the weaker condition that the
diffusion matrix is non-degenerate and both the drift and diffusion
coefficients are merely continuous. The proof of Lemma 4.11 below
given in [8] without assuming Holder continuity follows the same
lines as the proof presented here, but it requires in addition the
application of Sobolev space techniques and Krylov bounds.

The family {P, ;(x,s)eR?x[0, T]} defines a strong Markov-
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Feller diffusion process on R? ([29, Theorem 10.1.1 and Corollary
11.1.5]). Let us consider N independent copies of this process. This
leads to the family of probability measures

PJ=P, ;& ®PF, x=(x,,..., xy)e(RY)Y, se[0, T],

on the product space C". Canonically identifying C¥ = C([0, T]; R4}V
with C([0, T];(R)"), we will sometimes view P} as a measure on
C([0, T]; (RHM). Given x=(x,,..., xy) €(RH)", set

N
=N )
6=N""3% 0.,

k=1

where 3, denotes the Dirac measure at point zeR% e is the
empirical measure of the N-particle configuration x. The set consisting
of thc cmpirical measures of all N-particle configurations will be
denoted by .#'™. The empirical process associated to N independent
copies of the above diffusion process is given by a family {2®;
ve. /'™ of probability measures on 4. If v=¢, for some xe(R%",
then 2™ is the probability law of the process ¢,., under P =P},
In other words, Z™ is the image of the measure P® with respect to

the map
N
C’Va(xl(-),...,x,\,('))r—+(t+—>N"1 Y 5,“((,)\6(5. (4.6)
\ k=1 /

Since the family {P{;xe(R")"} is invariant with respect to permu-
tations of the initial configuration x=(x,,..., xy), the measures 2"’
are well defined.

In this section we will present a theorem on large deviations for
the probability laws 2% of our empirical process as N tends to
infinity. Before stating the result, we need some further notation.

Let V, ( , ), and | |, be, respectively, the Riemannian gradient, the
inner product, and the Riemannian norm in the tangent space of the
Riemannian structure on R? induced by the diffusion matrix a(-, 1).

In global Euclidean coordinates x', ..., x¢,

d
W= acL i

i=1 0Xj,
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d
(X, V)= Y a;(-,0X'Y,  |X|=(X,X)/"?

ij=1

where {a,(x, 1)} is the inverse of the matrix {a“(x.1)}. In particular,

4 of of
V.f)} e
V= 3 05055
(Of course, if a(-, t) is not sufficiently smooth, then there is not really
a Riemannian structure associated with a(-,t). But the above for-
mulae still makes sense in this case.)
For each pe .# and te[0, T] we introduce a normed linear space

T = {97 3],. <o),
where the norm || ||, , is defined by
1 KO
3 u deg'. 4.7
9ll.=3 5% Zutv.res @7

Here 2, ,={fe€2:{u|V.f|?>+#0}. For each e 2,

H9llﬁ.,=;ug (<9 f>—Hu V.12 (4.8)

Indeed, replacing the function f in (4.8) by c¢-f and taking the
supremum at first over all ceR and then over f€2,,, we see that
the expressions on the right of (4.7) and (4.8) coincide.

For each ve.# we introduce a functional S,:%—[0, o] by setting

T
va(-)):(j) [|i(t) — L ¥ u(v)|| . dt, (4.9)

if w(0)=v and pu(-) is absolutely continuous (in the sense of Defi-
nition 4.1) and S,(u())= oo otherwise. Here #F is the formal adjoint
of %, defined by (4.5). The operator £¥ acts on 2. We remark that
the measurability of the integrand in (4.9) is a consequence of the
fact that it suffices to take the supremum on the right of (4.8) over a
countable dense subset of 2 and that, by Lemma 4.2, {u(:), f> is
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absolutely continuous and {u(t), /> =(d/dt){u(t), f> almost every-

where for each fe 2.
We are now ready to formulate our large deviation result.

THEORFM 4.5  Given vye A"™ and ve. d, suppose that vy—v in M.
Then (€, W‘V’:’, N) is a large deviation system with action functional S,

The proof of this theorem will be given in the next two sections.
The assertion that (%, #7“&’, N) is a large deviation system is a simple
consequence of Theorem 3.5 (see Lemma 4.6 below). The difficulty
consists in showing that the action functional has the form (4.9). To
this end, we will apply the results of Section 3 in order to obtain two
different expressions S’ and S'? for the action functional (Lemmas
4.6 and 4.7). The functional S, will then be shown to be caught
between S’ and S'” (Lemmas 4.9 and 4.10).

4.3 Two representations of the action functional

We will denote by E, ; the expectation with respect to the proba-
bility measure P, defined in the preceding section. We will write E,
and P, instead of E, 4 and P, ,, respectively. In the following, C,(C)
and .#(C) will stand for the space of bounded continuous functions
and the space of probability measures on C=C([0, T]; R, respec-
tively. Given Pe.#(C), let n(t; P)=Pox(t) ', te[0, T], denote the
associated one-dimensional distributions.

LeviMa 4.6 Given vye . #'Y), N> 1, and ve ./, suppose that vy—v in
M. Then (€, !ﬂ{';’ ). N) is a large deviation system with action functional

SW(u(-)= min LP(P),  u(*)e®, (4.10)

Pe H(C):n(-; PY=u(-)
where

LY(P)= sup [{(P,F)—{v,logE "], Pe #(C).

FeC,(0)

(4.11)

Proof Given N2>1 and

N
ﬂ=N_1 Z 6x,‘e'/”(m’
k=1
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let QY denote the image of the measure P, ® - ®P,, with respect
to the map

N
C¥30x,(*), ... xy( NN Y, e 4(0), (4.12)
k=1

where 7,,., is the Dirac measure on C with unit mass at x(:). The
map (4.6) is the composition of the map (4.12) and the map

M(C)3 Prn(-; P)eb. (4.13)

Therefore 2V is the image of the measure Q™ with respect to (4.13).
The map (4.13) is continuous. For, suppose that P,—P in .#(C).

Then

tn; Py, f 5~ mlt: PL D (4.14)

for each te[0,T] and each feC,(R%. Moreover, the tightness
criterion for probability measures on C ({2, Theorem 8.2]) implies
that, for each x>0,

P (w(d; x("))>Kk)—0 as -0, (4.15)
uniformly in n, where w(-; x(-)) is the modulus of continuity of the
path x(-)e C. Combining (4.14) with (4.15), we find that the conver-
gence in (4.14) is uniform in {0, T] and, therefore, n(-; P,)—n( : P)
iné.

