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Preface

In this thesis we give a new approach to the classical problems of finite and infinite
packings and lattice packings of convex bodies. This approach is based on the
introduction of parameterized densities §,(K,C), p € R>?. The parameterized
density of a finite packing set C' of a convex body K with respect to the parameter
p is defined by

#(C)V(K)
V(conv(C) + pK)’

where V'(-) denotes the volume and #(C') denotes the cardinality of the packing
set C'. In particular for p = 1 we obtain a measure for the quality of finite
packings, that is equivalent to the “densities” used by Rogers, Groemer, Oler
and L. Fejes Toth.

For a given convex body K, p € R>%, and an integer n we are asking for
a packing set C' of cardinality n, that has a maximal parameterized density
d,(K,C). Moreover we are interested in the asymptotic behavior of these max-
imal parameterized densities 0,(K,n) with respect to n, i.e. we study 6,(K) =
limsup,,_,, 0,(/,n). The “density” 6,(/) may be regarded as a “limit density”
of finite packings of K with respect to the parameter p.

For large values of p it turns out that the limit density 0,(K) is equal to
d(K), the density of a densest infinite packing. So the parameterized densities
build a bridge between the finite and infinite packing problem. The least upper
bound of the set of parameters p with ¢,(K) = §(K) plays a special role in our
investigation and is called critical parameter p.(K).

In order to characterize 0,(K) for small parameters p, we transfer the notion
of “sausage” packing sets, introduced by L. Fejes T6th for finite packings of
balls, to arbitrary convex bodies. A packing set S, (K) is called a densest sausage
configuration of K with cardinality n, if the volume of the convex hull of S, (K)+
K is minimal among all packing sets C' of cardinality n and dim(C') = 1. The limit
05(K) = limy, o0 0,(K, Sp(K)) may be considered as the parameterized density
of a densest “infinite” sausage configuration of K. If p is sufficiently small then
6,(K) is equal to §5(K). In this case we are interested in the greatest lower bound
of the set of parameters p with §,(K) = 6;(K). This value of p is called sausage
parameter and is denoted by ps(K).

For the d-dimensional unit ball B¢ the determination of p,(B?) is closely re-
lated to the “sausage conjecture” of L. Fejes Téth. The conjecture says, that

I,(K,C) =




for d > 5 the density of a densest packing of n balls with respect to the param-
eter p = 1 is given by the density of a sausage configuration, i.e. 6,(B% n) =
61(B%, S, (B%). A sausage parameter ps(B?) > 1 implies that the sausage con-
jecture is true for sufficiently large n in that dimension.

With respect to the functionals and problems mentioned above, the thesis is
subdivided as follows:

Chapter 1 gives a short introduction in the theory of finite and infinite pack-
ings of convex bodies, where the last section deals in detail with the problem of
finite packings of balls.

In chapter 2 (joint work with Ulrich Betke and Jérg M. Wills) we introduce
the parameterized densities, the critical parameter and the sausage parameter.
Furthermore, in the first section we state some basic properties of these densities
and parameters, which also show the close connection to the density of a densest
infinite packing. Section 2 deals with 2-dimensional packing problems. We give
a description of the critical and sausage parameter by other functionals, which
leads to best possible estimates of these parameters. In section 3 and 4 we give
bounds for the critical and sausage parameter of arbitrary d-dimensional convex
bodies.

Chapter 3 (joint work with Ulrich Betke and Jorg M. Wills) is devoted to
“sausages”. In the first part we consider finite packings of balls. We show that for
every parameter p < /2 there exists a dimension dy(p) such that for d > dy(p) the
maximal parameterized density d,(B? n) is attained by a sausage configuration.
In the second part we prove a generalization of this result to centrally symmetric
convex bodies.

In chapter 4 we show that the sausage conjecture of L. Fejes Té6th is true in
dimensions d > 45.

In chapter 5 we investigate finite and infinite lattice packings. The necessary
definitions are given in section 1, where by analogy with the general case, we
introduce a critical lattice parameter and a sausage lattice parameter. Results of
chapters 1 up to 4 concerning 2-dimensional packings, sausage configurations and
sausage parameter can easily be adjusted to the “lattice case”. In order to obtain
an estimate for the critical lattice parameter, in section 2 we study a problem
from the geometry of numbers related to lattice refinements.

At this place I want to thank Jorg M. Wills and Ulrich Betke for all the support
and encouragement they have given me. The stimulating atmosphere that I have
enjoyed at the “Lehrstuhl Wills” since finishing my studies in November 1988 til
July 1994 has a great part in the setting of this work. In particular, I have to

thank them for their permission to use results from joint papers here (cf. chapter
2 and 3).
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Vorwort

In der vorliegenden Arbeit beschreiben wir einen neuen Zugang zu den klassischen
Problemen endlicher und unendlicher Packungen und Gitterpackungen konvexer
Korper. Dieser neue Ansatz beruht auf der Einfithrung von parameterisierten
Dichten §,(K,C), p € R”". Die parameterisierte Dichte einer endlichen Pack-
ungsmenge C' eines konvexen Korpers K beziiglich dem Parameter p ist definiert
durch
#(C)V(K)
V(conv(C) + pK)

Dabei bezeichnet V (-) das Volumen und #(C) die Méchtigkeit der Menge C. Als
Spezialfall erhalt man fiir p = 1 ein Maf fiir die Giite einer endlichen Packung,
das zu den von Rogers, Groemer, Oler und L. Fejes T6th verwendeten “Dichten”
aquivalent ist.

Fiir einen gegebenen konvexen Korper K, p € R”%, und eine natiirliche Zahl
n fragen wir nach einer Packungsmenge C' mit Machtigkeit n, welche die max-
imale parameterisierte Dichte d,(K, C) ergibt. Desweiteren untersuchen wir die
asymptotische Entwicklung dieser maximalen parameterisierten Dichten 6,(K,n)
bzgl. n, d.h. wir betrachten die GroBe 0,(K) = limsup,,_,, 6,(K, n). Die “Dichte”
d,(K) kann aufgefafit werden als “Grenzdichte” endlicher Packungen von K
bzgl. dem Parameter p.

Es stellt sich nun heraus, da8 fiir groe Werte von p die Grenzdichte 6,(K)
gleich §(K), der Dichte einer dichtesten unendlichen Packung von K, ist. In
diesem Sinne bilden die parameterisierten Dichten eine Briicke zwischen dem
endlichen und unendlichen Packungsproblem. Die kleinste obere Schranke der
Menge der Parameter p mit der Eigenschaft 6,(K) = §(K) ist von besonderem
Interesse und heifit kritischer Parameter p.(K).

Um das Verhalten von §,(K) fiir kleine Werte von p zu beschreiben, iibertra-
gen wir den von L. Fejes Téth fiir endliche Kugelpackungen gepragten Begriff
der “wurstformigen” Packungsmengen auf beliebige konvexe Korper. Dabei ver-
stehen wir unter einer dichtesten wurstformigen Konfiguration von K der Méch-
tigkeit n eine Packungsmenge S,,(K) mit der Eigenschaft, dafi das Volumen der
konvexen Hiille von S, (K) + K minimal ist, bzgl. aller Packungsmengen C' der
Michtigkeit n mit dim(C) = 1. Der Grenzwert 5(K) = lim, . 6,(K, Sp(K))
kann als parameterisierte “Dichte” einer dichtesten “unendlichen” wurstformigen
Konfiguration von K aufgefalt werden. Ist p hinreichend klein gewahlt, so ergibt

5P(K7 O) -
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sich, daf3 §,(K) gleich ¢5(K) ist. In diesem Falle ist die gréBte untere Schranke
der Menge der Parameter p mit 0,(K) = d;(K) von besonderer Bedeutung und
wird Wurst-Parameter ps(K’) genannt.

Im Falle der d-dimensionalen Einheitskugel B? ist das Problem der Bestim-
mung von p,(B?) eng mit der Wurstvermutung von L. Fejes Téth verbunden,
die behauptet, da fiir d > 5 die dichteste endliche Packung von n Kugeln,
bzgl. der Dichte §,(B%, C), von einer wurstférmigen Packungsmenge erzeugt wird,
d.h. §;(B% n) = 6,(B%, S,(B%)). Gilt in einer Dimension p,(B?) > 1, so impliziert
dies, dal die Wurstvermutung fiir hinreichend grofie n in dieser Dimension richtig
ist.

Beziiglich der hier beschriebenen Funktionale und Problematiken untergliedert
sich die Arbeit wie folgt:

Kapitel 1 bietet eine kurze Einfiihrung in die Theorie der endlichen und un-
endlichen Packungen konvexer Korper, dabei wird im letzten Abschnitt detailliert
auf das Problem der endlichen Kugelpackungen eingegangen.

In Kapitel 2 (gemeinsame Arbeit mit Ulrich Betke und Jorg M. Wills) fithren
wir die parameterisierten Dichten ein, sowie den kritischen Parameter und Wurst-
Parameter. Zudem zeigen wir im ersten Abschnitt ein paar grundlegende Eigen-
schaften dieser Dichten und Parameter, die auch den engen Zusammenhang zu
der Dichte einer dichtesten unendlichen Packung aufzeigen. Im zweiten Abschnitt
behandeln wir 2-dimensionale Packungsprobleme. Insbesondere beschreiben wir
dort den Wurst- und kritischen Parameter durch andere Funktionale und erhalten
so bestmogliche Abschatzungen fiir diese Parameter. In Abschnitt 3 und 4 geben
wir Schranken fiir den kritischen Parameter und Wurst-Parameter beliebiger d-
dimensionaler konvexer Korper an.

Kapitel 3 (gemeinsame Arbeit mit Ulrich Betke und Jorg M. Wills) befafit
sich mit “Wiirsten”. Im ersten Teil betrachten wir endliche Kugelpackungen.
Wir zeigen, daf fiir jeden Parameterwert p < v/2 eine Dimension dy(p) existiert,
so daf fiir d > do(p) die maximale parameterisierte Dichte d,(B% n) durch eine
wurstformige Konfiguration erzielt wird. Im zweiten Teil beweisen wir eine Verall-
gemeinerung dieses Resultats auf beliebige zentral-symmetrische konvexe Korper.

In Kapitel 4 zeigen wir, dafl die Wurstvermutung von L. Fejes T6th in Di-
mensionen d > 45 richtig ist.

In Kapitel 5 untersuchen wir endliche und unendliche Gitterpackungen. Die
notwendigen Definitionen werden im ersten Abschnitt gegeben, und dort fiihren
wir auch, analog zu dem allgemeinen Fall, einen Wurst-Gitterparameter und
einen kritischen Gitterparameter ein. Resultate aus den Kapiteln 1 bis 4 bzgl. 2-
dimensionalen Packungen, wurstformigen Konfigurationen und Wurst-Parameter
lassen sich sofort auf den “Gitterfall” iibertragen. Um eine Abschétzung fiir den
kritischen Gitterparameter zu erhalten, untersuchen wir im zweiten Abschnitt ein
Problem aus dem Bereich der Geometrie der Zahlen, welches sich mit Gitterver-
feinerungen beschaftigt.
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1. Introduction

In this thesis we study a new concept for finite and infinite packings of convex
bodies. This concept was introduced by BETKE, HENK & WILLs [BHW94a] and
our aim is to demonstrate its power.

We only consider packings given by translates of a convex body, but instead
of repeatedly talking about packings of translates we simply say packings. In
this introduction we give a brief survey about classical results related to finite
and infinite packings. For more information we refer to [CS93], [EGHS&9], [Fej83],
[FK93|, [Gru93], [GL87], [GW93], [Rog64].

1.1 Infinite packings

From an intuitive point of view the infinite packing problem for a convex body K
with non-empty interior in the d-dimensional Euclidean space E? is the following
task:

Infinite packings. Find an arrangement of non-overlapping translates of K
such that the space (E?) is covered by this arrangement as good as possible.

In a mathematical sense this is not a well-defined problem, because we need
a measure, that indicates how good (dense) the covering of the space by a given
arrangement is. An obvious way to introduce such a measure is to approximate
the space by a “large” cube and to consider the ratio of the volumes of the
translates of K lying in the cube to the volume of the cube. To make this more
precise let the sum S+ T of two subsets S, T C E¢ be defined by S+T = {s+1 :
s€ S,te T} and for « € Rlet aS = {as: s € S}. Let K¢ denote the set of all
convex bodies — compact convex sets — with non-empty interior (int(K) # )
in £ and for K € K? define

P(K)={C C E®: (' +int(K)) N (27 +int(K)) =0, 2',27 € O, 2" # 27}.

C € P(K) is called a packing set or (packing) configuration of K and C' + K is
called a packing or (packing) arrangement of K. Thus {C+ K : C € P(K)} is the
set of all possible arrangements of non-overlapping translates of K. Further, for
a subset P C Elet V(P) denote the volume (Lebesgue measure) with respect to

1



2 CHAPTER 1. INTRODUCTION

the affine hull of P and for A € R>? let W{ denote the d-dimensional cube with
center 0 and edge length 2)\. With this notation we can define an appropriate
measure as follows:

Definition 1.1.1 Let K € K¢ and C € P(K).

1
0(K,C) =lims
(K, €) = limsup 7

> VIK)

s+ KCWi, zeC
15 called the density of the packing set C' and
d(K) =sup{d(K,C): C e P(K)}

is called the density of a densest packing of K.

The density of a packing set C'is invariant with respect to translations of K or C|
but it depends on the body chosen to approximate the space, i.e. if we replace in
the definition the cube by another convex body we may obtain a different measure.
On the other hand it turns out that §(K) is independent of the “approximation
body”. This was pointed out by GROEMER [Gro63|, who moreover showed that
there exists a C' € P(K) with

§(K) = 6(K,C) = lim

1
fm Y V(K). (1.1.1)

s+ KCW¢ zeC

Thus the notation of §(K) as the density of a densest packing is justified and a
packing C'+ K with §(K) = §(K, C) corresponds to the intuitive notion of a best
possible arrangement.

Let us remark that there is also another approach to define the density of a
densest packing: Let K, L € K¢ with 0 € int(L) and for A\ € R>? let n(K, A\L) be
the maximal number of translates of K that can be packed in AL. Here “packed”
means that two different translates have disjoint interiors. Then limy ., n(K, AL)
V(K)/V(AL) exists and does not depend on L. For the sphere this was shown
by RANKIN [Ran47] and in the general case by HLAWKA [Hla49]. GROEMER
[Gro63] proved that this limit is equal to 6(K) and so we have

n(K,\L)V (K)

§(K) = lim (1.1.2)

Besides general infinite packings we are also interested in a more restricted type,
lattice packings, which plays a central role in the theory of packings. For K € K¢

let
P*(K)={A € P(K) : A is a lattice }
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be the set of all packing lattices in P(K). Here a packing lattice for K € K¢ is a
discrete subgroup A of E? generated by d linearly independent vectors such that
A € P(K) (cf. [Gru93]). Now the infinite lattice packing problem is the task:

Infinite lattice packings. Find a lattice A € P*(K) such that the space (E?)
s covered by A+ K as good as possible.

A + K is called a lattice packing of K. Analogously to definition 1.1.1 we
define:

Definition 1.1.2 Let K € K¢, Then
0 (K) =sup{d(K,A): A € P*(K)}

1s called the density of a densest lattice packing of K.

Hrawka [Hla49] proved that limy ... (1/V (W{)) Yarkcwd zen V(K) exists for
all K € K4 A € P*(K), and can be expressed as follows (see also [Min05],
[Rog64]):

_ V(K)
~ det(A)’
where det(A) denotes the determinant of the lattice. Thus the determination of
d*(K) is equivalent to the determination of inf{det(A) : A € P*(K)}. Now for

a convex body this infimum is indeed a minimum (cf. [GL87]) and hence there
exists a A € P*(K) with

(K, A)

(1.1.3)

V(K)
det(A)

5 (K) = 6(K, A) = (1.1.4)

As in the general case the density of a densest lattice packing can also be defined
via filling a convex body by another body. To this end let, similarly to (1.1.2),
n*(K,\L) be the maximal number of translates of K that can be packed in AL,
L € K% X\ € R”?, such that the translates are part of a lattice packing. Then it
was shown by HLAWKA [Hla49] that

5() — tim UCALVE)

fim —=75T (1.1.5)

Obviously we have
0<§(K)<HK) <1,

and the upper bound is clearly best possible. Before we state a general lower
bound for §*(K) (and thus for §(K)) we introduce the class K¢ C K? of all
centrally symmetric convex bodies. A body K € K is called centrally symmetric
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if z € K implies —z € K. For K € K% let DK = (K — K) be the difference
body of K. Then DK € K¢ and it can easily be shown that

CeP(K) <« C(CePDK). (1.1.6)
This relation implies (cf. [Rog64], [Min05]):

V(K)

V(K)
(K) = V(DK)

V(DK)

J(DK), i (K) = 0*(DK). (1.1.7)
Hence the infinite packing problem for asymmetric convex bodies can be reduced
to that for centrally symmetric convex bodies. Further, since

2d/ <2j> < Vv(gi()) <1 (1.1.8)

every lower bound for §*(K) with respect to K € Kg can be extended to a lower
bound for K € K. The right hand side in (1.1.8) is an easy consequence of the
BRUNN-MINKOWSKI theorem [BF34]; the left hand side is due to ROGERS and
SHEPHARD [RS57].

The best known lower bound for 6*(K) is based on the famous MINKOWSKI-
HLAWKA theorem [Hla44], which for K € K¢ gives

S (K) > ¢(d)/247t with ¢(d) = ird. (1.1.9)

There are many refinements of this theorem, the sharpest one due to SCHMIDT
[Sch63], who established the inequality

0*(K) = (c-d) /27,

where ¢ is a suitable absolute constant.