For r=1, X=RY and Y=C, Theorem 3.5 says that
(#(C), 0, N) is a large deviation system with action functional L{"
defined by (4.11). Together with Theorem 3.2 this yields that
(%, 9’&’;’, N) is a large deviation system with action functional
(4.10). 1

Let us introduce the two-parameter semi-group {U, ;0Ss<t<T}
of linear operators acting on C,(R?) according to

Us. f(2) =£f(X(t))Pz‘s(dX('))- (4.16)

LemMa 4.7 Given vye 4™, Nz 1, and ve #, suppose that vy—v in
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M. Then (8,2, N) is a large deviation system with action functional

SP(u()= sup Lyl 1), (4.17)
T

01 <<t g
e,
where

L:l‘ ‘‘‘‘ "(#17“.”“'):'21 ?Up [<ﬂi’f>_<#if1‘10g Ur,-, 1ol ef>]’ (418)
i= €z

(]

Hos His oy i€ M.
Proof We first derive a large deviation result for the finite dimen-
sional distributions of 2. Given N2 1, 0=t,<t, < - <1, < T, xe R,
and

N
p=N""'3 o, el™,
K=

let p(t;,....t,) and zM(¢\,...,1,) denote the probability law of
(x(2), ..., x(t,)) vnder P, and the probability law of (u(z,),..., u(t,)
under 2(M. Since {P,; xeR?} is Feller continuous, the same is true
for {p.lts,...,t,);xeR}. It follows from the definition of 2™ that
aM(ty,...,1,) is the image of the measure

Doty s 3@ - ®p, (L5, 1)

D TR &

with respect to the map

N\

N N
((R”)’)Na(yi,4..,y1\,)k+<[\f’"1 Y O, NTUY 5y£r))6//1’,
K =4

where y, =)V, .... )" e(RY)". We can therefore apply Theorem 3.5
for X=Y,=---=Y,=R’ in order to obtain that (.#", il¥(t,,...,1,), N)
is a large deviation system with action functional

Ly, ..., )= sup [il <#.~,ﬁ>*H(f1,-~,fr)J, (4.19)

Froed,eC w9 L

=

His-o €M,
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where
H(fl,...,ﬁ)zjv(dx)jpx(t,,...,t,)(dxl,...,dx,)

/

con( 5, 09)

We next show that the functional (4.19) coincides with (4.18) for
o =v. An application of the Markov property of

[Py (x,5)eRIx [0, T]}
yields
Hify.... fp=<vlogU, , U, e U, el
Abbreviate
hfy, ... f)=logU, ,e2...U, e

Then the functional (4.19) (with u,=v) has the form

L:‘] ..... lr(lul, --'aur)

[ L
LZ‘ s Ji0 —pos tog Uy o e U, ., ef'>]
= sup [<#1’.f1+h(f2----,ﬁ)>
—<po log U, exp(fy +h(f2 .- 1D
+ 3 g [ =<y, log Url,zze“---U,,_,.r,ef'>]
=y

= sup [pp /5= <o, log Uy, €3]
FeC,®Y

+ sup. [Z o J>—pur,10g Uy, €U, ef'>].

20"
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Hence, we successively arrive at

r

Ly (pgs o)=Y sup [p [>= iy log U, €)1

i=1 feC, (R

Taking into account the continuity of the operators U, ,, this gives
(4.18).

We already know from Lemma 4.6 that (4,2{,N) is a large
deviation system. Let S* denote its action functional. It remains to
show that S{*) has the form (4.17). Given N> 1 and ue . #™, let 2V
denote the image of the measure 2" with respect to the continuous
imbedding € —.#'""". Here .#'"" is the space of all maps
[0, T]->.# furnished with the product topology. By Theorem 3.2,
(#'°-T, P N) is a large deviation system. Its action functional §{
coincides with S on % and equals +o0o on .#!°"h\% But
(.17, PN N) can be canonically identified with the projective
limit of the large deviation systems (.47, n{"(t,,...,t,), N). The index
set of this projective system consists of all finite sets {t,...,¢t,} of
points from [0, T] with < as order rclation. We can therefore apply
Theorem 3.3 in order to obtain

SPuc-)y= sup  Lrt(uty), ..., 1),

05t <---<t £T
=N r=

u(-y e M,
This proves (4.17). [

4.4 Coincidence of the action functional with S,

In Lemma 4.6 and Lemma 4.7 we have got two different expressions
SV and S for the action functional of (4, 2", N). To finish the
proof of Theorem 4.5, it will be enough to show that, for each ve .Z,
the functional S, defined by (4.9) satisfies

SW>S >852) (4.20)

The present section is mainly devoted to the proof of (4.20). Let
Ct'=C}'(R*x[0, T]) denote the set of continuous real functions
on RYx [0, T] having compact support and possessing continuous
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spatial derivatives of first and second order and a continuous time
derivative of first order. We first derive the following representation

of the functional §..

Lemma 4.8 Given ve . # and p( )€€, suppose that u{0)=v. Then

SAu(-) = sup (u(-); f), (4.21)

fECZ 1

where

H(C); £)= (T, S(T)> = <O, £(0))
- |( o), ( +=f.\ (0+3IV, fml,)dr (4.22)

Proof Fix ve.# and u(-)e % arbitrarily and assume that p#{0)=y.

1) Given 0<s5<i<T and feC? R x [s,£]), set

: F
L, LS )= u(n), f(0)> —<uls), £(5)> — < u(u), <é§+ fu) f(u)> du
(4.23)

and
LA =100 =3 <), Vo f (W12 du. (4.24)

Clearly I, H{(f)}=Iu(-): f). Let (#,) bc a sequence of smooth func-
tions from [0, T] to [0, 1] such that #{u)=1 for all ue[s, t] and all
n and #4,|1; ., where 1, is the indicator function of the interval
[s, r]. Then one easily checks that

Lo 15 f) =1, ()

for all feC#*'. Therefore

sup I, (f)= sup I(u(*); f) (4.25)

feCkl" j'eC,f‘l
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for 0<s<t<T From (4.23) and (4.24) we conclude that

el ,(f)——-—_[(/l u \V, fl>> du g sup I.dg)

geC,(

for all feCi' and ceR. Taking on the left-hand side the supremum
over all ceR, we arrive at

NP <2 sup ls,g)K#(u) V.S (W)2> du

geCk

<2 sup Hut: 5 g)f(u(u) IV.S(WlZ> du. (4.26)

gECk

Here we have also used (4.25).

2) We next show that

—
e
138

=3

sup I(u(-); f) = SJu()).

feCf"

To this end, put an arbitrary smooth function f:R?x [0, T]-R with
compact support and suppose that S (u(-))<oo. Then a combination
of (4.8), (4.9), and Lemma 4.3 yields

T
Su(-) éf ) = LF ), f(0> =3, 1V, f(iZ YT dt

=<{u(T), f(T))—<ul0), £(0)>

T

~{ u(t)< +Y)J(l)+lef(t)|,>

=1(u(); 1),

and we arrive at (4.27).

3) After these preliminaries we start to prove (4.21). Because of
(4.27) we can assume without loss of generality that

sup I(u(*); f) < co. (4.28)

seck!
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Let I%s,t) be the Hilbert space of all measurable maps
h:R? x [s, t]—+R? with finite norm

TS L NIV
]l =15 ), Ph())2 > du (

and inner product
Chy, hyd = ptw), (), ha(w), du.

Denote by Li(s,t) the closure in I*s,t) of the linear subset L
consisting of all maps (x,u)p—V, f(x,u), feC&{(R*x[s,t]). Since
f(x,u)V, f(x,u) is a one-to-one correspondence between
C3YR?x [s,1]) and L, I, can be viewed as a linear functional on L.
(Actuaily L must be considered not as a set of functions but as a set
of equivalence classes of functions coinciding gy, dx) ® du—-almost
everywhere. But this is inessential, since I_,(f) =1 (g) if V,f(x,u) and
V.g(x,u) belong to the same equivalence class which 1s immediate
from {4.26) and (4.28).) Recause of (4.26) and (4.28), the functional [,
is bounded. Hence, by the Riesz Representation Theorem, there

exists some h, € L3(s, 1) such that

’s.t(_f)‘zj‘<1u(u)’(hs‘t(u)v Vo Sy du,  feCEl

Now

lO.t(f) = 10, T(f) - lt. T(f)

). (o, 70, V. f 1), d

O ey =

T
+ | utu), (ho, 7(u) —hy 1(w), V, f (), du.