In the plane (d = 2) much more is known than for general dimensions. For
K € K% we have
(K)=46K)=V(K)/V(H(K)), (1.1.10)

where H(K) is an affinely regular hexagon (possibly degenerate) of minimum area
circumscribed to K. This result is a combination of works by L. FEJES TOTH
[Fej50], DOWKER [Dow44] and REINHARDT [Rei34]. On account of (1.1.7) this
identity can be generalized to arbitrary convex bodies in F?:

5" (K) = §(K) = V(K)/V(H(DK)). (1.1.11)

Let us remark that ROGERS [Rogh1] proved §*(K) = §(K) for K € K? indepen-
dently of (1.1.10).
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The most investigated body with respect to §*(K) or 0(K) is, of course, the
d-dimensional Euclidean unit ball B?. This is a very natural problem, but also
motivated by the relationship between 6*(B?) and the minimization of positive
quadratic forms. Up to dimension 8 the values of 6*(B?) are known, but the
determination of (5(Bd) is still open for d > 3. For d = 3 this is the famous
KEPLER problem, see MUDER [Mud93], HsiANG [Hsi93|, HALEs [Hal94] and
HSIANG [Hsi94] for very recent progress and controversy. For a detailed survey
about packings of balls we refer to the book [EGHS89]. In the following we list
some classical upper bounds for §(B¢) (and thus for §*(B9)).

Chronologically, the first upper bound for 6(B?) is due to BLICHFELDT [Bli29]:

2
5(BY < dgz—d/z. (1.1.12)
A slightly better bound was given by ROGERS [Rog64]:
d
(B <oq~ 2" (d— ), (1.1.13)
e

where 04 is the ratio of the volume of that part of a regular d-dimensional simplex
of edge length 2 covered by d + 1 unit balls, centered at the vertices of the
simplex, to the volume of the regular simplex. SIDEL'NIKOV [Sid73], [Sid74] gave
a considerable improvement of BLICHFELDT’s bound:

§(BY) < 270-8096d%old) (g s o), (1.1.14)
A further improvement was given by KABATJANSKII & LEVENSTEIN [KL78]:
§(B?) < 2708%9d+ed) (g s o0). (1.1.15)

Up to now this is the best upper bound. The best lower estimate known for
§*(B%) is due to BALL [Bal92], who proved

§*(B%) > 2(d — 1)¢(d)274. (1.1.16)

Observe that this bound is still of the same order of magnitude as the bound
derived from the MINKOWSKI-HLAWKA theorem (1.1.9), and the gap between
the best upper and lower bound is exponential.

1.2 Finite packings

In view of (1.1.2) a natural way to pose a finite packing problem for a convex
body K € K¢ is as follows: For a body L € K? find the maximal number n(K, L)
of translates of K which can be packed in L.
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If the body L is “large” enough, i.e. the inradius is large compared to the
circumradius of K, then the ratio of n(K, L)V (K) to the volume of L will be
nearly 0(K) (cf. (1.1.2)). For results related to this kind of finite packings we
refer to the articles of GROEMER [Gro63], [Gro85], HLAWKA [Hla49] and for a
discussion of this problem to the survey of GRITZMANN & WiLLS [GW93].

In this thesis we are dealing with another type of finite packings: For a fixed
n € Nand a K € K¢ we are interested in a convex body L of minimal volume
into which n translates of K can be packed. Suppose that we have found such
an L € K% and let ' + K, ..., 2" + K be the translates of K packed in L. Then
necessarily we have L = conv (U, (2" + K)) = conv{a',... 2"} + K, where
conv(S) denotes the convex hull of a set S; instead of conv({z!,... z"}) we
write conv{z!,... x"} for short. Thus in our sense the finite packing problem
for K € K¢ is the following task:

Finite packings. Forn € N find an arrangement of n non-overlapping translates
of K such that the volume of the convex hull of the arrangement is minimal.

Let us remark that it is also interesting to ask for a minimal arrangement
with respect to other functionals (e.g. diameter or surface area) than the volume

(cf. e.g. [KPW84], [Gri84], [B6r92|, [Boro4)).

Before we introduce appropriate densities for finite packings we need one more
piece of notation. For K € K¢ and n € N let

P(K,n) ={C € P(K): #(C) =n},

where #(C') denotes the cardinality of the set C. Then C' € P(K,n) is called a
packing set or (packing) configuration of K with cardinality n and C' + K is called
a packing or (packing) arrangement of K with cardinality n. If the cardinality
of a packing set or a packing is clear from the context we omit the specification
of the cardinality. Clearly {C' + K : C € P(K,n)} is the set of all possible
arrangements of n non-overlapping translates of K.

Now in view of the definition of densities for infinite packings (cf. (1.1.1)) it is
reasonable to define densities for finite packings in the following way (cf. [Fej72],

[Grig4)):

Definition 1.2.1 Letn € N, K € K and C € P(K) with #(C) < cc.

1 __#(C)-V(K)
V(conv(C) + K) 2 V()= V(conv(C) + K)

zeC

(K, C) =

is called the density of the finite packing set C' and
0 (K,n)=sup{d(K,C):C e P(K,n)}

is called the density of a densest finite packing of K with cardinality n.
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The meaning of the index “1” in the notation of d;(+,-) will be explained in the
next chapter, where we show that this finite density is just a special type of a
more general definition of densities.

As a consequence of the theorem of BOLZANO-WEIERSTRASS we may replace
“sup” by “max” in the above definition and thus there exists for every n € N a
C € P(K,n) with

n-V(K)
V(conv(C)+ K)’
Also in the case of finite packings one is interested in packings generated by a
lattice structure. But for clearness’ sake we ignore this special type here. We will
return to this topic in chapter 5.

0 (K,n)=

(1.2.1)

By definitions 1.1.1 and 1.2.1 we have (see also theorem 2.1.1 v)):
d(K) < limsupd; (K, n). (1.2.2)

But in general it does not hold §(K) = limsup,, ., 61(K,n). For example: for
d > 3 let K € K2 be the Cartesian product of a (d — 1)-dimensional unit ball
and a line segment [—u,u| for a certain vector u € E? of unit length. Now for
n € Nlet S,(u, K) = {z',...,2"} with 2° = 2(i — 1) -u, 1 < i < n. Then
Sp(u, K) € P(K,n) and conv(S,(u, K)) + K is a cylinder of radius 1 and length
2n. Hence
V(conv(S,(u, K)) 4+ K) = 2nkq_1 =n - V(K),

where x; denotes the j-dimensional volume of the j-dimensional unit ball. By
definition 1.2.1 we have §;(K,n) < 1 and thus §;(K,n) = 6 (K, Sp(u, K)) = 1.
Hence lim sup,,_,, d1(K,n) = 1. On the other hand for d > 3 the cylinder K can
not be packed such that the whole space is covered and so §(K) < 1 (cf. [Sch61]).

A lower bound for 0, (K, n) was given by GRITZMANN [Gri85]. Together with
the trivial upper bound 1 he obtained for K € K? the estimates:

1 n
- < — < 0(K,n) <1, d>2. 1.2.3
d d(n—l)—|—1_1< 7n)— ) - ( )
Hence optimal finite packings can not be too thin.

To compute the density §; (K, C) for a packing set C' we have to compute the
volume of conv(C') + K. This volume can be written with the mixed volumes
V(conv(C),i, K,d — i) as the following sum (cf. e.g. [BF34], [Sch93]):

d
V(conv(C)+ K) =>_ <4>V(conv(0), i, K,d—1). (1.2.4)
i=0 \"
In our investigations we will often use the mixed volumes and so we write for
abbreviation V;(conv(C), K) instead of V(conv(C),i, K,d — i) . In particular we
have Vy(conv(C), K) = V(conv(C)), Vo(conv(C), K) = V(K) and for i > 1:

Vi(conv(C), K) > 0, with V;(conv(C), K) =0 < dim(conv(C)) <i. (1.2.5)
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Formula (1.2.4) shows that the “size of the boundary of conv(C') with respect to
K7, “measured” by the mixed volumes Vi(conv(C), K),...,Vi_1(conv(C), K),
has an essential influence to the volume of conv(C) + K. Furthermore, this
formula indicates that for finite packings there is not such an elegant way to
obtain results for 6, (K,C) from results for 6;(DK,C) as in the infinite case
(cf. (1.1.7)). In fact it seems there is no way at all.

For the 2-dimensional case there are many results for finite packings of convex
bodies (cf. [Fej72]). Here we state only those which are strongly connected to
“our” finite packing problem. 1951 ROGERS [Rogh1], [Rog60] gave for K € K2,
C € P(K,n) the bound:

V(conv(C)+ K) > V(K) + (n — 1)m, (1.2.6)
which yields
51(K,n) < 5(K)5(K)+”n_1.
Together with (1.2.2) this implies for K € Kg:
limsup 6; (K, n) = §(K). (1.2.7)

n—oo

So for 2-dimensional centrally symmetric convex bodies in the plane the densest
finite densities converge to the density of a densest infinite packing. Recently,
BOROCZKY, JR. (personal communication) showed that this also holds for arbi-
trary plane convex bodies.

Actually ROGERS proved the following result for K € K2

V(conv(C)) + 2V;(conv(C),DK) > (n — 1)‘5/((;(())

For K € K3 this implies (1.2.6) by (1.2.4). A result of a similar type for K € K3
was given by OLER [Ole61] who showed for C' € P(K,n):

V(K) Fyx(conv(C))
d(K) 2

> (n — 1)@ (1.2.8)

V(conv(C)) + (K’

where Fyx (conv(C')) denotes the MINKOWSKI perimeter of conv(C') with respect
to 2K ([Lei79]). In fact, (1.2.8) is an improvement of (1.2.6), since for K € K2
we have (cf. [Ole61])

V(K) Fyx (conv(C))
0(K)

< 2Vi(conv(C), K).
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There are no high dimensional analogs of (1.2.6) and (1.2.8). But as for infi-
nite packings we have some more information for the unit ball. First, in 1960,
GROEMER |[Gro60] proved (1.2.8) for the case K = B%

V(B?) F(conv(C)) > (n— 1)1/(32)
§(B?) 4 -

V(conv(C)) + (1.2.9)

where F(conv(C)) = 2Fyp2(conv(C')) denotes the perimeter of conv(C). All
further results about finite ball packings are closely related to L. FEJES TOTH’s
celebrated sausage conjecture.

1.3 The sausage conjecture

Let S9! be the (d — 1)-dimensional unit sphere and for u € S let S, (u, BY) =
{x',... 2"} € P(B% n) with 2! = 2(i — 1)u, 1 <i <n. So conv(S,(u, B)) + B4
is a cylinder of radius 1 and length 2(n — 1) with two additional half balls at the
ends. Thus (see also (2.1.3)):

V(conv (S, (u, BY)) + B = 2(n — 1)kg_1 + Ka. (1.3.1)

Since V(conv(S,(u, BY)) + BY) does not depend on the direction u we write
S, (B%) for short. In 1975, L. FEJES TOTH [Fej75] baptized the convex hull of
S,(B?) + B¢ a “sausage” — hence we call S,,(B?) a sausage configuration — and
postulated his famous

“Sausage” Conjecture: For d >5,n €N and C € P(B% n)
V (conv(C) + B*) > V(conv(S, (B%)) + BY) (1.3.2)

with equality if and only if C' is a sausage configuration.
The inequality above is equivalent to

nKky

(51(Bd7 Tl) = 51<Bd7 STL(Bd)) - 2(n — 1)fid—1 + Kld.

(1.3.3)

In other words: The sausage conjecture claims that the best possible arrange-
ment of n non-overlapping d-dimensional unit balls, d > 5, is given by a sausage
arrangement S,,(B?) + B

Why d > 57 By the definitions 1.1.1 and 1.2.1 it is easy to see that we can
“construct” a sequence of packings sets C,, € P(B% n) with limsup,, . (B¢,
C,) = 6(B?) (cf. Theorem 2.1.1 v)). Hence a necessary condition for the conjec-
ture is limsup,, . 01(B%, S,(B%)) > 6(B%). Now by (1.3.3) we obtain limsup,, .
61(B%, S, (B%) = kq/(2k4-1) and from ROGERS’ upper bound for §(B%) (1.1.13)
it follows that for d > 5 a large sausage gives a better density than the density of
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ROGERS’ sausage density optimal lattice density

d Upper bound 55 (B%) §*(BY)

2 0.906899 0.785398 0.906899
3 0.779635 0.666666 0.740480
4 0.647817 0.589048 0.616850
5 0.525706 0.533333 0.465257
6 0.419233 0.490873 0.372947
7 0.329863 0.457142 0.295297
8 0.256788 0.429514 0.253699

Table 1.3.1.

a densest infinite ball packing. In table 1.3.1 we list ROGERS’s bounds borrowed
from a table in [Lee67], the values 6{(B¢) = limsup,,_,., 01(B%, S, (B?)), and the
known density of §*(B?) for d = 2,...,8 (cf. [EGHS9)).

There are several results supporting the conjecture. In 1982 BETKE, GRITZ-
MANN & WILLs [BGWS82] proved

v

dim(conv(C)) < 15

d-1) = (1.3.2), (1.3.4)
i.e., a sausage configuration is best possible among all sufficiently “flat” packing

sets C'. For low dimensions even a stronger result holds: BETKE & GRITZMANN
[BG84] showed

dim(conv(C)) <9 and d > dim(conv(C)) +1 = (1.3.2).

Thus for 5 < d < 10 a packing set C' violating the conjecture must be full
dimensional.

KLEINSCHMIDT, PACHNER & WILLS [KPW84] verified (1.3.2) for the case
that C' differs only little from a sausage configuration. A result of a more
general nature is due to GRITZMANN (cf. [Gri84], [Gri86]) who established for
C € P(B% n):

(2 +V2+ ) V(conv(C) 4+ B > V(conv(S,(B%)) + BY),

2
Vd—1
which implies that the sausage conjecture is correct up to a constant factor,
essentially 2+4++4/2. In 1989 G. FEJES TOTH, GRITZMANN & WILLS showed that
a counterexample to the conjecture must be “fat” measured by the relationship

between inradius and circumradius. The gap between this result and (1.3.4) was
partially filled by BOROCZKY, JrR. & HENK (cf. [B6r92], [BH92]) who proved
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(1.3.2) for all packing sets which are not “too fat” and not “too flat” measured
by certain i-dimensional inradii and circumradii.

A first result confirming (1.3.2) without any restriction on C' € P(B%,n) is
due to BETKE, HENK & WILLs [BHWO94a]:

V(conv(C) 4+ B > V(conv(S,(B%)) + B%) for d > 13,387. (1.3.5)

Hence the sausage conjecture is true for all sufficiently large dimensions. In chap-
ter 4 we give a significant improvement of the dimension for which the conjecture
holds (d > 45).

Finally, here are some remarks about the situation in the dimensions 2, 3, 4.
In the plane a sausage arrangement is never best possible for n > 3, cf. WEGNER
[Weg86] for a complete discussion. In dimensions three and four it seems to be
likely that for small n the sausage S, (B?) is best possible and from a certain
number of balls full dimensional packing sets become extremal. For example,
BOROCZKY, JR. [B6r93| proved that for d = 3,n = 4 a sausage configuration is
best possible, whereas GANDINT & WILLS [GW92] calculated that for d = 3,n >
56, suitable “pieces” of the densest packing lattice yield better arrangements than
S,(B%). The same holds for d = 4 and n > 367,300 as pointed out by GANDINI
& Zucco [GZ92]. This phenomenon in dimension 3 and 4 was first mentioned
in [Wil85] and referred to as the sausage catastrophe.



2. A new concept for finite and infinite packings

In this chapter we introduce a family of densities for finite packings which build a
bridge between the finite and infinite packing problem. The necessary definitions
and some basic but important properties will be given in the next section.

These densities were defined by BETKE, HENK & WILLS in [BHW94a] and
section 2.1, 2.2 and 2.3 are part of that paper. Furthermore, section 2.4 is part
of the joint paper [BHW94b].

2.1 Introduction

Definition 2.1.1 Let n € N, K € K% and C € P(K) with #(C) < oo. For
p € RO let

#(C) - V(K)
V(conv(C)+p- K)’

6,(K,n) = sup{d,(K,C):C e P(K,n)},

0,(K) = limsupd,(K,n).

n—oo

For each p > 0, the quotient 0,(K,C) gives a “density measure” for the finite
packing set C, C' € P(K). §,(K,n) is the density of a densest finite packing
of cardinality n with respect to that measure and 6,(K) may be regarded as the
“density” of a densest finite packing as n tends to infinity. Sometimes we will
also refer to 0,(K, C') as the density of the configuration C' with respect to K and
p. Observe that 0,(K,C) and §;(K,n) (p = 1) are the classical finite densities
defined in definition 1.2.1. By the theorem of BOLZANO-WEIERSTRASS we may
write “max” instead of “sup” in the definition of §,(K,n) and thus, for every
n € N, there exists a C' € P(K,n) with

n-V(K)
V(conv(C) + pK)’

8,(K,n) = (2.1.1)

12
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The densities §,(K, C),d,(K,n) and §,(K) are called parameterized densities with
parameter p.

Obviously, 6,(K,C) = 6,(K,z + C) for 2 € E% and therefore, we consider C
and z + C, for z € E¢, as the “same” packing set, i.e., we do not distinguish
between a packing set and its translates. In this sense, S, (B%) and z + S, (B%),
2 € B¢, are the same sausage configurations.

One meaning of the parameter p can be seen from the STEINER polynomial,
which expresses V(conv(C) + pK) as polynomial in p with the mixed volumes
Vi(conv(C'), K) as coefficients (cf. (1.2.4), [Sch93)):

V(conv(C) + pK) = > (f) P Vi(conv(C), K) (2.1.2)

i=0
= V(conv(C)) + p*V (K
+ dp"'Vi(conv(C), K) + - - + dpVy_1(conv(C), K).