Since I, (/) does not depend upon the values of f on the time
interval (¢, T}, the last integral on the right-hand side vanishes
identically. So we finally get the representation

lo_,(f)=(j; <), (), V.o f (1)) s, (4.29)

AR ERTEE T R
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te[0, T, feC?', where h=h, 1. Since he L0, T),

mf j<u R~V f(OF> dt =0. (4.30)
fe

4) Substituting (4.29) in (4.24) (for s=0 and t=T) and taking into
account (4.30), we obtain

T
sup 1(#(');f)=%£<u(l th(t)1? > dt. (4.31)
Jecd!
Therefore, in order to finish the proof of (4.21), it suffices to show
that S.(u(-)) coincides with the integral expression on the right of
(4.31). Comparing (4.23) with (4.29), we find that

t
), f3—<its), [ = [ {ptu), L, +(h(w), Vo f ) du - (4.32)
for 0=5s<t<T and all fe%. This implies that u(-) is absolutely
continuous as a map from [0, T] to . Hence, using Lemma 4.2, we
conclude from (4.32) that for each fe 2,

), f 5 =<ult), Zof +(h(1), V.)> (4.33)

for almost all 1[0, T]. Since & is separable and the linear func-
tionals on both sides of (4.33) belong to 2’ for almost all te[0, T1,
there even exists a null set N<[0, T] such that (4.33) holds for all
J €% and all te[0, T]\N simultaneously. Together with (4.9), (4.8),

and (4.30) this finally yields

T
S, ()= [ sup [<a(t)~ LFu(t), /5 —3<ue) IV fIF] dt

0 fez

T
= | sup Cu(t), (h(2), V. ), =3IV S 17> dr
0 fez

I

T T
3 { <, (D12 dt =5 | inf {u(o), th(t)— V.S 1) dt
0 0fe2

I

T
%g Cu@), th(2>dr. O
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Lemma 49 SU=S8 forallve.#.

Proof Given ve.# and u(')e%. assume that S0 (u(-))<oc. Then
there exists a measure P, e.#(C) with one-dimensional distri-
butions u(r), 1€{0, T], for which the minimum on the right of (4.10)
is attained. Together with (4.11) this gives

0> S )) Z (Pryins F> — v, log E ") (4.34)
for all Fe C,(C). Putting in (4.34) F(x(-))= f(x(0)) and varying over
all feC,(RY, one readily checks that u(0)=v. Now choose feC?!

arbitrarily. Since {P, ;(x,s)eR*x[0,T]} is the solution to the
martingale problem for {¥,;te[0, T]},

t /A
M (x())= f{x(1), t)— f(x(0).0)— l +.;’z,”u)j{\c'u) u) du,
4 /

te[0,T], is a bounded continuous P,-martingale for each xeR?
with quadratic characteristic {{23, Proposition 13.42])

EMPL()) =§ IV, £ (x(), W2 du

not depending on x. Put
F=M;—3{MM.
Then
{Prins Fo=1(p("): [},

where I{u(-); /) is defined by (4.22). Further, since exp{M —i&M D)
is a P _-martingale (see e.g. [22, Chap. 3, Theorem 5.3]),

E éef=1, xeR%
We therefore derive from (4.34) that

SOy = L), 1)
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for all feC¥' Together with Lemma 4.8 this gives
SPu(-NzSAu-). O

LemMma 410 SP<S, for all ve .

The rest of this section is devoted to the proof of Lemma 4.10.
Given ve.# and pu(-)e%, suppose that S (u(-)) <. By (4.9), (4.8),
(4.17), and (4.18), it suffices to show that

uln), =< uls),log U e’

<{sup [{f(u), &> —{plu), £.8 +1IV.gl>] du (4.35)

s geZ

for 0Ss<t<Tand all fe&.
On a formal level of rigour, (4.35) is rcadily checked. Indeed, at
least formally the function
glx, Wy =(U, &) (x)=E, ,exp(f(x(1))),
(x,uye R?e [0, r], satisfies the backward Kolmogorov equation
gw)+2,8u)=0, gn=e

Thus h(x, u) =log g(x, u) satisfies

h(u)+ L)+ 3V, W) =0, h(n=.
Together with a formal integration by parts this yields

I

<), f5—~<ps) logUg e

= (1), h()> — pls), h(s)>

= [ [, b))y + pulu), Fw) Y] du

— [ L), b))y — ), L)+ 3V du, (436)

and we arrive at (4.35).
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In general, the transformations in (4.36) do not make sense. The
most striking reason for this is that the function h does not have
compact support. One also has to keep in mind that we did not
impose any restrictions on the growth at infinity of the drift or
diffusion coefficients. To circumvent these problems, we modify the
proof, passing from the semi-group {U,,} to the semi-group {U®}
associated to the diffusion process which is killed as soon as it leaves
the open ball By ={x e R%|x|<R}. Let t(s): C—[0, av] be the stopping
time of the first exit from By after time s. That is,

tp(s)(x(*)) =min{re[s, T]:|x(1)] 2 R}

if the minimum exists and 14(s)(x(-}})=oc0 otherwise. Then the semi-
R
group {U®Y acts on functions f e C,(RY) according to

s, i)

UR f(x)=E, . f(x( ) N PP (4.37)

Here 1, is the indicator function of the event A. Let supp f denote
the support of the function f Instead of Lemma 4.10 (respectively

(4.35)) we will check the following.

Lemma 4.11 Given ve# and p(-)e¥, suppose thar S, (u('))<co.
Then for each R>0,

(1), f>—<ws), log[1+ UR(e! — 1)1

t
<[s sup [<a(w), 4> —u(u), L4+ 31V, A T du (4.38)

Jor 05s<t=T and all f€P with f <0 and supp f < Bi.

Inequality (4.38) implies (4.35). Indeed, letting R—oo in {4.38), we
find that (4.35) holds for all non-positive fe%. Now choose a
sequence (4,) in 2 so that 0< 4,11 pointwise. Given f €% arbitrari-
ly, set f,=4#,(f—||f|), where || /|| stands for the supremum norm of
/. The functions f, belong to £ and are non-positive. Hence (4.35)
holds for f, instead of f. Letting n— o0, we conclude that (4.35) is
also true for f. We have therefore reduced the proof of Lemma 4.10
to Lemma 4.11.