Hence p is a weight which controls the influence of the boundary of conv(C')
on V(conv(C) + pK). The following small example illustrates that fact. Let
C € P(B?,7) be the configuration of seven points in the plane sketched in figure
2.1.1, and let S;(B?) be a corresponding sausage configuration. For p = 1 we

have
90
A A
900
ANEYAN

N

PAN

T
T V31247

9000000

2 2\y _ N
5.(B,57(B%) = 57— ~ 0.81

61(B?*,C) ~ 0.86

Figure 2.1.1.
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So in this case the packing set C' yields a better density than S7(B?). Since
the surface area of conv(S;(B?)) (24) is relatively large compared with that of
conv(C') (12) the superiority of C' will even increase when p becomes larger. For
p =2 we get

7T
5(B2,C) = ~ 0.47
2 ) 6V3+2-12+2%. 1

m
0s(B?, S1(B?)) = —————5— ~ 0.36
B 5B = s iy

Figure 2.1.2.

On the other hand, a parameter p < 1 lowers the influence of the boundary
and for a sufficiently small p the sausage configuration is better than C'. Figure
2.1.3 shows this for p = 1/2.

These pictures indicate that for K € K¢ and a large p, the parameterized den-
sity 0,( K, n) attains its maximum for a packing set C' € P (K, n) with dim(C) = d,
whereas for small p a 1-dimensional packing set becomes best possible. In fact,
on account of (2.1.2) a large p gives a strong weight to the mixed volumes with a
small index 7 and thus, in order to maximize §,(K, C), C € P(K,n), it seems to be
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s
S 6V3+(1/2) 124 (1/2)2 7

OCHOHNONONONONO

9 2y 7 N
(B%,5:(B%)) = (1/2) 24+ (1/2)* - = 172

§1(B%C) ~ 1.28

1
2

J

1
2
Figure 2.1.3.

reasonable to choose a full-dimensional C' such that V;(conv(C), K)/V (conv(C))
is small. This implies that conv(C') should have a large inradius and therefore,
we can expect that for a large p the finite densest densities d,(K,n) converge
to the classical density of a densest infinite packing of K as n tends to infinity.
Hence we introduce:

Definition 2.1.2 For K € K% let
p(K) =inf{p e R"?: §,(K) = §(K)}.
pe(K) is called the critical parameter of K.

It is not obvious that there exists a p € R™? with §,(K) = §(K), but with the
usual convention inf ) = oo the critical parameter is well-defined. In section 2.3
we will prove that p.(K) is bounded.

For small p the mixed volumes with a large index i are strongly weighted
by p. In this case it seems to be better to choose a lower-dimensional pack-
ing set C' € P(K,n) than a full-dimensional one, with the extreme case of a
1-dimensional packing set (cf. (1.2.5)).

As we have seen in section 1.3 these 1-dimensional packing sets play a central
role in the theory of finite ball packings and for K = B¢ the densest 1-dimensional
packing sets are called sausage configurations. To introduce sausage configura-
tions for arbitrary convex bodies we need the following notation. For K € K¢ let
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fx : BE* — R2% denote the distance function of K, i.e.,

fr(z) =min{\ € R=?: x € AK}, =z € E"
According to (1.1.6) we have for each packing set C € P(K), K € K%, that
fox(xt —a7) > 2 for 2',27 € C, 2' # 2. Hence the set of all packing sets of
cardinality n can also be described as

P(K,n)={{z',..., 2"} C E?: fpg(a’ —27) > 2,1 <i#j<n}

Analogously to the definition of a sausage configuration for B¢ we define:

Definition 2.1.3 Let K € K% and u € S%1.

1—1

Jox ()

1s called a sausage configuration of K in direction u with cardinality n and
Sp(u, K) 4+ K is called a sausage arrangement.

Sn(u,K):{Z u:lgign}

In other words, a sausage configuration of a body K is a packing set C' € P(K)
with dim(C') = 1 such that two adjacent translates touch each other. Figure 2.1.4
shows a sausage arrangement S, (u, K') + K of four equilateral triangles with the
associated hexagon as difference body.

O/ \/\/\

Figure 2.1.4.

To calculate the density of a sausage configuration with respect to a con-
vex body K and a parameter p we denote by Pt for a subset P C E¢ the
orthogonal complement of the linear hull of P and by (K|Pt) we denote the
orthogonal projection of K onto Pt. Since Vi(conv(S,(u,K)),K) = 2(n —
1) (fox(u)) YV (Kut) (cf. [BF34]), we obtain on account of (2.1.2) and (1.2.5):

V(K|UL> d—1

V(conv(Sy,(u, K)) + pK) =2(n — 1)Wp

+ V(K)p. (2.1.3)
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This is equivalent to

n-V(K)

0p (K, Sn(u, K)) = 2(n — 1)(fox (w) "V (K|ub)p™ ! + V(K)p"

(2.1.4)

We see that in contrast to the unit ball the density of a sausage configuration
of an arbitrary convex body depends on the chosen direction u. Since we are
interested in maximal densities we set

. -1 for(v) . Jox (u)
o) = {o €5 0 = | Tt

By (2.1.4) we have for all p € R”Y and v € U(K):

3,(K, Sp(v,K)) = max 3,(K, Sp(u, K)).
For each v € U(K), the set S, (v, K) may be considered as a densest sausage
configuration of K with cardinality n. In the following let S, (K) be an arbitrary
densest sausage configuration and let ux € U(K) be the direction of S,,(K), i.e.
Sp(K) = Sp(ug, K).
The density of a densest sausage configuration of cardinality “oco” is of special
interest in our investigation, and we define:

Definition 2.1.4 For K € K and p € R™° let

FK) = Jim 6K S,(K)) = p~- L Dg%@ ‘gK).

Finally, by analogy with the critical parameter we define with the usual conven-
tion sup(f)) = —oo:

Definition 2.1.5 For K € K2 let
ps(K) =sup{p € R : §,(K) = 65(K)}.
ps(K) is called the sausage parameter of K.

In section 2.4 we show that the sausage parameter is bounded from below. The
sausage conjecture of L. FEJES TOTH states that &,(B% n) = 6,(B4, S,(B?))
for n € Nand d > 5 (cf. (1.3.3)). By the definition above this would mean
ps(B%) > 1 for d > 5. In chapter 4 we give, for high dimensions, an improvement
of this lower bound.

Next we list some simple properties for the functionals introduced in the
previous definitions.
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Theorem 2.1.1 Letn € N, K € K¢, and C € P(K) with #(C) < oo.

i) 0,(K,C), 0,(K,n), 0,(K) are monotonely decreasing in p.

i) Let A : E? — E% be a non-singular affine transformation. Then
I, (AK,AC) =6,(K,C), §,(AK,n) = J,(K,n), and §,(AK) = 0,(K).

1-d

. p _ n
ii1) mln{ TP d} < dn— 1)t <,(K, S, (K))
< 6,(K,n) <max{p~ 1}.

iv) 0,(K,C), 6,(K,n), §,(K) are continuous in p.

v) There exist packing sets C,, € P(K,n), n € N, such that limsupd,(K, C,)
= §(K) for all p € R™C.

vi) §,(K) > 6(K) for all p € R™O.

Proof.

i) Since V(conv(C) + pK) is monotonely increasing in p (cf. (2.1.2)), the
quotient d,(K, C) is monotonely decreasing in p. Now let py, ps € R”° with
p1 < pg and let Cy,Cy € P(K,n) such that 6, (K,n) = 6,,(K,C;) and
0o (K, n) = 0,,(K,Cy) (cf. (2.1.1)). Then

Opy (I, ) = 6y, (K, C1) 2 6, (K, C2) 2 0y (K, Ca) = 6, (K ).
This also implies d,, (K) > 6,,(K).
ii) Let A : EY — E9 be a non-singular affine map. It is easy to check that
C € P(K,n) & AC € P(AK,n) and §,(K,C) = §,(AK, AC). Hence
dp(K,n) =6,(AK,n) and §,(K) = J,(AK).

iii) By a result of GRITZMANN [Gri85] we have dV (K) > 2V (K |ub)(fpr (u)) ™
for u € S?! and together with (2.1.4)

n
(n—1)dp™ " +p

5,(K.n) = 5,(K, S,(K)) > 2 > min{p'~/d, 5},

If p <1 then conv(C) + pK contains n non-overlapping translates of pK
and thus d,(K, n) < p~¢. Otherwise we know by i) d,(K,n) < 6;(K,n) and
this shows the upper bound.
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Obviously, V (conv(C) + pK) is continuous in p and so is §,(K, C). Again,
let p1, p2 € R70 with p; < pp and let Cy, Cy € P(K,n) such that d,, (K, n) =
3, (K, CY) and 0,,(K,n) = 0,,(K,Cs). Then

V(conv(Cy) + po K) < V(conv(Ch) + po K)

and hence

B nV (K) nV(K)
O (K1) = 0, (K m) = V(conv(Cy) + p1K)  V(conv(Ca) + poK)

1 1
< nViK) (V(ConV(C1) +pK)  V(conv(Cy) +p2K)> |

In view of (2.1.2) this shows that J,(K,n) is LIPSCHITZ continuous. Clearly
this implies that also §,(K) is continuous.

By (1.1.1) there exists an infinite packing set Cy of K with 0(K) =
I(K,Cy). We may assume that C is saturated, i.e. Cy U{z} ¢ P(K)
for z € EN\Cy,. For A € R let C,, be the maximal subset of Cy
with the property C,, + K C W{ and let #(C,,) = ny. Thus §(K) =
limy oo 72V (K)/V(W{). Further let 0 be an interior point of K and let
D(K) denote the diameter of K. With this notation we have conv(C,, ) +
pK C Wi+ pK C Wi+ pD(K)B C (1+ pD(K)/\)W{ or

A
— C K)c Wy
(s5apy) (conv(Con) + o) € 93
which gives §(K) < limsup,_, . 6,(K,Cy,).

For the reverse direction let v(A) be the radius of a maximal d-ball contained
in conv(C,,) and centered at the origin. Since C,, is saturated it follows
Wi by € conv(Cr, ) +D(K)B? C (1+D(K) /v(A))conv(Cy, ), A > D(K).

Hence

A v(A) + D(K)
d
Wye ()\—D(K) ey
and so §(K) > limsup,_, . 6,(K,Cy,).

) (conv(Cy) + pK)

Immediate consequence of v). [ |

Theorem 2.1.2 Let K € K% and 0 < py(K), p.(K) < o00.

ii) 6,(K) = 6(K) for p € [p(K), 0).

iii) ps(K) < pol(K).
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iv) Let n € N and p' > 0 with §,(K,n) = §,(K,S,(K)). Then for 0 <
p < p each C € P(K,n) with §,(K,C) = 0,(K,n) is a densest sausage
configuration.

Proof.

i) Since 0 < p,(K) < oo we have by theorem 2.1.1 iv) that 6, x)(K) =
0y, (1) (K). Let p1 < ps(K). By definition 2.1.1 there exists a sequence
{n;} C N with lim; . d,, (K,n;) = 6, (K). With regard to definition 2.1.5
we may assume 0, (x) (K, n;) < 6, ) (K, Sn,(K)) +0(1) as j — oo. This
is equivalent to (cf. (2.1.2), (2.1.4))

V(Kluk)

2(7’Lj — ].) fDK(U,K)

0 < 3 (4 ieons (G, K ot1),

(2.1.5)
for each packing set C,, € P(K,n;) and j — oo. The mixed volumes are
non-negative and thus the inequality above holds for each p € (0, ps(K)],
which yields

5p1(Ka n;) < 5p1(Ka Snj(K)) +o(1), j— oo

On the other hand we have 6,, (K,n;) > 0,, (K, Sy, (K)). Hence 6, (K) =
5 (K).
P1

ii) Again, since p.(K) is bounded we have d,_ k) (K) = 0(K). Let ps > p.(K).
By theorem 2.1.1 i) and vi) we get §(K ) < 00 (K) < 0oy (K) = 0(K),
which shows d,,(K) = 6(K).

iii) Follows from i) and ii).

iv) Suppose there exists a py < p/ and a C € P(K,n) with 6,,(K,n) =
00 (K, C) and C is not a sausage configuration. Then we may assume
dim(C') > 2. By assumption we have (cf.(2.1.5))

V(K !uK)

2(n —1)——< fDK(UK)

Pt < Z( > conv(C), K)(p')*".
and on account of V5(conv(C'), K) > 0 (cf. (1.2.5)) this inequality yields the
contradiction V' (conv (S, (K)) + poK) < V(conv(C) + po K). [

So if we regard 6,(K) for a fixed K € K% as a function in p then we “know” the
function in the intervals (0, ps(K)] and [p.(K), 00).

Another simple but important property of ps(K) and p.(K) that shows the
close relation between these functionals and the density of a densest infinite
packing is given by:
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Theorem 2.1.3 Let K € K% and 0 < py(K), p.(K) < 0o. Then

.00 () < B(K) < 85,0 ().

Proof. By the definition of §,(K) and p.(K) we have &; ) (K) < dp.(x)(K)
d(K). Further by the definition of p,(K) and theorem 2.1.1 vi) we get §(K)

5ps(K)(K) = ;S(K)(K)'
In the next section we will prove ps(K) = p.(K) for K € K? and by the

theorem above we obtain 6(K) = 67 )(K) = 05 ) (K). But at least for d > 4
no similar result can be expected as the following theorem shows (cf. [Gri84]).

VAN

Theorem 2.1.4 For d > 4 there exists a K € ng with

ps(K) <1< pe(K).

Proof. Let K € K& be the Cartesian product of a regular hexagon H and
B2 Since H generates a tiling of its associated linear 2-dimensional plane we
obtain §;(K) = 1. On the other hand as d > 4, K does not tile £ and thus
dp.(k)(K) = 0(K) < 1, which means p.(K) > 1 by theorem 2.1.2ii). Furthermore,
we have 05(K) < 1 = 6;(K) which shows ps(K) < 1 (cf. theorem 2.1.2 i)). ]

Nevertheless theorem 2.1.3 implies that any upper bound of p.(K) gives a
lower bound for §(K) and any lower bound for p,(K) gives an upper bound of
§(K), provided we know fpr(ux)V(K)/V(K|uz). Namely by definition 2.1.4
we have

1—aJor(ur)V(K)
2V (K |ug)

l—deK(uK>V(K) < 5(K>

(2.1.6)

In general it is hard to determine fpx(ur)V (K)/V(K|ug), but from V(K) <
2V (Kut) (fox(u))™t <dV(K), u € S, (cf. [Gri85]) we obtain the estimate:

Corollary 2.1.1

pe(K)' 15 < 8(K) < po(K)

Ul =

In the special case K = B¢ (2.1.6) becomes:

Corollary 2.1.2

Rd

(pe(BY) 4 < 6(BY) < 4 (py(BY)

2l€d,1 2/€de
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In section 2.3 we prove p.(K) < 2 for K € K¢ and p.(K) < d+1 for arbitrary
convex bodies K € K¢ Further, in section 2.4 we establish a lower bound for

ps(K), K € K% only depending on the dimension. In chapter 3 we show that
for each € > 0 there exists a d(¢) with p,(B?) > /2 — ¢ for all d > d(¢). On

account of these estimates and the inequality /27/(d + 1) < Kq/k4—1 < \/27/d
(cf. [BGWS82]) corollary 2.1.2 yields

\/ﬁz—d < 6(BY < \/Z(\/i — €)™ for d > d(e).

Observe that the lower bound is of the same order as the best known ones
(cf. (1.1.9), (1.1.16)) and the upper bound is asymptotically of the same order
as the classical bounds of BLICHFELDT (1.1.12) and ROGERS (1.1.13). Though
this is much weaker than the best known upper bound for 6(B?) (cf. (1.1.15)) it
shows that the parameterized densities of finite packings are not only of interest
in their own but also give a new approach to the study of infinite packings.

Actually, in chapter 3 we prove that for each p < /2 there exists a d(p)
with 6,(B% n) = 6,(B% S,(B?) for all n € N and d > d(p) and in chapter 4
we give the bound d(1) < 45 which means that the sausage conjecture (1.3.2)
is true in dimensions d > 45. Moreover this result says that in high dimensions
sausage configurations are best possible packing sets even for 1 < p < v/2 and
we conjecture:

Strong Sausage Conjecture: Ford > 1

pS<Bd> = pC(Bd>~

This conjecture would imply the equivalence of the two problems of determination
of §(B%) and p.(B?) (cf. corollary 2.1.2). Clearly for d = 1 the conjecture is trivial,
for d = 2 its validity follows from a result due to GROEMER (see section 2.2) and
with respect to finite lattice packings (see Chapter 5) the conjecture was proved
by BETKE for d = 3 [Bet93].

2.2 The 2-dimensional case

In this section we show p.(K) = ps(K) = §5(K)/6(K) for 2-dimensional convex
bodies. The proof is based on a result of BOROCZKY, JR. and on result about
finite packings of centrally symmetric bodies which in particular generalizes the
results of ROGERS (1.2.6), OLER (1.2.8) and GROEMER (1.2.9) to parameterized
densities. Indeed the general result is an easy consequence of OLER’s result.
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Theorem 2.2.1 Let K € K2, neN, C € P(K,n) and p > 0. Then

V(conv(C) + pK) > (n — 1)‘(?(([[(()) +2 (,0

53 (K)
(K

) Vi(conv(C), K) + p*V(K).

(2.2.1)
Furthermore, 3/4 < §;(K)/6(K) < 1, with §;(K)/6(K) = 1 iff K is a parallelo-
gram, and 6;(K)/0(K) = 3/4 iff K is a affinely reqular non-degenerate hexagon.