The function

g(x,s)=UP(e/ —1)(x), (x,5)eR*x[0, T], (4.39)
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appearing in {4.38) is the (unique) classical solution of the “initial”
boundary value problem

<; + !Z’s> &(x,5)=0, (x,s)eBgx[O0, t), (4.40a)
g(x, 1) =exp(f(x))—1, X € B, (4.40b)
8(x,5)=0, (x,s)edBg x [0, ). (4.40¢)

For, Assumption A.1 ensures that the problem (4.40) admits a
unique classical solution g (sec [24, Chap. 4, Theorem 5.1]). Since
{P, s (x,s)eR?x [0, T]} solves the martingale problem for
{Z;1€[0, T}, we conclude from this that g(x(u A 1(s)), u A T($)),
uelst], is a P, -martingaie after time s for each (x,5)€ Bg x [0, 1],
(u A v denotes thc minimum of » and v). Hence, taking into account
(4.40b, ¢) and the definition of the stopping time 7g(s), we obtain

g(x’ S) = Ex.sg(x(i N tR(Sja LA TR(S))
= x‘S[exp(f(x(t))) - IJH(IR(8)>1}

for (x, )€ Bg x [0, t]. Together with (4.37) this yields (4.39).
The function (4.39) has compact support, but it is not smooth. It
is even not differentiable on @Bg. To overcome this deficiency, we

it

approach g by functions of the form
&=k xg, £>0, (4.41)

where {k,} is a suitable family of smoothing kernels and * denotes
convolution on R”. To be concrete, we put k.(x)=¢"%(e" 'x), where
k belongs to 2, is non-negative, and satisfies [k(x)dx=1. The
functions g, belong to 2. Of course, they do not satisfy Eq. (4.40a).
However we do obtain the following bound.

LEMMA 4.12 Given R>0, te(0,T], and feP with supp f < By,
define g and g, by (4.39) and (4.41), respectively. Assume in addition
that f<0. Then, for all sufficiently small £>0, there exists a
continuous function r, on R*x [0, t] vanishing outside of B,rx[0,1]
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such that
E ;
—+ L g sr, on R x[0,1] (4.42)
\eés )
and
r.—0 uniformly on R? x [0, 1] as 0. (4.43)

Proof Integrating by parts, we obtain for {x, s)e R?e[0, t]:

(ﬁ_ + ys) gﬂ(x7 S)
0s _

[ &
= :+L‘”\lk(xmwg (y, s}dy=7{x, s}
B, \OS
SR 7O N N A \Fg
+> al(x.5) | kfx—p) = (v.sim(yindy)o(dy), (4.44)
2B cn

where

e(x 5)— J. k x y) (y’ )

82
+5 Za"x S)jk(x y)q 18V](yas)dy
. og
FL ) [ klx—3) 5 () dy. (4.45)
B, ¥y

The index x in Z\ indicates that the operator %, acts on the
x-variable; o denotes Lebesgue’s surface measure on 0By; (dg/dn)(y, 5)
is the derivative of g with respect to the inner normal n(y)=
(n,(y), ..., n4y)) to 0Bk at point y. By assumption f <0. Hence g <0
on By x[0,r] (see (4.37) and (4.39)). On the other hand, g=0 on
0By x[0,t]. Thus Jdg/én=<0. Consequently, the sum on the right
of (4.44) is non-positive, and we arrive at (4.42). Clearly r, vanishes
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outside of B, x[0,1], provided that ¢ is sufficiently small. Because
of (4.40a), we further conclude from (4.45) that ]

Zo

rdx, 5)‘:15"~gf~—,w1 32 [a%x,9) —a'y, s)]é, V9

+ [b(x, ) —bi(y, s e (YS)}dy

Letting ¢—0, this yields (4.43), and the proof is complete. []

Proof of Lemma 4.11 The essence of this proof consists in a
refinement of the formal transformations in (4.36). Fix R>0,
0<s<t<T and feZ with {0 and supp f = By arbitrarily. Define
g and g, by (4.39) and (4.41), respectively. Let 7, be as in Lemma

4.12. Set
h,=log(1+g,).

Then, applying Lemma 4.3 and using (4.42), we obtain

<ﬂ(t), hs([)> - <H(S)’ hs(s)>

= L, () + o). o) i

=}[<ﬂ(u he(u)y — (p(w), £,k (u) +31V, h(u)|3>]du

<i+$u>gg(u)
! ou
+£ u(u),—W du

<ISUP [<Aw), £ — plu), Lo+ 3|V, 4125 ] du

S e

+f < (4, - E(“’ 3 (4.47)
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From (4.39), (4.41), and (4.46) we conclude that h(s)—log{l+g(s)) =
log[1+ U®e/ —1)] and h,(t)— f uniformly as ¢—0. We further know
from Lemma 4.12 that (1+g,) !r, vanishes outside of B, x[0,1]
for small ¢ and converges io zero uniformly as ¢—0. Thus, letting
e~0 in (4.47), we arrive at the desired estimate (4.38). (]

4.5 Relaxation of Assumption A.1

The purpose of this section is to show that the assertion of Theorem
4,5 remains true, if we relax Assumption A.l, assuming that the
drift coefficients b', 1<i<d, are merely continuous instead of being
locally Holder continuous. Assumption A.l has only been needed to
prove Lemma 4.11. The non-degeneracy of the diffusion matrix a
and the Holder continuity of @ and b on By x[0, (] ensured that the
function g defined by (4.39) is a classical solution of problem (4.40)
and that Lemma 4.12 is apphcable. It is therefore enough for us to
show that inequality (4.38) remains true, if the drift coefficients are
continuous but not locally Hélder continuous. This will be done by
a limit procedure.

To begin with, fix ve.# and p(-)e%é with S, (u(-))<owo, R>0,
0<s<t=T, and feZ with f<0 and supp f < By arbitrarily. Sup-
pose that the drift vector b:RYx [0, T}—R? is continuous but not
locally Holder continuous. Then one can find a sequence of con-
tinuous maps b,:R? x [0, T]— R4 such that b, is Holder continuous on
Bex{0,T], b,=Fk outside of B,px[0,T], and b,—b uniformly.
Denote by £, uel[0, T], the diffusion operators with diffusion
matrix a and drift vector b, Let {P": (x,u)eR?x[0,T]} and
{URM. 0<u<vZ T} denote the solution of the associated mar-
tingale problem and the associated semi-group, respectively. That
the martingale problem for { &, ue[0, T]} is well posed follows
from Assumption A.2 by an application of the Cameron-Martin—
Girsanov formula (cf. [29, Section 6.4] where' the case of bounded
coefficients has been treated). Because of our assumptions on b,
inequality (4.38) holds with U'® and %, replaced by U™ and .Z",
respectively; i.e.

<pl®), 15 —<uls), log[1 + U™/ =11

gf [y — (L) * () |2, du (4.48)
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Here we have also used (4.8). Letting n—o0 in (4.48), we arrive at
(4.38). Indeed, from [29, Theorem 11.1.4 and Lemma 11.1.2], we

know that
U ™" — D) = EY3exp(f(x(1)) = 1101 950
S E Jexp(f () — 13- = U = 1)(x)
pointwise and boundedly as n-—oo. Therefore the expression on the

left of (4.48) converges to the corresponding expression in (4.38).
Concerning the right-hand side of (4.48), it suffices 10 notice that

(L) ~ (L *1(10) [

i) = Ly + L= L 10 e

s — L0 )2

[<plu), (b= b, VA

=4 su .
?heu, Cutu), (V41D
<Iplw), b, —biD>,

and {u(u), |b,—b|Z>—0 as n— oo uniformly in u. Here we have used
¥ and ¥, (4.7), and the Cauchy-Schwarz

the definitions of &

inequality.

6. LARGE DEVIATIONS FOR WEAKLY
INTERFACING DIFFUSIONS

5.1 The N-particle model

In this section we introduce the model of weakly interacting
diffusions, describe the family of probability laws of the associated
empirical process, and formulate the assumptions under which the
large deviation result will be established.