Proof.  First we consider the range of y(K) = §;(K)/§(K). By (1.1.10) and
definition 2.1.4 we get v(K) = V(H(K))/(2V (K |ux)/ fx(uxk)). Now the denom-
inator 2V (K |uz)/ fx (ur) is the volume of a minimal circumscribed parallelogram
for K and thus v(K) is the ratio of the minimal volume of a circumscribed affine
regular hexagon (possibly degenerate) to that of a circumscribed parallelogram.
Clearly, v(K) < 1 and equality holds for a parallelogram. On the other hand
v(K) = 1 implies that K is a parallelogram; otherwise two vertices z!, —z! of a
minimal circumscribed parallelogram P(K') are not contained in K and thus we
can find an affinely non-degenerate hexagon H with K ¢ H C P(K).

To show the lower bound we may assume that H(K) is non-degenerate. Let
P(H) be a minimal circumscribed parallelogram of H(K). It is easy to check that
H(K) is a maximal non-degenerate inscribed affinely regular hexagon of P(H)
and from this one gets (cf. [GL87], pp. 244)

1=6(P(H)) = (3/4)V(P(H))/V(H(K)).

Thus v(K) > V(H(K))/V(P(H)) = 3/4 and equality holds if K is a non-
degenerate affinely regular hexagon. Now suppose that v(K) = 3/4 and without
loss of generality we may assume that H(K) is a regular hexagon. Let z!' be
a vertex of H(K) not contained in K and let P;, P» be minimal circumscribed
parallelograms for K, H(K), respectively, with edges parallel to conv{0, z'} and
(conv{0,z'})*. Since V(H(K))/V(P,) = 3/4 we see that V(H(K))/V(P,) >
3/4.

For the proof of inequality (2.2.1) we may assume n > 1. Combination of
(2.1.2) and OLER’s result (1.2.8) yields

V(conv(C) + pK) = V(conv(C)) + 2pVi(conv(C), K) + p*V (K)
(2.2.2)

> -1t 4y <p - ‘(;(([ff)) 451252 f)‘:%f%) Vi(conv(C), K) + p?V (K).

It remains to show V(K)Fyk(conv(C))/(d(K)4Vi(conv(C), K)) < v(K). This
follows immediately from an inequality by OLER (cf. [Ole61] ineq. (6), p.48), but
for completeness’ sake we give a short proof.

Let x!,... 2% denote the vertices of conv(C) such that conv{z’ 2"} is an
edge of conv(C), 1 <i < k, with 25! = 2!. The outward unit normal vector of
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the edge conv{z’, "'} is denoted by v* € S'. Let v’ = (z'—2'1)/|xi—2z'T!| € S,
1 < i < k, where | - | denotes the usual Euclidean norm with associated inner

product (-, -). Finally, we denote by hx : S — R the support function of K, i.e.
hi(u) = max{(z,u) : x € K'}. Then (cf. [BF34], [SY93])

2Vi(conv(C), K) = > |z" — 2" |hy (v). (2.2.3)

i=1
Since K is centrally symmetric we obtain hg(v') = V(K|(u')*)/2, and thus
Fucleonv(C) T, forcle — 2
2Vi(conv(C), K) i1 " — 2™ by (v')
St |2 — e e () fre(ur)
Y |2t — V(K| () ) T V(Klug)
On account of the definitions of 6;(K) and v(K) this shows

V(K)Fok (conv(C))
d(K)4V;(conv(C), K)

(2.2.4)

< 7(K).

Remark. For p = 1 and without the summand Vj(conv(C'), K) the inequality
(2.2.1) becomes ROGERS’ inequality (1.2.6). Furthermore, by (2.2.3) we have
2V (conv(C), B?) = F(conv(C)) and for p = 0, K = B? (2.2.1) is equivalent
to GROEMER’s result (1.2.9). Obviously for p = 0 (2.2.1) is of the same type
as OLER’s result (1.2.8), but if we do not have equality in (2.2.4), then OLER’s
result gives a better lower bound for V' (conv(C)).

Now we can apply theorem 2.2.1 to the densities §,(K,n),d,(K), and obtain:

Theorem 2.2.2 For K € K2 and n € N

i) SlKm) = 6, 8,(K)), 0<p < GG,
it) 0,(K,n) < §(K) (n — +”5(K)p2>, (?(([[(()) < p<oo.
5 (K)

i1) 0,(K) = 65(K) for 0 < p < and 0,(K) = 0(K) else.

o(K)

Proof. Let p=~(K) =6;(K)/d(K) and C € P(K,n). By (2.2.1) we get

Vleonv(C) 49(K) - K) 2 (n = D)+ 1KV ()
= - D)) Ry 4 (KPV () = V(conv (S, (5)) +A(K)K).

01(K)
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S0 0yx) (K, 1) = 0y iy (K, Sp(K)) for each n, and by theorem 2.1.2 iv) this gives i).
For v(K) < p < 00 (2.2.1) yields V (conv(C)+pK) > (n—1)V(K) /§(K)+p*V (K)
and thus we get ii). Obviously, iii) follows from i) and ii). [

From iii) of the above theorem we may deduce:

Corollary 2.2.1 For K € K2 holds

W~ w

SPS(K): :pc<K)<1'

Observe that by theorem 2.2.2 i) and theorem 2.1.2 iv) a densest sausage
configuration of K is the “only” best possible packing set with respect to 6,(K,n)
for 0 < p < 05(K)/0(K). But for p = 6;(K)/6(K) various optimal configurations
are possible as figure 2.2.1 shows for K = B2, §(B?)/§(B?) = v/3/2 and n = 7
(cf. [Gro60], [Weg86]).

7T

5 2 ¢ ~ 0.950312.
v B 0) = 6v/3 + 12v/3/2 + m(v/3/2)?

LOOOOOO

05/2(B?, 57(B%)) = 0.5,,(B*, C).

Figure 2.2.1.

Unfortunately, for arbitrary convex bodies in the plane we do not have a result
of the type of theorem 2.2.1. However, recently BOROCZKY, JR. (personal
communication) showed that for each K € K? the sausage parameter and the
critical parameter are the same. As an immediate consequence we get:
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Corollary 2.2.2 For every K € K? one has

<0 () = p.(0K) = ) = SO~ (DK) = 1) < 1

Proof. By (2.1.6) we have py(K) <
BOROCZKY, JR. gives ps(K) = 05(K)/
it remains to show

S(K)/§(K) < p.(K). So the result of
(K) = p.(K). In view of corollary 2.2.1

51(K) _ 8(DK)
I(K) d(DK) "
Now, since the breadths of the bodies K and DK are equal for each direction
v € S' (cf. [BF34]) we have V(DK |vt) = V(K|vt) for v € S'. Hence a sausage
configuration of DK in direction ug is a densest sausage configuration of DK.

Thus (cf. (1.1.11))

0{(K)6(DK) _ V(DK]u)
0{(DK)O(K) — V(K|ugk)

In the next two sections we state bounds for the critical and sausage parameter
that hold in all dimensions.

2.3 An upper bound for the critical parameter
The main result of this section is:

Theorem 2.3.1 Let K € K and p € R>° such that int(K) Nint(y + K) = ()
holds for all y ¢ pK. Then for each n € N

I,(K,n) < §(K).

Thus for such a p the density of a densest infinite packing is an upper bound
for the density of a finite packing. Hence it follows d,(K) < 6(K’). On account
of theorem 2.1.1 vi) we have 6,(K) = 6(K) for any parameter p as in theorem
2.3.1. This implies that a p with this “non-intersecting” property is an upper
bound for the critical parameter. It is easy to see that for K € K¢ this property
is equivalent to p > 2, whereas for an arbitrary convex body such a p may depend
on the shape of the body. But in this case we obtain a bound only depending on
the dimension.

Corollary 2.3.1
2 . for K € K¢,
<
pe(K) < { d+1: for general K.
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Proof. Let K € K¢, p> 2, and y ¢ pK. Assume int(K) Nint(y + K) # 0. Then
there exist ,z € int(K) with = y + z and thus y € K + (—K) = 2K, which
contradicts the choice of p.

Let K € K% Since §,(K,n) is invariant with respect to translations of K
(theorem 2.1.1 ii)) we may assume K + (—K) C (d+ 1)K (cf. [Rog64]). As above
we obtain int(K) Nint(y + K) =0 for all y ¢ (d+ 1) K. ]

The proof of theorem 2.3.1 is based on the following idea: Suppose that C
is a finite packing set of K with 6,(K,C) > 6(K). Then a packing lattice A
of conv(C) + pK with elementary cell Z is chosen. For every x € Z the lattice
packing L(conv(C) + pK + x) = {(conv(C) + pK +x)+ g : g € A} is superposed
on a densest infinite packing { K +a : a € Cw} with density 0(K). Also all K +a,
a € Cy that meet L((conv(C) + pK) + ) are deleted.

A standard averaging argument with respect to x shows the existence of an
infinite packing of translates of K with density > 6(K), which contradicts the
definition of §(K). Hence 0,(K,C) < §(K). The proof gives a careful analysis of
this idea.

Proof of Theorem 2.3.1.  Assume there exists K € K¢ with 0 € int(K), p € R>®
satisfying the assumption and an integer n with 0,(K,n) > 0(K). Then there is
aC € P(K,n) and an € > 0 with

V(K)
3(K)

V(conv(C) 4+ pK) =n - — €. (2.3.1)

Let A be a packing lattice of conv(C) + pK, i.e., A € P*(conv(C) + pK). We
may assume that conv(C') + pK is contained in a fixed elementary cell Z of A.
From (2.3.1) follows

):1.

(1 _ V(conv(C) + pK)) det(A) nV(K)/6(K
det(A) det(A) + ¢ det(A) + ¢

Multiplication with §(K) yields

=§(K).  (232)

<1 ~ V(conv(C) + pK)) (K) det(A) nV(K)
det(A) det(A) +¢e  det(A) +e

Apparently there is a constant p only depending on Z such that for every A > 0
there is a subset Ly C A such that WAd +ZCLy+Zand L,+27Z C W/{lﬂb.

By the definition of 0(K) (cf. (1.1.1)) for every A > 0 there exists a set
Cinny € P(K,m()\)) such that Cp,n) + K C W{ and

lim m(\)V(K)

Ty )
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Obviously limy_ V(WHM)/V(WA) = 1, so there exists a { > 0 and a set C,,y(
P(K,m(¢)) with Cpye) + K C W¢ such that

()det(A) mQV(K) o oV(EK) _ nV(E)#(L)
det(A) +e V(W) det(A) +¢ ~ V(WL

(2.3.3)

For every x € Z we construct a finite packing C,,) € P(K,n(x)) — for a suitable
n(x) € N - with Cpp) + K C W¢, , in the following way:

Coy ={x+ L+ CU{y € Coe):y & v+ L¢ + (conv(C) + pK)}.

The choice of p guarantees that C,,) is a packing. While it is difficult to deter-
mine the cardinality n(x) of Cy ) for fixed x it is easy to calculate [, n(z)dz.
To this end for every y € Chy) let xy(x) = 1 for y ¢ « + L + (conv(C) + pK)
and x,(z) = 0 else. Then

/xezn(x)dx B /xe <n# Le)+ ZyEC ©) Xy(@ )) du
= ndet(A)#(L¢) +m(¢) (det(A) — V(conv(C) + pK)) .
So there is a z € Z with

V(conv(C) + pK)
) 2 m(@) (1 - VD) 1 irg

or

n(VIK) OV ( ) (1 _ V(COHV(C)+/)K)> L PVE)#(Le)
) .

V(W) V(we,, det(A) V(We, )

From (2.3.2) and (2.3.3) follows

n(z)V(K)

V(Wfﬁm) > §(K).

But this contradicts the definition of 6(K). [

2.4 A lower bound for the sausage parameter

The purpose of this section is to give a lower bound for the sausage parameter
depending on the dimension and the ratio of inradius to circumradius. To this end
we denote for K € K¢ by R(K), r(K) the circumradius and inradius, respectively.
To get a lower bound for the sausage parameter we prove as in the case of the
critical parameter a result about finite packings.
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Theorem 2.4.1 Let K € K% and n € N. Then for p < (1/32)d ' (r(K)/R(K))
Op(K,m) = 6,(K, S (K)).

Thus for p < (1/32)d ' (r(K)/R(K)) and every n € N a densest sausage arrange-
ment is a best possible arrangement. Obviously, this implies:

Corollary 2.4.1 For every K € K% one has

1 r(K)
pS(K) > @d %

Roughly speaking the idea behind the proof of theorem 2.4.1 is the following:
For a given packing set C' = {x',... 2"} we choose [ + 1 affinely independent
points {x!,... 21} of C such that for each point 2 of C' the intersection of
2' + DK with the affine plane L; spanned by z', ..., 2! is “large” and also the
volume of the [-simplex with vertices x!, ..., z/*! is not too “small”. By these two
properties we obtain a lower bound of the volume of conv(C') N L; depending on
n,  and r(K). Substituting this estimate in a well-known inequality concerning
mixed volumes we get

V(conv(C) + pK) > p"'nc(l,r(K), R(K))V (K |v*) + p'V (K),

where ¢(l,7(K), R(K)) is a constant depending on [, 7(K), R(K) and v is a unit
vector in the linear space associated to ;. Comparing the right hand side with
the volume of a sausage arrangement in direction v gives the bound for p and
[ > 2. The case [ = 1 needs some additional considerations.

Proof of theorem 2.4.1. Letn €N, n>1, K € K¢, C = {2!,... 2"} € P(K,n),
p < (1/32)d Y (r(K)/R(K)) and let m = dim(C'). To simplify the notation we
write R instead of R(K). Let zr € E¢ with K C 2z + RB? and let T be the
inradius of DK. Then

7 >r(K). (2.4.1)

The proof now proceeds in four steps:

(1) We construct iteratively from C distances h; and associated subspaces L; as
follows: Without loss of generality let ' = 0 and let the diameter of C be given
by the distance of the points z!, z2. We set hy = |2' —22|/2 and L, = lin{z', 2°},
where lin(S) (or linS) denotes the linear hull of a set S. Since C' € P(DK,n)
we have hy > 7. Suppose we have chosen distances h; and linear spaces L;,
1 <i<m. Let hyy; = max{dist(z*, L;) : 1 < k < n}, where dist(z", L;) denotes
the Euclidean distance of 2% to L;,. We may assume h; | = dist(:z:i“, L;) and we
set L;iy1 = lin(L; U {z"™'}). We continue up to i = m and obtain a monotone
sequence of distances:

2hy > ha > hg > ... > hy > 0.
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For m = 1 we have dim(C) = 1 and thus V(conv(C) + pK) > V(conv(S,(K))
+ pK). Solet m > 1, hypp =0and I € {1,...,m} such that

hy>7/V2 and hy <T/V2.

(2) For1<j<mlet C?=L;Nconv(C). Then dim(C?) = j and we have for
the mixed volumes (cf. [Sch93])

@ IV (conv(C), K) > @ PV K) = oV VIEIL).

Now let v € L; N S !, Since K C zz + RB? we have V(K|vt) < r;_RI™!
V(K|L;) and so

(j) PV (conv(C), K) > p 3V (C9) - V(K|UL)/£;_11R1_j. (2.4.2)

In the last two steps of the proof we consider the cases [ =1 and [ > 1.
(3) Let!=1. From (2.1.2), (2.1.3) and (2.4.2) we get for v € L; N S9~*

V(conv(C) 4+ pK) — V(conv(S,(v, K)) + pK) >
2L (D Vieom(©)) — 2 — V(KR fox(v) >

7=1 \4j

PRV(CR) V(K )5 R+ pt (V(CT) = 2(n = 1)/ fore(v)) V(K [vb).

Since h; < hy < 7/v2 for j > 1, 7B* ¢ DK and (1/fpx(v))B¢N L, C
DK the intersection of 2° + DK with L; contains a line segment of length
2(1 — he/7T)/fox(v), 1 < ¢ < n. Furthermore, since C' is a packing set with
respect to DK (cf. (1.1.6)) any two of these segments have disjoint interiors and

from the definition of L; we get V(C') > 2(n — 1)(1 — he/7T)/ fox(v) and thus
V(C?) > V(conv(Cy U {2?})) > ha(n — 1)1_7h2/F
fok(v)

Now hy /T < 1/\/5 and hence
V(conv(C) + pK) — V(conv(S, (v, K)) + pK) >
pi-22n = 1)V()K!v )b, A-1v2)F-p).

fDK(U T

By the choice of p we obtain V(conv(C') + pK) — V(conv(S, (v, K)) + pK) > 0.

(4) Let [ > 1. The construction of C! implies V/(C') > (2/INII'_, h;. Let Q'
be the box with edge lengths 2h1, 2hs, . .., 2h; circumscribed to C! such that its
facets have distance h; from L; q, 2 < i <. Clearly,

V@) =2 ﬁ hy < 1271V (Ch). (2.4.3)

i=1
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Let 77, 1 < j < n, denote the projection of 2/ onto L; and let v € L; N S%! be
chosen such that fpx(v) = max{fpx(u) : u € L; N S}, Since hyy < 7/v2
the intersection of x° + DK with L; contains an [-dimensional ball of radius
v > 0, say, and center 7', 1 < i < n. Any two of these balls have disjoint
interiors and are contained in a box with the same center as Q' and edge lengths
2(hy +7),2(hy +7),...,2(h; + 7). Thus nky' < [T, (1 +v/h)V(Q") or with
(2.4.3):

L1
2nk; < V(CHI2'-T] < + ) :
i\
By the choice of v we have (1/fpx(v))(BYN L;) € DK and hence v > (1 —
hiy1/7)/ for (v). Together with hy > 1/ fpi(v) we obtain

1 1 2v2 -1
*+h*1_fDK()\/§_1.

Hence
2n

Ok <v(ehHu'- (2\/25—_11) r:l[2 (i + ;) :

Since 7BY C DK we also have v > (72 — h?,,)'/? and on account of h; > 7/v/2,
1 <1 <1, we get

2n 2v2 —
K <VCZZ!2l-< )2\/'“1’
fDK<U> = ( ) \/5 — ( )
2v2 -1
-V Cl l!2(5173)/2 el [ 2VE S .
() T\ A
Now we use this lower bound of V(C!) in formula (2.4.2) and by (2.1.2), (2.1.3),
(2.4.1) and the choice of p we find
V(conv(C) 4+ pK) — V(conv (S, (v, K)) + pK) >
1 -1 _
2(n — )V (K]|v )pdfl (T(}é{)) (Hf;&_ll(l!)12(35l)/2 (2\\//55_—11) L (32d)1l> .

fDK(’U

Let the term in the last brackets be denoted by g(I,d). It remains to show that
g(l,d) >0 for 2 <1 < d. Obviously g(l,d) > ¢(l,1) and it can easily be checked
that ¢(2,2) > 0. So let [ > 3. With (2v2 — 1)/(vV/2 — 1) < 9/2, ki/ki_1 >
(27 /(1+1))"/2 (cf. [BGWS82]) and STIRLING’s formula I! < (I/e)! (27 (1 +1))"/? we

get } .
g(l,d) > g(1,1) > (}&) (le)l - (;f) ) .

From this the assertion follows, since h(l) := (I(I + 1))=Y is monotonely
increasing and the difference in the large brackets is positive for [ = 3. [ |
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Let us remark that the constant factor in the upper bound of ps(K’) can easily
be improved, but clearly this factor has non influence on the asymptotic behavior
of the bound as d tends to infinity.

By JOHN’s theorem [Joh48] we can always achieve by an affine transformation
A that the ratio r(AK)/R(AK) is bounded from below by d~! for K € K?. For
K € K2 one can even achieve r(AK)/R(AK) > d~'/2. Since 6,(K,n) is invariant
under affine mappings we can deduce from theorem 2.4.1:

Corollary 2.4.2 Let n € N.

§,(K,n) = 0,(K,S.(K)), forp<(1/32)d? and K € K*
5,(K,n) = 0,(K,S,(K)), forp<(1/32)d"*?* and K € K{.

The bound of theorem 2.4.1 has the disadvantage that it tends to 0 indepen-
dently of the shape of the body as d tends to infinity. In the next chapter we state
another lower bound for p,(K), K € K2, which depends more on the shape of the
given body. In particular we will prove limg_.o ps(B%) > v/2, but unfortunately
this bound gives by JOHN’s theorem a much worse estimate than in the above
corollary. However, we believe:

Conjecture 2.4.1 There exists a constant ¢ € R>C such that for K € K4

ps(K) = c.



3. Sausages are good packings

In the last section we have seen that sausage configurations yield best possible
finite packings with respect to 0,(K,n) if p is small. In the first section of this
chapter we show that for the d-dimensional unit ball sausages are even best
possible for every p < v/2 provided the dimension is large enough. In particular
this verifies the sausage conjecture in high dimensions.

The second section deals with arbitrary centrally symmetric convex bodies.
We transfer the method of the proof for the ball to symmetric bodies and we
obtain a result similar to theorem 2.4.1. This result has the advantage that it
gives for K = B? the bound mentioned above. But as the proofs are rather
technical we start with the case of a ball, which is easier to visualize.

Section 3.1 is a combination of results from [BHW94a] and [BHW94b|. Section
3.2 is part of [BHWO94a).

3.1 Finite ball packings

The purpose of this section is to prove the following theorem:

Theorem 3.1.1 For every p < /2 ewists a sausage dimension d(p) such that for
d>d(p), n € N and C € P(B%n)

V(conv(C) 4 pB%) > V(conv(S,(B?) + pBY) (3.1.1)
with equality if and only if C' is a sausage configuration.

So for d > d(p) a sausage arrangement is the “only” best possible packing of n
balls with respect to the density 6,(B%, C). In the next chapter we will give an
estimate for d(1). Clearly the theorem implies:

Corollary 3.1.1 liminfy_. ps(BY) > V2.

Before we go into details we give a brief sketch of the underlying ideas. Recall
that for n € N and p > 0 (cf. (2.1.3)):

V(conv(S,(BY) + pB?) = 2(n — Dkg_1p" + kap?,

where k; denotes the j-dimensional volume of the j-dimensional unit ball.

33
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In order to prove inequality (3.1.1) we use a local approach, i.e., for a packing
set C = {z',..., 2"} we consider the associated DIRICHLET-VORONOT cells (DV-
cells, for short) H(C), 1 <i < n, given by

H(C) = {zcE: |z -2 |<|r—27,1<j<n} (3.1.2)
= {2 € B : 2,27 —2) < |27 —|2'*, 1 < j < n}

and the parts of conv(C) + pB? belonging to H'(C):
D,(H'(C)) = H(C) N (conv(C) + pB?). (3.1.3)

Obviously we have

V(conv(C) + pBY = 3 V(D,(H'(C))).

=1

For a sausage configuration we have D,(H'(S,(B%))) = 2kq_1p* 1, i=2,...,n—
1, and D,(H(S,(B%)) = D,(H"(S,(B%) = ka—1p?"" + kap?/2. Thus it suffices
to prove

2kq_1p?1 :for n — 2 sets
Kd—1 pd_1 + /fdpd /2 : for the remaining 2 sets.

V(D,(H'(0))) = { (3.1.4)

Figure 3.1.1 shows the sets H* = H'(C') and the associated sets D" = D;(H"(C'))
for a “hexagonal” and a sausage configuration of seven points.

The basic idea for the proof of (3.1.4) is to measure the local deviation of
C from a sausage configuration “in” the DV-cell H{(C) by a certain angle ¢'.
This angle gives information about the situation in the DV-cell and with help of
this angle we divide the set D,(H*(C')) in a sausage part and a part which is the
Cartesian product of a 2-dimensional set and essentially a (d —2)-ball of radius p.

The sausage part is of size k41 pd_1(2 — constlgbi) and the other part is of size
constokg_op?2¢', where const; and const, are constants independent of d. Now
(3.1.4) follows from Kyq_o/kq—1 — 00 as d — oo.

In the following we state several lemmas which give estimates for the volume
of D,(H'(C)) with respect to ¢'. To this end let C' = {z!,...,2"} € P(B% n),
n > 1, be an arbitrary but fixed arrangement. To avoid getting too many indices
we restrict our study to a fixed DV-cell, say H = H"(C), with associated set
D, = D,(H"(C)). Furthermore, we may assume z" = 0. For this DV-cell we
now define the angle ¢ = ¢™ and some additional tools.

Definition 3.1.1 Let y/ = 27/|27], 1 <j<n-—1, and

¢ = max{arccos(|(y*,y")]) : 1 < k, 1 <n—1},
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H™ . H® . H® . HY . HgH? . H3 . H*?
D’ DS Db D! D? D3 D*
Figure 3.1.1.

where arccos(+) is chosen in [0,7/2]. Let y'*, 4y’ be defined by
¢ if o >7/3 or (y*, l>>0f07’1<k:l<n—1
arccos(| (y”*, y7%)]) = | max {arccos([(y*, y")]) : (¥*,y') <0} : otherwise.

Further let L = lin{y’*,y2} and U(¢) = conv{0, 2y, 2y72} N B4,

After renumbering, if necessary, we may assume y' = 3/t and 3% = y’2. Such a
pair %, y?> may not be uniquely determined, but in any case the definition of ¢
and of y!,y? gives us the information:
(", 9] > cos(¢), 1<k, l<n-—1, and
(W' %) = cos(¢), ifp>m/3or (y*,y") >0, 1<k il<n-—1, (3.1.5)
< Y2y € [—cos(¢/2), —cos(¢)], otherwise.
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For the lower bound in the last statement we have only to consider the case that
there exists a pair y™,y™? with (y™,y™2) = cos(¢). But, since ¢ < /3, this
implies (y™,y7) > —cos(¢/2) or (y™2,37) > —cos(¢/2) for 1 < j < n and hence
(¥ y?) = —cos(¢/2).

We see that a small angle ¢ indicates that in a neighborhood of 0 the ar-
rangement is like the middle of a sausage arrangement for (y!, y*) < 0 or like the
end of a sausage arrangement for (y',y?) > 0, whereas a large ¢ means that the
configuration C' is not sausage like.

Observe that U(¢) + pB? C conv(C) + pB? and as C' € P(B% n) we have
B? C H which implies U(¢) C H N conv(C). Now we distinguish several parts
of D, according to their position relative to U(¢). To this end we use the near-
est point map (cf. [MS71]): For a convex body K € K¢ the nearest point map
p: B — E? with respect to K is given by

p(x) =y € K with |z — y| = min{|z — 2| : z € K}.
Using the nearest point map with respect to U(¢) we define:
Definition 3.1.2

D! = c{zeD,:
D? = c{zeD,:
D} = c{zeD,:
D} = c{zxeD,:p

p(z) € relint(U(9))},

(z) € relint(conv{0,y"'}) U relint(conv{0, y*})},
() =

(z) €

T

s

0},
relint(conv{2y", 2y*})},

X

!

X

where cl(S) (or clS) denotes the closure of a set S and relint(S) (or relintsS)
denotes the interior of a set S with respect to its affine hull. The sets D;,
t = 2,3,4, may be considered as the sausage parts of D, and D; is the additional
non-sausage part. Clearly

4 .

VI(D,) = 3 V(D).

i=1
The proof of (3.1.4) depends on various estimates of V(D?). These estimates are
prepared by the following two lemmas.

Lemma 3.1.1 Let w € HN S v e wt NS pe >0 with (u+ €)v € H.
Then
c1(p,€) - conv{0,w} + pv C H,

with c1(p,€) = €/v/(u+e)? =1 if p>1/(u+e€), else c1(p,€) = /1 — p?.

Proof. The assertion follows with some elementary calculation from B? C H
and the convexity of H (see figure 3.1.2). ]



3.1. FINITE BALL PACKINGS 37

(1 + €
J

0

1 (Ma G)UJ w

Figure 3.1.2.
Lemma 3.1.2 V(U(¢)) > ¢/2.

Proof. Let v = (y',y?), § = arccos(|y|) and cone{y',y*} be the positive hull of
y',y%. First, suppose v > —1/2. Then cone{y',y*} N B? C U(¢) and thus

V(U($) > §/2. (3.1.6)

Next, assume v < —1/2 and let M = (cone{y*, y*} N BH)\U(¢) (see figure 3.1.3).
Obviously, we have V(U(¢)) = V (cone{y!, y*} N BY) — V(M) and by elementary
calculation we get

T—0

VU(©) = —(arccos(?sin(5/2))—2sin(5/2)\/1—(281n(5/2))2).

On account of arcsin(x) = /2 —arccos(x) substituting = = 2sin(d/2) in the right
hand side yields V/(U(¢)) — ¢ > min{f(z) : = € [0,1]} with f(z) = arcsin(z) —
3arcsin(x/2) + zv/1 — z2. Now, f(0) = f(1) = 0, and for the second derivative

Figure 3.1.3.
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f"(x) we have f”(z) <0 for = € [0,1]. Hence f(z) > 0 for z € [0, 1] and
V(U(¢)) > 0. (3.1.7)

If (y',4%) > —1/2 we have § = ¢ and in the case (y', y*) < —1/2 we have § > ¢/2
(cf. (3.1.5)). Thus the assertion follows by (3.1.6) and (3.1.7). ]

Now, we start with the estimates for the sets DZ.

Lemma 3.1.3 Let sin(¢) < 1/p. Then

VDY) 2 & - calp.1/sn(6) — o hacs

Proof. By the definition of ¢ we have |(y?,y")| > cos(¢) for 1 < j < n — 1,
i = 1,2. This implies (y7,v,:) < sin(¢) for all v, € (y*)- N B%, i =1,2. Hence
by the definition of H:

(1/sin(¢)) - ()" NBY Cc H, i=1,2. (3.1.8)

Thus (1/sin(¢))(L+ N BY) C H and by lemma 3.1.1 we get c¢1(p, 1/ sin(¢) — p) -
U(¢) + p(B*N L) C D}. Now the lemma follows by the volume estimate given
in lemma 3.1.2. [ |

Lemma 3.1.4 Let sin(¢) < 1/p. Then
V(D2) > a(p,1/5in(6) — )" ra s,
Proof. From (3.1.8) and lemma 3.1.1 follows
c1(p, 1/sin(¢) — p) - conv{0,y'} + p((y")* N B%) C D,. (3.1.9)

Let a' € L be the outward normal unit vector of conv{0,y’} with respect to
conv{0,y",y*}, i = 1,2. Then {z € E%: (a’,x) > 0} N D, C D? and by (3.1.9)
we get the assertion. [ |

Lemma 3.1.5 Let sin(¢) < 1/p, ¢ < /3 and (y',y*) > 0. Then

1—0o¢/n
V(D;) > Q(b/[)d/‘éd-

Proof. Let F' C L be the set of all outward unit normal vectors of supporting
lines at 0 with respect to conv{0,4',y*}. By the definition of y', 3> we have
(y',y*) > cos(¢) for 1 <k <n—1,i=1,2, and thus (y*,a) <0, 1 <k <n-—1,
foralla € F. As pv € D, forv € LTNB? (cf. (3.1.8)) we get (F+L")NpB* C D3.
Since V(F) = (1 — ¢/m)/2 we obtain the required estimate. ]
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Lemma 3.1.6 Let tan(¢) < 1/p, ¢ < m/3 and (y',y*) < 0. Then

cos(¢) — psin(¢) g
cos(¢/2)

Proof. Let w = (y' — y?)/|y* — y?|. Since ¢ < m/3 we have (y/,y') > cos(¢) &
(', y?) < —cos(¢), 1 < j <n—1. It follows [(y/, w)| > cos(¢) which implies
(y7,v) < sin(¢) for all v € wt N BY. Hence for v € w N B% and X\ € [0, 1] we
obtain

V(D) >

A2y + (1= N)2y” + pu,y’) <

{ A(2 cos(p) + 2) — 2 cos(¢) + psin(¢) : <y7:, y') > cos(9),
—A(2cos(p) +2) +2+ psin(d), (¥, y") < —cos(e).

This shows
A2y + (L= N2y + p(w™ N BY) C H, for A € [ea(,p), 1 — ca(, p)],

with ca(¢, p) = (1 + psin(¢p))/(2 + 2cos(¢p)). Observe, by assumption the given
interval is nonempty and A\2y' + (1 — X\)2y? € U(¢). Thus

A2y + (1= A)2y* + p(wt N B C Dy, A€ [c2(0,p),1 — c2(e, p)].-

Let u € L be the outward unit normal vector of conv{2y', 2y*} with respect to
conv{0,2yt,2y%} and let v’ € {x € E?: x € (w' N BY), (u,x) > 0}. We have
(conv{2y',2y*} + pv') N D, C D and therefore, we obtain

_1 Rd—
V(Dﬁ) > (1= 2¢(0, p)) - |2y1 _ 2y2|pd 1%.

In the last four lemmas we made the assumption that ¢ is small. So in order
to prove the theorem we need also an estimate for V(D)) if ¢ is large. In this
case the angle gives us no valuable information about the position of the facets
of H but instead of it we know that V(U(¢)) is not too small. Furthermore, in
the lemmas we exploited the fact that the (d — 2)-ball p(L+ N B?) is contained
in H. Obviously for ¢ = 7/2 and p > 1 we cannot guarantee that this still holds.
In the next lemma, which is the key for the whole proof, we show that a least a
sufficiently large part of the (d — 2)-ball belongs to H.

Lemma 3.1.7 Let K(p) = {z € L+ N S¥! : pz € H} and dy(p) = max{4,
(4 —p*)/(2—=p?)}. There is a constant c(p) only depending on p such that for
all d > do(p):

(d — 2)/€d,2

Vi) =

Y

where V,(-) denotes the spherical volume.
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The proof of lemma 3.1.7 is quite complex and hence we first state two prepar-
ing lemmas.

Lemma 3.1.8 Let S C E? be a d-simplex, F}, be a k-face of S, k < d — 1, and
let Fy be the (d — k — 1)-face of S with F, N Fy = 0. For a measurable subset
G C S and a continuous function f on S we have

- ! V(S)
J L o wey s L ATAGAR

/Fk /Fk /mg+1 e fuz 4+ (1= p)z)u® (1 - p)fdpdz da.

Remark: The notation [ dx means integration in a space of appropriate dimen-
sion.

Proof. To compute the integral let S = conv{a’, ..., a%}, F}, = conv{a’,. ,ak},
Fy = conv{a* ... a?}. Further let A, Ay, A denote the matrices A — (a* —
ao,...,ad—a),Ak—(al—ao,...,ak—a),Ak (a**2 — aF L a? — o).

Finally we denote by T¢ the standard simplex T = {(z1,...,zq4)7 € E¢: z; >
0, "% o <1}

Now we apply a number of transformations. First let ¢, : B4 — E¢ given by
Y1(x) = Ar +a®. Then T? = 7 '(S) and thus

dz = d\V (S / dz. 3.1.10
J fde=aves) [ ) (3.1.10)
Next we consider ¢y : EF x E' x B4k — Bdvith o (py, . .., faey fhy fs2s - - -5 )

= (1 —p) 1y ooy iy 0y oo OV e (0,000, 0,1 = S0 o iy fiyas - fa) T 22
is a bijection from the interior of 7% x T* x T%1=* onto the interior of 7¢. By
a straightforward calculation we find for the determinant of the Jacobian Dy of

g det(Di)y) = pu?7*(1 — p)*. Hence with p/ = (p1, ..., px), @ = (Hrros-- - a)
and (3.1.10)

/ f(z)dzr = d'V(S) x
G
d—1-k
/Tk /Td 1= k/wQ(u ey o Tl 1)) R = )t dpdpdy.