We first define the state space .#, and the space of sample paths
%.=C(0, Tl .#.) for the empirical process. As in Section 4, let .4
denote the space of probability measures on R furnished with the
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weak topology, and let C([0, T];.#) be the space of continuous
maps [0, T]—.# endowed with the topology of uniform conver-
gence. Let ¢:R‘->R be a non-negative, two times continuously
differentiable function with lim,,| ., ¢(x) = oo. This function will serve as
a Lyapunov function for our system of weakly interacting diffusions
(cf. the Assumptions B.2 and B.3 below). Given R >0, we denote by
Ay the topological subspace of .# consisting of all ye.# for which

i, ) £R. We set

M=) My
R>0

and equip this space with an “inductive” topology. By definition, a
set G is open in .# ., if G~ .4 1s open in .# ¢ for each R>0. In the
same way, furnishing C([0, T]; .#), R>0, with the subspace to-
potogy of C{[0, T: .#) and observing that

C([0. T): A )= ) C([0, T]; Mr),

R>0

we define an “inductive” topology on C([0, T]; .# ). One easily
checks that u,—»u in #, if and only if u,»u in # and
sup, { I, @y <oo. Ananlogously, u,(-)-pu(-) in C([0,T]; #,) if and
only if u,(-)—u(-) in C([0, T]; . #) and sup,supco, r;<{Halt), 0> < o0.
Although the topologies on .#_, and C([0, T];.#,) are not met-
rizable, this fact does not lead to serious trouble. In this context we
mention that a real-valued function on R?x .#_ or on C([0, T}; .# )
is continuous if and only if it is sequentially continuous. For further
details about these topologies we refer to the appendix in [20].
We will frequently use the abbreviations

=C([0, T), M), €x=C([0, T];.#y), and %.=C([0,T];H,).

Now suppose that we are given continuous maps a:R?’—S? and
b:R*x # ,—R% (As before, S* denotes the space of symmetric non-
negative definite d x d real matrices.) We want to consider a system
of N diffusions on R? with diffusion matrix a={a"} and drift vector
b={b'}, interacting via their empirical measure which enters the drift
vector. To this end, let us introduce diffusion operators £(u),
ue # , and L'V, N=1,2,..., acting on functions on R? and (R%",
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respectively:

a 92 d of (s
LWf9=3 3 a’x) /f,l + 2 b g‘,f;’,

ij

N[ —

N
fmnf(xl,...,x,\,)=k;1 PLe)f(xy, ..., xy)

The index k indicates that the operator #(¢,) acts on the variable x;
=N"'Y7_, 0, is the empirical measure of the particle configur-
ation x=(x,,..., xy) €(R%". The precise assumptions on the diffusion
and drift coefficients will be given later. For the moment we assume
only that for each N, the martingale problem for Z™ is well posed.
Let {P®);(x,s)e(R)Y x [0, T]} be the associated family of solutions.
P® is nothing else than the joint probability law of N weakly
interacting diffusions (with diffusion matrix a and drift vector b)
which starts at times s at x=(x,,..., xy). Further, given N>1 and
(x s)e(RY)N x [0, T], we will denote by 7‘”’ the probability law on
% .. of the empirical process ¢,., under P‘N’ In other words, 2" is
the image of the measure P() with respect to the continuous map

C([0, TT; (R)Y) 3 x(-)— ey, € C([0, TY; M ).

Since the distribution of ¢,., under P{") is invariant with respect to
permutations of the initial conﬁguranon x=(xy,..., xy), the proba-
bility measures 2, (v, s)e 4™ x [0, T], are well defined. (As before,
'™ denotes the space of N-particle empirical measures.) For each
N, the measures 2"} are concentrated on C([0, T]; .#"™) and define
a strong Markov-Feller process with state space .#™). The last fact
follows from the strong Markov property of the family
{PM; (x,5)e(RYN x [0, T]} (cf. [29, Theorem 10.1.1 and Corollary
11.1.5], and [11, Theorem 10.13 and Remark 1 to this theorem]). We
will write P™ and 2™ instead of P} and 2™, respectively.

The joint diffusion matrix a of the operators F(u), pe.# .,
induces a Riemannian structure on R?. We will denote by V and | |
the Riemannian gradient and the Riemannian norm on the as-
sociated tangent spaces, respectively. They are defined in the same
way as in Section 4.2, where the time-dependent case has been

considered.
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Given N21 and feCl', set F(x,t)=N"'32_| f(x,,1) for x=
(X1.....xy) (R and ([0, T]. From the definition of P we know

that
F(x(t). 1) — F(x(0).0) j< ¢ z““) F(x(w), u) du,
0

te[0,T], is a P™-martingale for each xe(R%". The quadratic
characteristic of this martingale does not depend on x and has the
form

> V() d

1

Sty

k

where the index k indicates that the operator V acts on the kth
component of the space variabie (cf. [23, Proposition 13.42]). Clearly
F(x,0)={ey, f(1)>, LVF(x, )= e, L(e) f(1)),and Y i [ViF (X, 1)]F =
N~ We IVf(1))?>. Taking this into account and remembering the
definition of the measures 'V, we conciude from the above that

M () = ), (1)) — u(O), £(O)
~§ u(u), < + L (u(w) )f(u)) du (5.1)
is a Z#M-martingale with quadratic characteristic
CMEDN =N <l IS 00 d (5.2)

foral N=1, feC¥?, and ve #™.

Throughout the rest of this paper we will assume that the
following hypotheses are satisfied, in which ¢ denotes the same
function as in the definition of #_:

(B.1) The matrices a(x), x € R?, are strictly positive definite. The map
a:R'-»S? is locally Holder continuous. The map b:R?x.# —R?
is continuous.
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(B.2) There exists some constant 4>0 such thag
{p. Lo +3IVelP > 4 m @) |

for all probabiiity measures g on R? with compact topological
support. :
(B.3) For cach ji(-)e %, there exists some constant 1= A(ji(-))>0
such that ‘

L))o +3IVol* < g

for all te[0, T}
(B4) For each jg(-}e% , the function

T
€ m s [ G b (0 - B A >dze[0 ]
4]

is sequentially continucus at point p(-} =g

For the Curie-Weiss model considered in the Introductlon we
have

d=1, a(x)=0*>0, b(x;u)=—x3+(1 —0)x——é?jy,u(dy).

It is not difficult to check that in this case Assumptions (B.1)-(B.4)
are satisfied for @{(xj=1+x? and also for <p(x)=1+yx with
0<y<(2¢?) L.