As 1 (Yot py 10)) = (1=p) (App' +a°) +p(Apiita™*h), Fiy = {App/+a° : pf € TF}
and Fy = {Ayi + a*1 . m € T4"17*} we obtain the formula. ]

Moreover, we need that the quotient of two certain integrals is bounded:

Lemma 3.1.9 Let k,k € N with k > k+ 1 and let o, 3,7 € R with v > 3 > 0,
a > 0. Then for a,b,c € R, d € N with b,c > 0, b <c, a > o, a®> +c* > 7,
a?+b? < B, d >k the quotient
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1o (a2 + (ue+ (1 - u)b)Q)_(dH) p R (L = p)rdp
i (Yo + e+ =) k(1

where py € [0,1] is determined by a® + (poc + (1 — po)b)? = 3, is mazimal for
a=oa,b=0a>+c=~andd=k.

(3.1.11)

Proof. First we show that the quotient is monotonely decreasing in a, b, ¢, d. To
do this we set

Flasbend ) = (Vo T et (L) R )

For d we have by the mean value theorem of integral calculus:

o fla,bye,d+ 1, p)dp Ml/\/a2 + (prc+ (1 — p1)b)? ‘ J5° fla,b,c,d, p)dp
f#o f(a7 bv ) d + 1>M)d:u M2/\/CL2 + (/LQC + (1 — ,LLQ)b)Q f,ulo f(a'7 ba ¢, da lu)dlu

for suitable 0 < p; < pp < pg < 1. Since the function ,u/\/a2 + (pe+ (1 — p)b)?
is monotonely increasing in p we get that (3.1.11) is monotonely decreasing in d.

Now let ¢ > ¢ and let ) € [0, 1] be given by a® + (uyc’ + (1 — uy)b)? = 3. We
apply the linear transformation p = (¢ — b)/(¢ — b) ¢/ and obtain

/ — d—k —(c— o — "N\ k
0 fla,b, ¢ d, p)dp (CC Zé) 5 f(a by, d, ') (FERAC=DN T
B b i (s D ) ()

As (d—=b)/(c=b) > 1and (1—(c—0b)/(d—=b) i) /(1 — ) is monotonely increasing
for 0 < i/ <1 we find again from the mean value theorem of integral calculus:

50 flab o )dp _ i fa,b,c,d,)dp!
Sy Fla;b, ¢ dpydp = [ fabye,d, p)dp!

Quite analogously we find that (3.1.11) is monotonely decreasing in b.

Finally let ' > a. For the corresponding value g we have py < po and
further we may write a’> + (uc + (1 — p)b)? = g(u)(a® + (e + (1 — p)b)?) for an
appropriate function g. We easily check that g is monotonely decreasing in p for
1 > 0. Thus we find as before:

8 S boesd ) g J (@ be d i 3 F(a,b,e,d o)y
f,ulé f(&17 b7 Cy d7 :u)dﬂ f/—LO f(a >ba ¢, da :u) f/io f(aa b7 Gy d7 [l,)d

Hence we may assume d = k, b = 0 and ¢ = v — @?. In this case we have

Lo = \/(ﬁ —a?)/(y — a?) and py is monotonely decreasing in a. Now let a’ > a,
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¢ =~ —(a')? and p the value of yy with respect to a’ and ¢’. The function g(u)
defined by a4+ (uc)? = g(p)(a® + (uc)?) is monotonely decreasing in u and as
above we find

00 S0, do )y _ J§ f(a,0.¢ dypydp _ Ji° f(a,0,¢,d, pn)d
S F(a,0,¢ d, pydp [ f(@!,0,¢ dy )~ [ f(a,0,¢,d, p)dp

Hence the integral in (3.1.11) is increased if a is decreased and a? + ¢* kept
constant. Thus the lemma is proved. [ ]

Now we come to the proof of lemma 3.1.7:
Proof of lemma 3.1.7. Let p < /2, d > dy(p) and M(p) = {z € L+ N S% 1.
pz ¢ H}. Since
_ ViK(p) +ViM(p)) (d — 2)ka—s

L+ Vi(M(p))/Vi(K(p)) 1+ Vi(M(p))/ V(K (p))

it suffices to show that there exists a constant ¢(p) only depending on p such that
for d > dy(p):

V.(K(p)) (3.1.12)

V.(M(p))/Vi(K(p)) < c(p).

To this end we consider the bounded polyhedron H N W\% where W\% denotes
the d-cube with center 0 and edge length 2v/2. Observe, that

M(p) = {zeLLﬂSd_lzsz'HﬂW\d@},
K(p) = {ZGLLﬂSd_llpZGHﬂW\%}.

We use a technique due to ROGERS’ [Rog64] which gives by an inductive con-
struction a dissection of the intersection (H N W\%) N Lt into simplices S of the

form S = conv{c?, ..., %} such that each ¢’ is contained in a (d — 2 —i)-face F
of (HN W) N L+ which contains conv{c’,...,c"*} and ¢’ is the nearest point
of ' to 0.

Let ¢ = 0 and assume we have chosen a sequence of points {c°,...,c'} such
that ¢ lies in a (d — 2 — j)-face Fy_o_; of (H N W\%) N L' and is the nearest
point of the face to the origin, 0 < j <. Let F} 5 ,,..., F¥ 5 . be the facets
of F;_o_; which do not contain ¢!. Then for 1 <[ < k we define the point ¢!/
to be the point in F} , , nearest to 0. So we obtain sequences {c,. .., ¢! c¢FH},
1 <1 <k, and at the end of the construction (i = d — 2) we obtain a dissection
of the desired form.

If ¢’ belongs to a face of W, then we clearly have || > V2. Otherwise, as

¢ lies in a (d — 2 — i)-face it belongs to a (d — i)-face of H and by a result of
ROGERS [Rog64] we have |c’| > v/2,/i/(i 4+ 1). Thus we get for 0 <4 < d — 2:

& > V24/i/(i +1). (3.1.13)
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Let S = conv{c’,...,c? 2} be an arbitrary but fixed simplex of this dissection,
C be the cone generated by c!,...,c*2 and let

M={ze (L nS"™NC:pz¢ S}, K={zec(L*NnS")NC:pzec S}

To show that V.(M(p))/Vi(K(p)) is bounded from above it is clearly sufficient
to show that V,.(M)/V.(K) is bounded from above. In order to evaluate these
spherical volumes we apply several transformations. First we replace the sets
M, K by the associated parts Mg, Kg of the d-ball, i.e.

Mp={z€ (L*NBYNC:pz/|z| ¢ S}, Kp={z¢€ (L*NnBYNC: pz/|z| € S}.

Clearly, we have V,(M)/V.(K) = V(Mp)/V(Kp). In the next step we express
V(Mp), V(Kg) as integrals over the simplex S. To this end let v € L+ N S9! be
the outward unit normal vector of the facet F' = conv{c!,..., "2} with respect
to S and let € R be the distance of the affine hull of F' to the origin. We consider
the map ¢ : E4N L+ — E4N Lt given by ¥(z) = <;’|’§|>:U. For the determinant of

the Jacobian we find det(Dv) = ((v,z)/(n|z|))?? and with

Ms = ¢~ (Mp)={2€85:pz/lz| ¢ S},
Ks = ¢ ' Kg)={z€8:pz/lz| € S}

we obtain

vou = [, (S3) e vow= [ (52) e

Now we use lemma 3.1.8 with k = 0, F, = 0 and Fy = F. As (v,z)/(n|z|) is
constant on rays emanating from 0 we get

. 1\42 . 1\42
V(Mp) = —— — d V(Kg) = —— — d 3.1.14
with Mp={2€ F:|z| <p}and Kr ={z € F : |z]| > p}.

Finally, by the definition of dy(p) we may choose a k € N, d — 4 > k, with
\/5\/(143 +2)/(k+3) > p (cf. (3.1.13)). We apply lemma 3.1.8 to the (d — 3)-
simplex ' and the faces Fy, = conv{c!,...,c* '} F, = conv{c"*2, ... 42}
Defining

n (d—3)! V(F)

i) = S T BV (EV (Fe)

we may write by (3.1.14):

viMg) = &rR) [ [ ] L G D
= ) — p— T x’
b ¥ e JE Dz meio [T + (1= p)aft2

V(K FF P W)t
(Kp) = &(F, k)/Fk /Fk /|u$+(1—u)$lzp T+ (1 — )|t
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Thus we have

d4k

VoM Sy welo [eroai Ah _
V((K)) < max J JEEOpeis, L0l —w€ R TE . (3115)
' S+ metzp T r—etics i
It remains to show
Sy 1—pyal<p W + (1= p)a| D= (1 — p)* dp

— é(p), (3.1.16
f|,uf+(1—,u)m|2p|:ux+ (1 /,L)l" (d- 2)/Ld - k( :u)k d/’l’ )

for all x € F},, T € F'}, and a suitable constant ¢(p) only depending on p.

By construction of S we have that |uT + (1 — p)x)| is strictly increasing in .
Further, we have |z| > 1 and by the choice of k:

k+2
T| > V22— . 3.1.17
CERGN iy (3..17)

So for |x| > p there is nothing to prove. Else we find that the inequality (3.1.16)
is of the form

Jio (a2 + Gue+ (L= ) 7 i - )y
T (Va2 e (= ) k(1 — e

where a > o = 1 denotes the distance of the line through 7, z from 0, b is given by
a’+b* = |z, c by a*+c* = |7|? and pp is determined bya +(poct+(1—po)b)? = p2.
But now (3.1.16) follows from lemma 3.1.9 with 3 = p* and v = 2(k +2)/(k + 3)
and lemma 3.1.7 is proved. [ ]

By lemma 3.1.7 we can now give an estimate for the volume of D}) for all
o > 0.

Lemma 3.1.10 Let ¢ > 0, ¢ > 0 with p; = p+e < /2 and dy(p;) = max{4, (4—
p1)/(2 — p})}. There is a constant c(p;) € R only depending on py such that for
d Z dO(pl)
¢ )2 pi—2 Kd—2
Vv D1 > —ci(p, € —

Proof. From the definition of D; we have

d—2
0
viopzr— [ | dvdw. 3.1.18
( p) —d-2 U(g) J{zeL+tNSi—L:w+pzeH} v ( )
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Instead of evaluating the inner integral for each point w € U(¢), we only estimate
the integral at the point 0 but for the larger value p;. On account of lemma 3.1.1
and lemma 3.1.2 we obtain with the notation of lemma 3.1.7:

d—2
v%Dp;zicm@eyg_zpqumngzgcﬂaeypwaljiéhy (3.1.19)

for d Z dO(pl) |
On account of the previous lemmas the proof of theorem 3.1.1 is an easy

consequence of
dlim Ri—2/Kd—1 = 00. (3.1.20)

Proof of theorem 8.1.1.  Let p < v/2 and ¢y = min{arctan(1/p), 7/3}. We
distinguish three cases depending on ¢ and the sign of (y!,y?). For simplification
we use V(D?) > (1 — psin(¢))p* 'ka_1 (cf. lemma 3.1.4).

). ¢ < ¢o and the assumptions of lemma 3.1.5 hold. Then we have by lemma
3.1.3, 3.1.4 and 3.1.5:

V(D,) > V(D) +V(D2)+ V(D3

i 1 (1 — psin(¢o))? PP

> 0l P Rd d—2 [ * 0 o 0%k — d

2 P Kd-1 T+ 9 + ¢p 21— sin’(d) Kd—2 — P"Kd—1 o
d

K
= ol + % +¢- fi(p,d).

By (3.1.20) there exists a di(p) € N with fi(p,d) > 0 for all d > d;(p).

IT). ¢ < ¢p and the assumptions of lemma 3.1.6 hold. Then we have by lemma
3.1.3, 3.1.4 and 3.1.6 and cos(¢) > 1 — ¢*/2:

V(D,) > V(D,)+ V(D) + V(D)

- —o (1(1 = psin(¢y))? o
> 9l a2 (1 9 %0
> 20" Ka-1+ @p (2 1= sin® (o) Ki—2 = 20" Ka-1 = 5 Pha-1
= 20" a1+ ¢+ falp,d).
Let dy(p) € N with fo(p,d) > 0 for all d > dy(p).

II1). ¢ > ¢¢. Choose an € such that the assumption of lemma 3.1.10 holds. Then
by lemma 3.1.10 with p; = p + € and for d > dy(p1):

V(D,) = V(Dé)Zd;)-cl(p,e)de‘z-

Rd—2

L+c(pr)

> 2% kg

for all d > ds(p), say.

Finally let d(p) € N given by d(p) = max{d;(p),d2(p),ds(p)}. Since the first
case (¢ < m/3 and all inner products are positive) can occur at most twice we
have proved (3.1.4) and thus (3.1.1). Furthermore, it follows immediately from
the proof that S,,(B?) is the only best possible packing set. [
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3.2 Finite packings of centrally symmetric bodies

In this section we prove an extension of theorem 3.1.1 to arbitrary centrally
symmetric convex bodies.

Theorem 3.2.1 There is a positive function (x,y) on [1,00) X N with
lim ¢(1,y) =v2  and  (1,y) > (w2, y) if 21 < 7,

Yy—00
such that for K € K3, d > 5, with inradius r(K) and circumradius R(K) and for
p < Y(R(K)/r(K),d):

V(conv(C) + pK) > V(conv(S,(K)) + pK)

for all C € P(K,n), n € N. Equality holds if and only if C' is a densest sausage
configuration of K.

So, the theorem states for a centrally symmetric convex body of a given dimension
a bound for the parameter p such that a sausage arrangement becomes best
possible with respect to the densities induced by the parameter p. In particular
for the d-dimensional unit ball we obtain asymptotically the bound already given
in corollary 3.1.1. Indeed, the proof of theorem 3.2.1 is based on an adjustment
of the methods and techniques used in the proof of theorem 3.1.1 to centrally
symmetric bodies. Unfortunately, the necessary changes are quite technical.

In the sequel we consider for a fixed dimension d a K € K¢ with distance
function f : E4 — R, inradius r and circumradius R. As in the proof of theorem
3.1.1 let H be a fixed DV-cell of the arrangement C' = {z',... 2"} € P(K,n),
n € N, with respect to 2™ = 0 and let ¢, v/, L be defined as in definition 3.1.1.
Now for p € (0,v/2) let D, = HN(conv(C)+pK) and U(¢) = conv{0, 2y'/f(y*),
2y*/ f(y*)} N H. With respect to U(¢) we define D, 1 < i < 4, as in definition
3.1.2. Since C' € P(K,n), we have |z7| > 2/f(y?) and thus 2y’ /f(y’) € conv(C),
1 <7 <n-—1. In particular

{z e B (x,) <1/f(y¥),1<j<n—-1}CH. (3.2.1)
Observe that 1/R < f(v) < 1/r for v € S971.

Next we give two auxiliary lemmas and then we transfer (generalize) the
lemmas 3.1.3, 3.1.4, 3.1.5, 3.1.6 and 3.1.10 to the centrally symmetric case.

Lemma 3.2.1 Let K € K¢ with distance function f, inradius r and circumradius
R. Then for v,w € S%1:

(v, w)| = cos(¢) = f(v) < (1 +¢-g(R/r))- f(w),

where g : [1,00) — R=% is a monotonely increasing function with g(1) = 0.
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Proof.  Assume (v,w) > cos(¢) and let f(w) < f(v). Further let a € E? be
a unit outward normal vector of a supporting hyperplane S of K with v/f(v) €
KnS. Let (a,v/f(v)) =~ = cos(¢)/f(v). On account of (v, w) > cos(¢) and
(a,w/ F(w)) < (@, 0] f(0)) we obtain v f(w) > (a, 1) > cos(9) cos() —sin(@) (1 -
cos?(1)))'/? or

f(w) : 2 _
Froy (cost0) —sin() (1 cos(w)? 1)

Now, cos(¢) > r/R, f(v)/f(w) < R/r and thus

f(v) < (cos(gb) —sin(¢)y/(R/7)? — 1>_1: ¢ < arccos((r/R)?*) — arccos(r/R),
fw) = | R/r celse.

From this it is not hard to deduce an appropriate function g. [ ]

1>

For abbreviation we write

R = R/r,
v(é,R) = 1+¢g(R),
R)

= (1= (pR)sin(¢))/v(¢, R).
Lemma 3.2.2 Letsin(¢) < 1/(v/2-R). Then for p < /2 andi=1,2:
Y(p, 6, R) - conv{0,5'/ (')} + pR ((y)" 1 BY) C H. (3:2.2)

Proof.  Apparently, this statement is closely related to lemma 3.1.4, but in
contrast to lemma 3.1.4 we can not make use of lemma 3.1.1 because in general
v/ f(y7) ¢ S Now, let v, € ((y')~ N BY), i = 1,2. By the definition of ¢
we have (y/,v,:) <sin(¢), 1 < j <n —1, (cf. lemma 3.1.3) and on account of
the definition of v(¢, R) it holds (\y*/f(y*) + pRuy,:,y?) < 1/f(y?), i = 1,2, if
A < 7(p,®, R). Hence by (3.2.1) we get (3.2.2). |

To obtain appropriate versions of lemma 3.1.3 and lemma 3.1.10 we note that
rB? C K N H and therefore, lemma 3.2.3, 3.2.4 follow immediately from lemma
3.1.3, 3.1.10, respectively.

Lemma 3.2.3 Let sin(¢) < 1/(v/2- R). Then for p < \/2:

V(D;) > pd. ;b ce1(p, 1/ sin(¢) — p)2p2 - ks,
Lemma 3.2.4 Let ¢ > 0 and p; > 0 such that d > do(p1) = max{4, (4—p3)/(2—
p%>} Th’en forp < pl and € > 0 ’lUZth pl = p—|— €:

a9

V(DY) = r1S ey

d—2 Rd-2
L+c(pr)
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The next two lemmas correspond to lemma 3.1.4 and lemma 3.1.5. Since in
general the set {x € D2 : (y',x) =~} for v € [0,7(p, ¢, R)/ f(y")] does not contain
a set of volume p? 1V (K|(y')1)/2 as in the case K = B¢ we have to evaluate
these sections more carefully. To this end we distinguish two cases depending on
the sign of (y', *) and define some functionals which are helpful for the estimates.

Definition 3.2.1 Let u € S 1. Fory € (K|ut) let

AMy,u) = min{|]A[: N €R and y+ \u € K},
s(u) = max{A(y,u) 1y € (K|u")},
o = max{1/(s(u)f(u)) : u € ST,
s(yu) = { Ay, u): zfy - My, v)u e K
’ AMy,u) ify+ My, v)u € K.

Obviously, A(y,u) < /R? — |y|?. For |y| < r the point y belongs to K and thus
A(y,u) = 0. Hence

|s(u)] < VR? —r? and px > r/VR? —1r2. (3.2.3)
From the definition we have s(y,u) = —s(—y,u). In the case R = r we obtain

s(u) = 0 and we may set px = oo. Further let ux € S ! such that S, (K, ug) is
a densest sausage configuration (see section 2.1). We set

BIK) = V(Klug)/ f(ux).

Lemma 3.2.5 Let (y',y?) < —cos(¢) and let ¢ satisfy: sin(¢) < 1/(v2-R),
and v(¢, R) < 2cos(p). Then for p < min{v/2, px}:

sin(¢)
os(9)

V(D) > (0.6, R) (p“@(m Ly o pR> |

Proof. Fori=1,2and~y € [0,v(p, ¢, R)/f(y")] let M:(p) = {x € conv(C)+pK :
(y',x) =, (z%,z) >0, |x —yy’| < pR} where 2 € L denotes the outward unit
normal vectors of the edges conv{0, 2y*/ f(y*)} with respect to conv{0, 2y / f(y*),
242/ f(y*)}. In the following we show

Vo) 2 o PR POV e, a2a)

By (3.2.2) we have M (p) C D> and on account of the definition of s(y’) inequality
(3.2.4) implies the assertion. For the proof of (3.2.4) we only consider the case
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1 = 1; the other case can be treated similarly. Before we start we introduce some
sets:

T = {zepKly")): (') >0},
T=0 {xeT:s(x/p,y") <0},
(@/p,
(

7>° {r eT: sz )>0}
M, = {z€conv(C)+pK : (y',x) =7}, M= Mip) -y,
— . sz 1 2s1n(¢) ald) = - sy sin(¢)
O‘(£>¢a 7) - P ( /p7y )ny(y2> —|—2COS(¢)’ (¢) p (y )COS((b).

Obviously we have V(T) = p 1V (K|(y')*)/2 and a(¢) > a(x,d,). First we
claim

T=" 4+ ~y' € M;(p). (3.2.5)
To prove this, it suffices to show 7= + vy! C conv(C) + pK. Let x € T=" and
let = (p-s(x/p,y') + (', y') —v)/(x',y"). Since p-s(x/p,y') —v < 0 we
have u < 1. Further p < px yields p - s(z/p,y*) > —1/f(y') and on account
of v < 1/f(yY), (z', ¢y = |2t > 2/f(y') it follows u > 0. Now, = + vyy' =
p(x + ps(x/p,y)y') + (1 — p)(x + ps(z/p,y' )yt +2') € conv(C) + pK. This
shows (3.2.5). Next we claim:

reT”’ =z —alr,¢,7) +' € M,. (3.2.6)

Let € T7Y and let = (p - s(z/p,y") f(*)/(vf(y?) + 2cos(9)). It is clear
that 4 > 0. By the definition of px and by the choice of ¢ we obtain p -
s(z/p,y") f(?) < f(y?)/f(y') < v(o, R) < 2cos(¢), where the second inequality
follows from lemma 3.2.1. Hence p < 1 and on account of y? = —cos(¢)y* —
sin(¢)z! we get © — a(z, ¢,7)z' +yy' = u(2y?/ f(y*) + 2+ ps(x/p,y')y') + (1 -
w) vyt +x + ps(z/p, y')yt) € conv(C) + pK, which implies (3.2.6).

Now, let G be the orthogonal projection of T onto the hyperplane {x €
E? . (zYz) = 0}. For z E G let T, = max{v € R : z + vz € MY} |
v, = min{v € R : z +vz! € MU} and let 7,, g, be defined in the same
way with respect to T instead of ]\40 Since V(M}(p)) > [3Ts — v,dz and

pWV(K|(yh1h) /2 = V(T) = 55, — a,dx it suffices to show:

Uy — Uy >0, — 0, —alp), x€G. (3.2.7)

We note that if (z',z) — a(x,¢,7) > 0 holds for z € T>° then we also have
z —a(r,¢,7)z" +yy' € M(p). Thus (3.2.7) follows immediately from (3.2.5),
(3.2.6) and the convexity of M} (p). |

Lemma 3.2.6 Let sin(¢) < 1/(v/2-R), ¢ < 7/3 and (y',y?) > 0. Then for
p < min{v2, px}

V(02 + V(D0 2 I o 0 Ry () — CpRY
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Proof. Again let 2 € L, i = 1,2, be the outward unit normal vectors of
conv{0, 2y*/ f(y")} with respect to conv{0,2y'/f(y"),2y*/f(y*)}. We study the
sets:

G" = {x€pK:{y*x)>0A Yy, z) <0},

G' = {z€pK: {2 z) <OA(y'z) <0} andfori=1,2
T = {z€conv(pK Ua' + pK) : 0 < (y',2) < 1(p,6, ) A (,2) > 0},
T} = {zeconv(pK Uz’ + pK) : (y',2) SOA (' 2) <OAx ¢ pK}.

Obviously, G' € D3 and on account of (3.2.2) we get T C D2. First we show
that T} belongs to Dﬁ U Dg. Let x € T!. Then x € conv(pRB*U 2 + pRB?)
and (y',z) < 0 yields |z] < pR. Since ¢ < /3 we have (y',y7) > cos(¢)
for 1 < j <n-—1andso (y/,z) < sin(¢)|z| < sin(¢)pR < r. Here the last
inequality follows by the choice of ¢. Now r < 1/f(y?) and from (3.2.1) we
obtain # € H which shows z € D2U D3. On account of V(G'UG") = p*V(K) /2
and dim(G' N (TFUTY)) <d—1,dim(TINTY) <d—1,dim(TyNTy) <d—1 we
may write

V(D2uDj) > V(G'U(TTUTH U (Ty UTh)
> V(IGHH+VITUTH) +V(Ty UTY —VHTINTy) = VHTT NTY)
K 2
= Y e - viatnm) - v nm + Y vy u ).

=1

(3.2.8)

In the above inequalities V%(-) denotes the volume with respect to the d-dimen-
sional space. For © = 1,2 we claim:

i VIEIG)Y)

V(TTUT) 2 4(p. 6. R) - p . 3.2.9
( ) = ) 27 ) (3.2.9)
To prove this, it suffices to show
- V(K|(y")*+
V(M) > p““M (3.2.10)

2

for M = {a € T/ : (y',2) = 7} Ufe € T : (yia) = —y} and 0 < 7 <

Y(p. &, R)/f(y"). Let x € p(K|(y")*") with (', x) > 0.
a) p-s(xz/py') <. . o

Let p = ((z",9") + p - s(z/p,y") —v)/(z",y"). As in the proof of (3.2.5) we
may deduce p € [0,1] and obtain z + vy = p(z+p-s(z/p, y")y') + (1 — ) (@ +p-
s(z/p,y" )y +2') € conv{pK U (2" + pK)}. Hence z+~y" € T] and z+~y’ € M.

b) p-s(z/p.y') > . ,
Assume z + vy* € pK. Then we have s(z/p,y") < v/p which contradicts
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the assumption. Hence —z — vy ¢ pK and further (z°, —z — vy’) < 0. Now
let uw= (2", 9"y +~v—p-s(z/p,y))/(z",y"). Again it follows u € [0,1]. Since
—x —p-s(@/py)y = —x+p-s(—x/p,y)y’ € pK we obtain —x — yy’ =
pw(—z—p-s(@/p,y' )y’ )+ (1 —p)(—z—p-s(z/p,y" )y +a') € conv(pK Uz" + pK).
Thus we have —x —yy! € T} and —x — vy’ € M.

Altogether we get (3.2.10) and so (3.2.9). With regard to (3.2.8) it remains
to show

¢

™
But this follows immediately from G" N (TI NTy) =0, GrU (TiNTy) C {x

E?:jx] < pRA (% z) > 0A(yl,z) <0}, and (T7 NTY) C {x € B : |z
pPRA(y* ) <0 (y',z) > 0}

V(G +VHTINTy) + VHT N T3) < Z(pR) k.

mIAM

Finally we transfer lemma 3.1.6. To do this we need some more notation:

cy(¢,R) = max 20(¢. R) — 1+ V2 Rsin(¢)v(¢,R) _ v(¢, R)
e (9, 2v(¢, R) + 2 cos() "2y/2+2cos(9) |
&(¢,R) = min 2¢08(9) +1/v($, B) — v2-Rsin(¢) | v(¢R)

’ 20(¢, R) + 2 cos(¢) 22+ 2c08(p) |

Lemma 3.2.7 Let (y',y?) < 0 and let ¢ satisfy: ¢ < /3 and cy(é, R) <
Cy(¢, R). Then for p < min{v/2, px}:

2 + 2 cos(¢)

I/(gb,ﬁ) pd_lﬁ(K)

V(Dﬁ) > (62(¢7§) - QQ(gbaR)) )

Proof.  Let u(¢, R) (u(¢, R)) be the first term in the definition of ¢,(¢, R)
(26, R)) and let w = (y'/f(y") —v*/f(*))/ly"/f(y') — v/ F(y*)]. On account

of the definition of v(¢, R) and (3.2.1) we obtain with the method used in the
proof of lemma 3.1.6:

2y 2y il d B\ (4 D
)\m + (1 — )\)m + Rp(w=N B C H, X € [u(¢,R),u(p,R)]. (3.2.11)

By assumption the above interval is well defined. Without loss of generality we

assume f(y*) < f(y') and thus [y'/f(y") — y*/f(¥*)| = |y' = v?|/f(y'). Since
|(y*, w)| > cos(¢) we obtain with respect to lemma 3.2.1:

' =yl fh) Y2t 2cos(9)
fyY)  vie.R) —  v(¢,R)

f(w)-| v__ ¥ (3.2.12)

fh  f@A
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Let 2% be the outward unit normal vector of conv{2y'/f(y'),2y?/f(y*)} with
respect to conv{0,2y'/f(y'),2y?/ f(y*)} and for v € [cy(d, R), (b, R)] let

M, = {x€comv{(2y'/f(y") + pK)U 2>/ f(y*) + pK)} :
_ 2y1 B y2
C=5n T

From (3.2.11) we get M, C D} and we claim:

+y with (w,y) = 0A (2%,y) > O}.

V(K |w")
"

Let T = {y € p(K[w") : < Sy) > 0} Fory € Tlet p=v—(p-s(y/p,w))
2lyt/f(yh) —v?/f(y*)]). By (3.2.12), the choice of v and the definition of px we
have 4 € [0,1]. Hence »2y" /f( DA+ =)202/ f(v*) +y = 24"/ f(y") +y+p-
s(y/p,w)w) + (1 = ) 2y*/f(y*) +y + p- s(y/p,w)w) € M,. Thus y2y'/f(y') +
(1 —7)2y*/f(y*) + T C M, and we obtain (3.2.13). Hence

V(M) > p*t (3.2.13)

V(DY) > (c2(¢,R) — cs(¢, R)) - fi@;g_f(z;) ) v<K2|w )
> (&(6,R) — (6. R)) - |y(¢—y)| e %

Now we can start with the proof of theorem 3.2.1.

Proof of theorem 8.2.1. Let ¢ € (0,7/2] satisty ¢x(¢, R) > c5(¢, R), sin(¢) <
1/(v/2- R) and v(¢, R) < 2cos(¢). Set ¢ = min{¢,7/3}. We remark that ¢
depends only on the ratio R/r.

As in the proof of theorem 3.1.1 we distinguish three cases depending on ¢
and the sign of (y!,y?). Since the proof is completely analogous to the proof of
theorem 3.1.1 we only give the essential steps.

). ¢ < ¢ and the assumptions of lemma 3.2.6 hold. By lemma 3.2.3 and lemma
3.2.6 we get for p < min{v/2, px }:

V(D,) = V(D))+V(D2)+V(D3)
V(K)

>
- 2

p?+ B p™ "+ op™2rt - hu(p, R, d),
where hy is a function with the following properties: h; is continuous in p and
R, monotonely decreasing in R and h;(0, R,d) > 0. Thus there exists a maximal

¥1(R, d) € (0,/2] such that

hi(p,R,d) >0, pel0,¢1(R,d) and hi(1(R,d),R,d) > 0.
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I1). ¢ < ¢ and the assumptions of lemma 3.2.7 hold. By lemma 3.2.3, 3.2.5 and

3.2.7 we get for p < {\/5, PK}
V(D,) V(D)) + V(D) + V(D))

28(K)p*" + ¢p™2rt - hy(p, R, d),

(A\VARAVS

for a certain function ho with the same properties as h;. Thus there exists a
maximal 1,(R, d) € (0,+/2] such that

hg(p,ﬁ, d) >0, pe [O, ’QZ)Q(P, d)) and hg(’@bg(ﬁ, d),ﬁ, d) > 0.

III). Let ¢ > ¢y and p; = max{p € R™" : dy(p) < d}. Then we get by lemma
3.2.4 for p < p1:

Rd—2
1+ c(p1)
> 2B8(K)p" !t +r%p* % hs(p, R, d),

V(D,)

v

V(D,) > rd;bp“cl(p, pr—p)?

for a certain junction hs with the same properties as h;. Thus there exists a
maximal ¢3(R, d) € (0, p1] such that

h3(pvﬁ7 d) > 07 pE [Oawfi(ﬁa d)) and h3(¢3(R d)7ﬁ7 d) > 0.

Now, let (R, d) = min{yy (R, d), ¥2(R,d), 13(R,d)}. As the first case occurs at
most twice we have shown that for p < ¥(R, d)

V(conv(C) 4+ pK) > V(conv(S,(K)) + pK)

with equality if and only if C' is densest sausage configuration of K (compare the
proof of theorem 3.1.1). Since the functions ;(R, d) are monotonely decreasing
in R we also have this property for ¢(R, d).

Assume R = 1. Thus K is a ball with radius 1, say. We obtain px = oo,
g(R) = 0, v(¢,R) = 1, (pR) = p and (¢, R) = c2(¢, \/5)7 G(o,R) = 1-—
ca(¢,v/2) (cf. proof of lemma 3.1.6). Thus lemmas 3.2.3 — 3.2.4 become the
lemmas of the last section, where lemma 3.2.6 is a combination of lemma 3.1.4
and 3.1.5. Hence we can choose the functions h;(p, R,d), 1 < i < 3, in such a
way that limg_. (1, d) = v/2. m

Let us remark that the above proof can not be applied to arbitrary convex
bodies. For instance, if we consider the configuration in figure 3.2.1 we see that
the sets D at the ends of the sausage have not the same volumes. Hence we can
not use our local approach (cf. (3.1.4)).
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4. The Sausage conjecture

Based on the proof of theorem 3.1.1 BETKE, HENK & WILLS gave for the “sau-
sage” dimension d(1) the upper bound 13,387 (cf. [BHW94al]). Here we prove
that the sausage conjecture is true in dimensions > 45.

We use the notation introduced in section 3.1, i.e., C'= {z!,... 2"} is a fixed
packing set for the d-dimensional ball B¢ and H is the DIRICHLET-VORONOT cell
of the point 2" = 0 with respect to C'. Furthermore, let D; = H N (conv(C') +
B?) and ¢,y', 9% L,U(¢), D, D?, D3 D} be defined as in definition 3.1.1 and
definition 3.1.2.

The proof of theorem 3.1.1 for p = 1 can briefly be summarized as:

e If the angle ¢ is small then the facet defining hyperplanes of the DIRICH-
LET-VORONOI cell H can not cut off to much from the set U(¢)+ B¢. Hence
the volume of the sausage part of D; is of order k4_; and the non-sausage
part is of order kg 9. AS kg o/kq 1 — 00, d — 00, we find a dimension
where V(Dy) is large enough (cf. lemmas 3.1.3 — 3.1.6).

e Independently of the angle ¢ we know that most of the (d — 3)-dimensional
sphere L+ N pS97! of radius p > 1 is contained in the cell H. So if ¢ is
large we can find by the convexity of H “many” points w in U(¢) such that
the volume of the section (w + (L N B%)) N H is of order x4 and hence
V(Dy) > 2k4-1 for large dimensions (cf. lemma 3.1.10).

To show that the sausage conjecture holds for dimensions > 45 we use the
following refinements and supplements to the above arguments:

e Suppose the angle ¢ is small and there is a facet defining hyperplane of H
which has a non empty intersection with U(¢) + (L*+ N B?). Say the point
of the configuration corresponding to this hyperplane is 2°. We call 2% a
perturbing point. Then, beside the volume related to (U(¢) + B) N H, we
find extra volume in the cell H which belongs to the section (conv{0, z*} +
BY N H. A careful analysis of the relation between perturbing points and
extra volume will be given in section 4.3.