We close thls section with some comments on Assumptlons (B.1)-
(B.4). First of all we remark that the local Hélder continuity of the
diffusion matrix a in Assumption (B.1) will only be used to apply
Theorem 4.5. But as it has been pointed out in Remark 4.4, this
supposition can be relaxed, requiring only that a is continuous.
Assumptions (B.1) and (B.2) ensure in particular that the martingale
problem for #™ is well-posed for all N. Indeed, since. the drift and
diffusion coefficients of £™ are continuous and the diffusion matrix
is non-degenerate, there exists at most one solution ([29, Theorem
10.1.3]). Applying (B.2) to the empirical measures p=¢,, X=
(1., xp)€(RYY, we find that LMO<i® for the function
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O(x) = (&, 9> =N""Y | ¢(x;). Hence the non-explosion condition of
[29, Theorem 10.2.1], is fulfilled, which guarantees the existence of a
solution to the martingale problem. The term |Vo|? in Assumption
{B.2) will be needed to obtain the exponential bounds in Section 5.3.
Assumption (B.3) is the analogue of Assumption (B.2) for indcpen-
dent identical diffusions with diffusion matrix a(x, t)=a(x) and drift
vector b(x, t)=b(x; a(t)). Assumptions (B.1) and (B.3) will allow us to
apply Theorem 4.5 for the diffusion matrix a, the drift vector b, and
the associated diffusion operators %, =.#(i(t)). Indeed, the relaxed
form of Assumption (A.l1) considered in Section 4.5 follows from
(B.1); Assumption (A.2) is a consequence of (B.3) ([29, Theorem
10.2.1]). Finally, Assumption (B.4) will allow us to approach our
empirical process locally (along a fixed path fa(-)) by the empirical
process of independent diffusions with diffusion matrix a and
“frozen™ drift vector b.

5.2 The main result

Given pue.# , and $e%’, define

L P
92 == sup 2Ll
190:=3 sup o vres

where 9,={f€2:{u, |Vf|*)#0}. One easily checks that || ||, is a

norm on the linear space T,={%ec2"[|9ll,<co}. This allows the

formal geometric interpretation that .#, is a Riemannian manifold
with tangent spaces T, and Riemannian norm || ||,. We introduce a

functional S:%.,—[0, co] by setting
T
S(p(-) =£ [| () — L (u(0)* |7 dt,

if u(-)e%,, is absolutely continuous (in the sense of Definition 4.1)
and S(u(-))=oo otherwise. #(u)* is the formal adjoint of the
operator £ (u) acting on 2'. The functional S is closely related to
the functionals S, defined in Section 4.2. Indeed, given [i(:) €%, set
£L,=2(j(t)), te[0, T]. Then S(ji(-)) coincides with S;,(f(*)) defined
by (4.7) and (4.9), where the Riemannian structure on R? has to be
taken with respect to the diffusion matrix a(-, t)=a().
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We are now in a position to formulate the main result of this
paper which holds under Assumptions (B.1)~(B.4).

THEOREM 5.1 (a) Given vye N and V€M ., suppose that vy—v in
.///,,. Then

liminf N~ !log PI(G) = —inf {S(u(-)): u(-) € G, u(0) = v}

N—o

Jor all open sets G in € -
b) Given vye #'™) and ve .4 . suppose that vV in M . Then

lim sup N~ log Z0(F) < —inf {S(u(-)): i) € F, u(0) = v)

N—-w

Sor all closed sets F in € e
¢) For each compact set K in M . and each s=0, the set

Py(s)={u(") €€ .:S(u(-)) <5, w(0)e K}
is compact in €.

The proof of Theorem 5.1 will be divided into two parts. In
Section 5.4 we will derive the following “local” version of Theorem
5.1.

THeoREM 5.2 Given vye /™ and VEM, suppose that vy—v in
M. Then the following assertions are valid Jor each a(-)e%., with
A0)=v.

a) For each open neighborhood V of i(*) in €,

liminf N~ "log ZM(V) = — s(j1(-)).

N-w
b) For each y>0 there exists an open neighborhood V of ji(-) in €,
such that
limsup N~ 'log 2M(V) < — S(i(-)) +y (5.3)

N-x

provided that S(j(-)) < co. If S(a(+))= o, then this assertion holds with
the expression on the right of (5.3) replaced by —y.
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In Section 5.3 we will derive the following exponential bound for
2™ which will allow us to convert the “local” result into a “global”
one.

THEOREM 5.3  For all positive numbers r and s there exists a compact
set A in €, such that
limsup N 'log sup PG \H)< —s
N—-wx vsﬂrn.ﬂ‘N’ v X = ’
We complete this section by showing how Theorem 5.1 can be
derived from Theorem 5.2 and Theorem 5.3.

Proof of Theorem 5.1 Applying assertion (a) of Theorem 5.2 for
V=G and all a(-)eG with a(0)=v, we immediately arrive at
assertion (a) of Theorem 5.1.

We next prove assertion (b). Given vye.#V) and ve.# ., suppose
that vy—v in .#, Let F be an arbitrary non-empty closed subsct of
% ., We set

s=inf{S(u(")): u(-) € F, p(0)=v}

and assume that s<oo. The case s=0o0 can be handled analogously.
From Theorem 5.3 we know that there exists a compact set ¥ in

% , such that
limsup N~ 'log 26\ A) < —s. (5.4)
N—-w
Now fix >0 arbitrarily. By assertion (b) of Theorem 5.2, we find for

each u(-)e Fn" an open neighborhood V of u(-) such that

limsup N~ 'log ZN(V A A)< —5+7.

N—- o

Since Fn.¢" is covered by a finite number of such neighborhoods,
this yields

limsup N~ 'log ZN(FNA) < —s+y. (5.5)

N—-
Combining (5.4) and (5.5), we obtain

limsup N~ 'log Z"V(F) < —s+7.

N-w
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Since y>0 may be chosen arbitrarily small, this yields the desired

result.
To prove assertion (c), fix s=0 and a non-empty compact set K in

M, arbitrarily. Choose r>0 so that K<.#,, By Theorem 5.3,
there exists a compact set ¥ in ¢, such that
limsup N 'log sup 2PMEN\NA)< —s. (5.6)

N-ow ve M ~.MN
We claim that @ (s)<.#". To prove this, we choose f(-)e® .\ A
with (0) e K arbitrarily and show that ji(-) does not belong to ®(s).
We can find measures vye.#, N4 such that vy—(0) in .
Since ji(0)e.4,,,, this follows, for example, from the law of large
numbers for the empirical measures of independent random vectors
with distribution j(0). By assertion (a) of Theorem 5.2,

liminf N~ ' log #N(6 \A') = — S(a(+)). (5.7)

N—

Combining (5.6) with (5.7), we conclude that S(j(-))>s or, what is
the same, fi(-) ¢ @g(s). Thus Og(s)=.#". We have therefore shown that
@(s) is relatively compact.

Given u(-)e%, and feC?!, define

I(u(); ) =<u(T), f(T)) —<u(0), £(0))

T 0
_gf ""m’(aﬁ"‘(“”/”[” IVf(1) Iz)dt

One easily checks that the functions u(-)—I(u(-); f), feC#?, are
sequentially continuous on % . Hence, they are continuous, and the

sets ®OL(s)={p(") €€, I(u(-); /)<s,u(0)e K} are closed. But from
Lemma 4.8 we know that

S(u(D=inf ()
SeCy

Therefore

Di(s)= ] Dks).

srect!

This clearly proves that ®(s) is closed, and we are done. []
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5.3 Some exponential bounds

The purpose of this section is to prove Theorem 5.3. We denote by
C(RY the space of real-valued continuous functions on R? having
compact support and endow it with the supremum norm. We need
the following compactness criterion.

LEMMA 54 Let {f:n=1,2,...} be a countable dense subset of

CuRY. A set A is relatively compact in €, if and only if it is
contained in a set of the form

A =6.n() X, (5.8)

where R >0,

Ay ={u()eC . {ul), fi> €K, (59

and K, are compact subsets of C([0, T]; R).

Proof First of all we remark that a set #" is relatively compact in
%, if and only if it is relatively compact in ¢ and entirely contained
in ¢ for some R>0 (cf. the Appendix of [20]). It will therefore be
enough to show that a set " is relatively compact in € if and only
if it is contained in a set of the form

A=Ay [ A,
n

where
H'y={u(-)e€:u(t)eK', for all 1[0, T]}

and
A= {() e C:u(-), fy €K

Here K, and K, denote compact subsets of .# and C([0, T}; R),
respectively. Since € is metrizable, the last assertion is readily
checked by proving sequentiai compactness instead of compactness.
For details the reader is referred to [20]. [
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LemMA 5.5 For any positive numbers r, R and all N.

sup  PM(E,\Er) <exp(—NRy),

ved n.u™N
where Rp=Rexp(—AT)—r and 4 is taken from Assumption (B.2).

Proof Let op(u(-))=inf{te[0, T]:u(t)¢ .#™}, where, by conven-
tion, inf¢p=o0. Note that oy is a stopping time with respect to the
right-continuous extension of the canonical filtration on ¢ ,. Define

M (u()) =exp(—A(t A ay)){u(t A ay), @) —{u(0), @>

— | exp(—Aw)u(w), (L (p(w) — M) du,
0

1e[0, T], where 4 and ¢ are taken from Assumption (B.2) and 7 A oy
denotes the minimum of ¢t and oy. The stopping time gy ensures that
the expression on the right makes sense for all u(-)e%,. From (5.1)
and (5.2) it follows that, for each N and each ve.#™, M is a
continuous local 2™-martingale with quadratic characteristic

tLAGN

EMP»(u(-)=N"" g exp(—24u){u(u), IVol?) du

(with respect to the right-continuous extension of the canonical
fiitration). Using Assumption (B.2), we obtain for all N and all
ve.l,n MM

N J'
exp(—At){u(t), o> <r+M,— ) &M, 1e[0,T], ZM-as.
Hence, for all N and all ve 4, .4V,

?‘vN’((gm\%F?‘vN’( sup <#(t),¢>>R>

1€[0,T]

NZ
ég"v’v’( sup CXP<NM,— 7<<M>>,> >CXP(NRT))-
te[0.T]
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Since exp[ NM —(N?/2){M»] is a non-negative #'M-supermartingale
(see, for example, [22, Chap. 3, Theorem 5.2]), the assertion now
follows by an application of Doob’s supermartingale inequality. []

LEmMMmA 5.6 For all R>0, s>0, and €% there exists a compact
subset K of C([0, TT; R) such that

g’(vm((gk\ff) <exp(—Ns)

for all N and ail ve 4™, where
A p={u(-)eC:{u), fOeK} (5.10)

Proof Fix R>0, s>0, and je% arbitrarily. Applying the
Markov properiy, we derive for any 9€(0,T/2] and p>0 the

estimate
sup 57“3”( sup l<u(v),f>—<u(u),f>l>ﬂ,u(')6%)

O<u<psT /

v—u<$

ve. #'N

[T/é]1—1
< Y sup 9’9”( sup

T K0 veu™ KOSt<((k+2)) AT

<[u0), £~ utko) 1], u(~)e%)

- sup ?i”’(swKu(t),f>~<u(0),j) >§,u(';éﬁ’n.za>-

ve. #N 1<28

T
<
=0

(5.11)
Here % ,5=C([0,207; .#y); [T/d] denotes the integer part of T/J.
Clearly
sup <, | LW /S| +HVfIP) sk <o
ueJtR

for some constant k. It therefore follows from (5.1) and (5.2) that

N
CUD, f> = (0. £ S+t +ME = 52 &M,
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for all y=0, p(-)e%x. 15 and te[0,25]. Using this, we obtain for all
N and all ve .#"™ the estimate

P ( sup [<ult). > —u0), 5152, 1 ye )

£< 24

—/(N’<bup[Mf—7((Mf>>:,> =2(1+ ,)m)

£<28 /

§exp<~Ny <§ 21 +y)ms>>. (5.12)

In the last step we have dpphed Doob’s inequality to the exponential
#M-martingalc exp[NyM” ~(N“,‘/7)<< M7ST (ef. [_,, Chap. 3,
Thcorem 5.3]). Minimizing the ex 'p ession on the right of (5.12) wiih
respect to 20, we get for p > 4i

//“”(sup [<utr), 5~ <p(0), /> >" ’/‘ ek, “)

t<24 /
(p—4x5)?
< -N—"). 5.13
_CXP( N s (5.13)

P (SLP L), f5> Ll fH1> 8) U )EC 15
\\x< 29 2 }
(p— 4K(5)2\ _
=< ( —N 5.14
Py 326 14
Combining (5.11) with (5.13) and (5.14), we finally find that
sup ff’i”’( sup <o), f> — lu), f5]>p, u(')e%’u>
ve qa™ O<u<p=T /
v—u<g
2T {p —4K0)*
< N 5.15
=5 ex"( 320 (13

for all 6€(0, T/2] and p > 4k¥.
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Let (8,) and (p,) be arbitrary null sequences satisfying &,€(0, T/2]
and p,>4xd, for all n. By the Arzela~Ascoli theorem, the set

(
K={0f=swp LA swp st 5o}

v-u<o
n

is compact in C([0, T]; R). Define 7, by (5.10). Then (5.15) yields

, 2T (p,—4xd )Z>
sup PG A\A )L exp| — N —~"——7"— 1. 5.16
ve,/t{?'v’ (€r\ f)_; 3 P( 33w, (5.16)

n

To finish the proof, let us assume without loss of generality that s> 1
and k>7T ! It then suffices to choose the null sequences (J,) and
{p,) in such a way that, for each N, the sum on the right of (5.16)
does not exceed exp(— Ns). To sce that such a choice is possible, we

pick

1/2
n .

r _,
5=?n" and p,=10Tks"?n"

Then 0,e(0, T/2} and p,> 4kd, for all N. Moreover, we get for all N:

© T [ (p—4n5)2\ = .
—~ N2 1< Y dn?exp(—4Nsn)
( 32k, )< ¥ 4n*exp(—dNsn)

&0,

exp(—2Ns) e ®
—2Nsn)= < —N
: exp( sn) exp(_2N9 51 ~e_sexp( 5)

=

n

[~e

Zexp(—Ns).

This completes the proof of Lemma 5.6. [

Now, combining the Lemmas 5.4-5.6, we are at last in a position
to prove Theorem 5.3.

Proof of Theorem 5.3 Let us fix arbitrary positive numbers r and
s and let {fi;n=1,2,...} be a countable dense subset of . For %
we put the compact set .#" defined by (5.8) and (5.9), where R and



302 D. A. DAWSON AND J. GARTNER

K, will be specified in the course of the proof. Then we get

sup  2M(E,N\A)

ve M ~ MM
< sup PVEN\GQ+ Y sup AVGA).  (517)
ve M ~.MN n=1y¢ g™

We choose R so large that

sup  PM(%,\g) <exp(—Ns) (5.18)

ved .MM

for all N. This is possible because of Lemma 5.5. By Lemma 5.6, we
can choose for each n the compact set K,=C([0, T]; R) so “large”

that
sup PM(E\A,) <exp(—nNs) (5.19)

ve gV

for all n and N, where ¢, is defined by (5.9). Combining (5.17) with
(5.18), we arrive at the desired result. [J

5.4 Proof of the local result

The present section is devoted to the proof of Theorem 5.2. Locally,
along a fixed path a(-)e%,, the empirical proccss of our system of
weakly interacting diffusions may be regarded as a small pertur-
bation of the empirical process for independent diffusions with the
same diffusion matrix a@(x,t)=a(x) and the drift vector b(x,t)=
b(x; a(t)) which is “frozen” along j(:). This observation allows
us to reduce the proof of Theorem 5.2 essentially to an application
of Theorem 4.5 and an estimation of the deviation of the perturbed
process from the unperturbed one. The deviation can be measured
with the help of the Cameron—Martin—Girsanov formula. That it is
small in a narrow vicinity of j(-) will be shown to follow from
Assumption (B.4).
Fix j(-)e¥,, arbitrarily and define

N
g:N)f(Xp s Xy) =kgl L) f (x5 .., Xp),
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where the index k in Z{ji(t)) indicates that this operator acts on the
variable x,. It follows from Assumptions (B.1) and (B.3) that the
martingalc problem for {Z™;e[0, T]} is well posed for each N. This
can be shown in the same way as it has been done for #* in
Section 5.1. Let {P™;(x,s)e(RY)¥ x [0, T]} be the associated family

of probability laws on C([0, TJ; (R)Y)=C([0, T]; RY™. It is not hard
to check that

PR=P, @ ®P,

for all N,x=(x,,..., xy)e(RY)", and se[0, T], where P, ;= P) is the
solution of the martingale problem for {Z(a(t));te[0, T]}. Let
(PN (v, s)e MY x [0, T]} denote the family of probability laws on
‘6 of the empirical process &,.; induced by the measures 2!, Clearly
Theorem 4.5 is applicable to the measures 2V =2N).

The operators ™ and Z™ coincide up to different drift vectors,
and the associated martingale problems are well-posed. This implies
that, for each N and xe(R%", the measure P is absolutely
continuous with respect to P{=P®"). In the Riemannian metric
induced by the joint diffusion matrlx the squared dlstance between
the drift vectors of ™ and Z®™ at point (x,t)e(R)¥ x [0, T]
equals N<e,|b(:;&) —b(-; a(t))]*>. Hence the Cameron-Martin—
Girsanov formula yields for the Radon-Nikodym deri\{ative

dp® ‘
TFm=exp(MP MOy (5.20)

M™ is a continuous local PM-martingale with M{"=0. Its

where M
quadratic characteristic does not depend on x and has the form

MM (x(-))

~

= N [ o 1B Ex) — b3 AW du (5.21)

[

In the case of bounded drift and diffusion coefficients, these asser-
tions can be found, e.g. in [29, Section 6.4]. The case of unbounded
coefficients can be reduced to the previous one by spatial localiza-
tion, using the second part of Theorem 10.1.1 in [29].
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We now have all the ingredients necessary for the proof of
Theorem 5.2. Given vye.#'™, suppose that vy—a(0) in .#_. Pick
xy € (RH" so that ¢, =vy. Fix 7>0 arbitrarily. -

We first prove assertion (a). To this end, we assume without loss
of generality that S(j(-)) <oc and consider an arbitrary open neigh-
borhood V of ji(:). By the definition of the measures 2%, it is

certainly enough to show that
liminf N~ 'log PN(e,, € V) Z —S(a(-)) —v. (5.22)

N—-owo

Assumption (B.3) guarantees that Lemma 5.5 is applicable to 2%

instead of 2™ with A replaced by A. Consequently, there exists some
R >0 such that ji(-)e%y and

limsup N~ ' log P{) ey € €r) < —S(a('))~7. (5.23)

N—ox
We next choose p,g>1 with p" 144 !=1 and §>>0 so that

1

2<1 +g>5+ps(ﬁ(-))§5(ﬁ('))+v. (5.24)

Because of Assumption (B.4) and (5.21) there exists a neighborhood
W of ji(-) in 4 such that WnézsV and {M™P»,.<NS on
{e. € W€y} Thus, applying (5.20) and Hdlder’s inequality, we
obtain for all N:

N N 2
Pey € V) Z PN (e e W N Ep)

= Eff:’ exp(M(II‘V)‘"%«M(M»T”“”.@ WGyt

1
gexp(— -(l +g>5N>
2\ p

x E)exp (M(TN) +% <<M(N)>>T)ﬂ¢ex(_)e W A€}

i
;exp(—~(l+g>5N)
2\ »p
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; ~piq
b% ELN:) exp{ — 4 JW(TM' 1<<g AI‘N>7 >]
" p 2\ /7]

x [PM(e, ., e W Eg)]°.

Here EX denotes expectation with respect to P{™. Since

ol ()

is a P{\-supermartingale with expectation not exceeding one ([22,
Chap. 3, Theorem 5.2]), we arrive at

PN, eV)
O

!

>exp<_z<|+q\fw\ PM(ey, e WA €R)]". (5.25)

Now (%, P{M, N} is a large deviation system by Theorem 4.5. The
value of the corresponding action functional at () equals S(i(-)).
From this and the definition of Z¥ we conclude that

coar—1

iiminf N ™" log P ey e W
N-x i

S|
>
v
=Y
-~

— S (5.26)

Combining (5.25) with (5.26) and (5.23) and taking into account

(5.24), we finally arrive at (5.22).

We now turn to the proof of assertion {b). Because of Lemma 5.5
and the definition of the measures 2, it suffices to show that, for
each R for which ji(-)% there exists an open neighborhood W of

4(+) in € such that

limsup N~ 'log PN (e,., € W n6p) < — S(I(-)) +7- (5.27)

N—-x

To this end, we pick p,¢>1 with p ' +4 " '=1 and 6 >0 so that

—1 1
—%5+—(5(ﬂ('))~ L)%ﬂﬂ('))—w- (5.28)
q 2
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We choose W so “small” that

KM, <N on {e,,e WGy} (5.29)

for all N and
. . 5 "o PPN 4 oA
limsup N~ 'log PNV(s,.,e W) < *S(,u(‘))+§. (5.30)

N—-w

Inequality (5.29) can be achieved for “small” neighborhoods W of
fi(-) because of Assumption (B.4) and (5.21). That assertion (5.30)
holds for “small” W follows from the definition of the measures 2",
the fact that (%,2%),N) is a large deviation system, and the
observation that the value of the corresponding action functional at
f(-) equals S(u(+)). Applying (5.20), (5.29). and Holder’s inequality,

we obtain for all N:

Py:)(gx(-) eEWner) = ES(},:} exp(MY —3KM™ 1)

x ﬂ{cx(.,eWﬂ’KR}

—1 _
<exp (7 Lon ) B exp (hay9 - oy, )
\ < Vi \ 2 )/

By () EW N E R}

.
/

—1 A
= = O E exp(pM§ —5(pM™5 "

X [Pfx’(&x(-) € W)]”q-

Since exp(pM® —3KpM™» 1) is a P{-supermartingale with expec-
tation not exceeding one, we arrive at

p—1 _
Pg:)(gx(-) eWn %R) =exp (T 6N) [PS(I:)(SX(') € W)] .

A combination of this estimate with (5.30) and (5.28) finally yields

(5.27).
The proof of Theorem 5.2 is now complete.
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