95
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e Instead of estimating the volume of the section (w + (L* N BY))NH, w €
U(¢), by the spherical volume of (Lt N uS*Y) N H, p > 1, (cf. lemma
3.1.10) we calculate for each point w the volume of (w + (L*+ NS 1)) N H
by a method similar to that one used in lemma 3.1.10. To this end we will
give in section 4.1 an extension of lemma 3.1.7.

e For certain large ¢ we consider instead of the 2-dimensional set U(¢) a
suitable 3-dimensional set U(c, 3,7). The necessary definitions as well as

an estimate of V/ ((U(a, B,7) + BY) N H) will be given in section 4.2.
Finally in section 4.4 we will give the proof of:

“Theorem 45” Let d > 45, n €N, and C € P(B% n). Then
V(conv(C) + B > V(conv(S,(B%)) + BY)

with equality if and only if C' is a sausage configuration.

4.1 An extension of lemma 3.1.7

In the proof of theorem 3.1.1 we derived from an estimate of the spherical
volume V, ((Ll Np'S=1)n H) a lower bound for V, ((w + (LN pS1))n H),
w € U(¢) and p < p'. Here we describe a method which allows us to calcu-
late V. ((w +(L*NSTY)NnH ) in a more direct and efficient way. Furthermore,
based on this method we also obtain a “good” bound for V(D3).

To be more precise we need some elementary notation from the theory of
convex polytopes (cf. [Grii67]). For a non empty n-dimensional face F' of a
p-dimensional polytope P C E9 the normal cone N(P, F) is the cone gener-
ated by all vectors v € E¢ with the property that there exists a v € R with
F=Pn{z € EY: (v,x) = v}. The dimension of the normal cone is d — n.
In particular, F' + N (P, F) is the set of all points x € E? such that the nearest
point of x with respect to P belongs to F. The ratio of the spherical volume of
N(P,F)n S% 1 to V, (8% ™) is called the external angle of F' and is denoted by
(P, F).

Moreover we define some functions which will be used in the forthcoming
estimates:

Definition 4.1.1 Letr e R with 0 <r <1 and d,k,l,m € N such that k + 2 <
d—Il+mand k+2—m> (1+72)/(1—r?). Let

a(r) = V1—1r2

o 2(k+2-m) ,  Jk+1-m
o(k,m) = \/k+3—m - —alr) “NVEr3s—mw
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po(k,m,r) = r/c(k,m),

o (k,m,r) —(d—1l4+m)
M(d,l k,m,r) = / \/a(T)2+M20(l€,m)2 X
0

Md—l+m—(k+2)(1 _ /i)kdlub’

1 —(d—1+m)
K(d,1 k,m,r) = / o Ja(r)? + ji2e(k, m)’ x
o (k,m,r
[Ld_l+m_(k+2)(1 _ [L)kdpJ,
Q(d,l,m,r) = {keN:(1+)/1—-r)+m<k+2<d—1+m},
0 B 00 :Q(d, l,m,r) =10,
q(d,l,m,r) = min {% ke Q(d,l,m,r)}: otherwise.

The purpose of this section is to prove:

Lemma 4.1.1 Let L C E? be an I-dimensional subspace and let U C L be an
I-dimensional polytope with vertex 0. Moreover, let w € U with |w| < 1 such that
there exists an (I —m)-dimensional face F' of U with 0,w € cl(relint(F)). Then

(d —1 + m)/id_ler

V. ((w+ (N(U, F)n ") N H) > (U, F)- 1+ q(d, 1,m, [w])

(4.1.1)

Proof. Let M,, = {z € N{U/F)NnS*™ : w+ 2 ¢ H} and K,, = {2 €
N(U,F)n S41:w+ 2z € H}. By the definition of the external angle we have
Vi(My) + Vi(Ky) =0(U, F) - (d— 1 4+ m)kq_i+m and thus

(d —1 + m)/{d_Hm

Vo) = 00 P) o i ey

It remains to show

Vi(My)/Vi(Ky) < q(d, 1, m,|wl|). (4.1.2)

To this end we may assume Q(d, [, m, |w|) # (). To prove (4.1.2) we proceed as in
the proof of lemma 3.1.7. First, we apply ROGERS’ dissection technique to the
(d — I + m)-dimensional polyhedron P = (w+ N(U, F')) N H with respect to the
reference point ¢ = w. This means, we construct a dissection of the bounded
polyhedron P N W\% into simplices S of the form S = conv{c’, ..., c¢?~*™} such
that ¢’ is contained in a (d—[+m —1)-face G of PﬂVVj5 with w ¢ G, G contains
conv{ct,... ¢ ™} and ¢ is the nearest point of G to .

Next we consider the distance of a point ¢, i > 1, of such a simplex to w.
Obviously, if ¢’ belongs to a face of W; then we have |’ —w| > /2 — [w|?. Now
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let ¢ be a point of a (d — [ + m — i)-face G of P. As the (d — l)-dimensional
orthogonal complement of L is contained in N (U, F') we have that for i > m the
point ¢’ belongs to a (d — (i —m))-face of H. Clearly, for 1 < i < m the point ¢’
lies at least in one facet of H. In view of a result of ROGERS about the distance
of (d — i)-faces of H to the origin (cf. (3.1.13)) we get

, 1= |wl? 1< <
b — w| > { vl == (4.1.3)

V20 —m) /(i —m+1) — [w]im <.

Based on this dissection, (4.1.3) and the definition of the set Q(d,l,m, |w|) we
obtain analogously to the proof of lemma 3.1.7 that for each k € Q(d, [, m|w|)
(cf. (3.1.15)):

ViMw) _ Jyara-pelus 17 + (1= p)aly (d=tm) A=t =(2) (1 — )k dp,
Vi) = S (e [T + (1= )al ™ petem=e42) (1 — )k dpy”

(4.1.4)
where |y|,, denotes the distance of the point y to w and T € Conv{c’“+2 ol
c=tml x € conv{ct, ..., cF*1} are appropriate points of a simplex conv{c’,.

c=tm1 of the above construction. By (4.1.3) and the choice of k we have

[l = /1= W], [T > 20k +2 —m)/(k+3—m) — w2 > 1.

Since |uT + (1 — p)x|, is monotonely increasing in p we may assume |x|, < 1.
Then (4.1.4) is of the form

—(d—14+m)
V.(My) _ Jg° Va2 + (pe+ (1 — p)b)? pd=Em= 2 (1 — )k dpy
V. Kw —(d—14+m) 3
( ) fuo \/aQ + (pc+ (1 — p)b)? pud=trm=(k+2) (1 — )k dy

. (4.15)

where a > a = /1 — |w|? denotes the distance of the line through =,z from
w, b is given by a* + b* = |z|?, ¢ by a® + ¢ = |7|?, and py is determined by
a® + (poc + (1 — po)b)? = 1. But now (4.1.2) follows from lemma 3.1.9 and
definition 4.1.1 with 3 =1, v =2k +2 —m)/(k +3 —m) — |w|*, a = a(|w]|),
b=0, c=c(k,m) and g = po(k, m, |wl). ]

Remark 4.1.1 As Q(d,l,m,r) C Q(d',l,m,r) for d > d we see by lemma 3.1.9
that the function ¢(d, [, m,r) is monotonely decreasing in d.

Instead of the spherical volume V ((w + (N(U,F)nS1H)n H) we are often
interested in the volume V' ((w + (N(U, F)n BY))N H) Since

1

1% ((w +(N(U,F)n BY)n H) =T

V. (w+ (N(U,F)nS*=)) N H)

we have:
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Corollary 4.1.1 Under the assumptions of lemma 4.1.1 one has

V ((w+ (N(U,F)NB) N H) > (U, F) - < - q’g—l”;’jb o (4.1.6)

Furthermore, as an immediate consequence we obtain:
Corollary 4.1.2

1
1 1
V(D) 2 ke [ dw, V(DY) =k [ dr.
R AN R B e TR Ko

Proof. Let U = conv{0,2y',2y*}. For F = U we have §(U,F) = 1 and
N(U, F) = L*. By the definition of D} and the normal cones we get

(U(¢) + (N(U, F)n BY)) N H C D}

On account of corollary 4.1.1 this implies the lower bound for V(D7). For the
bound of V(D?) we note that

(conv{0, 5"} + (N (U, conv{0,2y'}) N BY)) N H C D?

and 0(U, conv{0,2y'}) = 1/2 for i = 1, 2. ]

In the next section we will apply corollary 4.1.1 to a 3-dimensional subset of
conv(C)N H.

4.2 3-dimensional sections

In the proof of theorem 3.1.1 we considered the parallel body of the 2-dimensional
set U(¢). Here we introduce a 3-dimensional subset U(a, 3,7) of conv(C) and
we give an estimate for the volume part of U(a, 8,7) + B belonging to H.

We may assume that 2® € C is a vector of the configuration which has a

maximal angle a € [0, 7/2] with the plane L = lin{y', y*}, i.e.

(y°1L)| = min {|(y'|L)[} and o = arccos(|(y’|L)]), (4.2.1)

1<i<n—

where we always assume arccos(:) € [0,7]. For simplification we assign the fol-
lowing coordinates to y*, 32, y*:
yl = (1707 07' A 70)T7

y* = (cos(v),sin(%),0,...,0)T,
y* = (cos(a)cos(f), cos(a)sin(f),sin(a),0,...,0)T,
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with 3 € [0,27]. v € [0, 7] denotes the angle between y' and y?. Clearly, the
angles «, 3,7 are not independent of each other and by (3.1.5) we find

| cos(ar) cos(3)] > cos(¢), |cos(a)cos(y — ()] > cos(d).

So a > 7/3 implies ¢ > 7/3 and by (3.1.5) we have | cos(y)| = cos(¢) for ¢ > /3.
Hence for o > /3

| cos(ar) cos(B)| = [cos(v)], [ cos(a)cos(y — B)| = [ cos(7)]. (4.2.2)
In the following we study some geometric quantities of the 3-dimensional set
Ula, 3,7) = conv{0,2y",2y% 23} N B¢ C H.
Let f;; denotes the angle between y* and 4/, 1 <i < j < 3. Then
fiz =7, fis=arccos(cos(a)cos(f)) and fy3 = arccos(cos(a) cos(y — 3)).

For a > 0 let u;; € lin{y', 4% 4*}, 1 < i < j < 3, be the outward normal unit
vector of the 2-face Fj; = conv{0,2y",2y’} N B¢ of U(a, 3,7):
u, = (0,0,—1,0,...,0)",
w3 = (0,—sin(a),cos(a)sin(f),0,.. T/\/l — cos?(a) cos?(f),
ug3 = (—sin(a)sin(y),sin(a) cos(7y), cos( )sin(y — 3),0,...,0)7/
\/1 — cos?(a) cos?(y — ).

Finally let g12, g13 and g2 3 denote the angle between the normal vectors (uy 3,
Us3), (U12,u23) and (uy 2, uy3), respectively. We get

ha = arccos | — sin?(a) cos(7y) + cos?(a) sin(B) sin(y — 3)
’ \/1 — cos?(a) cos?( \/1 — cos?(a) cos?(y — ) ’

g — arccos — cos(a) sin(y — f)
7 \/1—(3082 ) cos?(y — ()

e — arccos — cos(a) sin(B) ) .
7 \/1 — cos?(a) cos?(/3)

With these notation we obtain for V(D;) the lower bound:

Lemma 4.2.1 Let o > /3 and let h be the distance of conv{2y',2y? 2y} to
the origin. Then

V(D)) > V((U(a,8,9)+B)NH)>
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(91,2 + 13+ 92,3> /1 1
c Kd—1 dr
27 o 1+4q(d,3,2,7)

n fig + fiz + fo3 . /1 r dr
2 =2 Jy 1+4q(d,3,1,r)

’1“2

min{1,h}
b o) s | dr.
( s 91,2 91,3 92,3) Rd-3 0 1+ Q(d; 37 07 T) '

Proof. For abbreviation we set U = U(a, 8,7) and U = conv{0, 2y', 232, 213}
Obviously, we have (U + BY) N H C D; and by the definition of the normal cones
follows:

V(T+BYNH) > 23: / V ((w+ (N(U, conv{0,2y'}) N BY)) N H) duw

izlconv{O,yi}

+ % / V ((w+ (N(U, conv{0,2y',2}) N BY) N H) du

1<i<j<3 f
2,7

+ /V ((w+ (N(U,U) n BY) N H) dw.

From corollary 4.1.1 we obtain:

3
_ , 1
1% ((U + BY N H) > Z@(U, conv{0,2y'}) - kg1 / T q(d 3.2 |w|)dw
=1 conv{0,y?} R
. . 1
+ 6(U, conv{0,2y", 2y’ }) - Kg—o / dw
1§§j§3 Fi 1 + Q<d7 37 17 |U}|)

1
o(U,U) - f/ duw.
= )““vl+q<d,3,o,|wl> v

Now 6(U,conv{0,2y'}) = gi;/(27), k,j # i, O(U,conv{0,2y",2y7}) = 1/2 and
(U,U) = 1. Since o > 7/3 we have fio, f13, fos € [7/3,27/3]. Thus the
intersection of the cone generated by y', 3’ with B¢ belongs to the 2-face F ;.
Hence

1
‘/Fi,j 1 + Q(d, 37 17 |U)|>
Moreover, by the choice of h we have

min{1, h}(cone{y*,v* y*} N BY) c U
and as V, (cone{yl, v2 3N Sd_l) = (27 — g12 — 913 — g2.3) (cf. [Sch50]) we get

1 r
dw > / dr.
w = fig ), 1+ qd3,1,n"

702

1 min{h,1}
dw > (27 — g1o — grs — / d
/Ul+q(d,3,0, 2 27 = 12 = 91 = 03) | 1+q(d,3,0,n)"
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Based on lemma 4.2.1 we give in the sequel a lower bound for V(D;) only
depending on the angle o and the dimension. A lower bound for the distance h is
given by the distance n(«, 3,7) of the affine hull of {2y',2y% 2y3} to the origin:

he > (e, 8,7) = (2sin(a) sin(7)) - ((sin(a) sin(7))* + (sin(a) (1 = cos(7)))?

+(sin(y) — cos(a) sin(5) + cos(a) sin(f — 7))2)71/2.

Calculating the first and second partial derivatives with respect to 3 shows that

(e, 4,7) = min{n(e, v/2,7),m(e, ™ +7/2,7)} = n(e, ® +7/2,7). Furthermore,
it easy to see that for v € [0,7], a € [0,7/2] the function n(a, 7 + 7/2,7)

is monotonely increasing in a and monotonely decreasing in . Since o > 7/3
implies v € [r/3,27/3] (cf. (4.2.2)) the distance is minimal for o = 7 /3, v = 27/3
and 3 = 47 /3. It follows:

h > n(r/3,47/3,21/3) = \/3/7 > 0.65463, « > /3. (4.2.3)

In order to estimate V' (D;) we introduce the abbreviations:
1 i1
wild) = /0 T tqdss_int =12
/0 1+q(d,3,0,r)

ws (d) =

dr

and
w1 (d) *KRd—1

fl(aaﬁa’yad) = Z%,j( o

— ’LU3(d)/-€d_3)
(4.2.4)

+ 27mws(d)kg_3 + Zin’j way(d)kg_a,

where Y indicates the summation over 1 < ¢ < 7 < 3. By lemma 4.2.1 and
(4.2.3) we have

V(D) >V ((U(, 8,7) + BYN H) > fila, 8,7,d), for a>r/3
We claim:

Theorem 4.2.1 Let 7/3 < ag < w/2 and let d satisfy

w1 (d) cKRd—1

o — wg(d)lﬂd,g, S 0. (425)

Then for a > ag one has

V(Dl) Z fl(&Oa 70/27 Y0, d)7

where v € [1/3, /2] is given by cos(ag) cos(v/2) = cos(o)-
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Proof. It suffices to show that for a > g and on account of the restriction
(4.2.2) the function fi(«a, 3,7,d) is minimal for « = «ag, 8 = /2 and v = 7.
To this end we study the behavior of the partial derivatives of >° f; ; and 3_ g; ;.
The calculations of the derivatives were carried out with help of the program
Mathematica®, but all results were also verified “by hand” (see appendix). Since
the necessary trigonometric transformations are rather tedious we omit details.
With respect to v we obtain:

9 fij dfi2 I 0fa3 . cos(a) sin(y — 3)

= =1

Oy oy dy " \/1 — cos?(a) cos?(y — )
. cos(a) sin(y — f3) >0,

\/sin2(0z) + cos?(a) sin®(y — )
93 gi . 9912 4 991 3

oy 9y Iy
B — sin(a) sin(a) cos(a) cos(y — 3)
1 —cos?(a)cos?(y — 3) 1 —cos?(a)cos?(y — 3)

—sin(a)

~ 1+ cos(a)cos(y — f) =0.
So for all a € [ag, /2], 5 € [0,27] the function ) f;; is monotonely increasing
in v and ) ¢;; is monotonely decreasing in . By the choice of d (cf. (4.2.5)) we
get that fi(«, 3,7,d) is monotonely increasing in . Hence we may choose 7 as
small as possible, i.e. we may decrease v as long as (4.2.2) is satisfied. In any
case we may assume that fi(«, 3,7, d) attains its minimum for

v < m/2.
Next we consider the partial derivatives with respect to § and get:
OSfiy _ Oha | Ofa
g op g
cos(a) sin(3) B cos(a) sin(y — )

\/1 — cos?(a) cos?(3) \/1 — cos?(a) cos?(y — 5)7

Y 9i; 9912 | 9913  0Ogos
B o 9 0B
sin(a) cos?(a) sin(7y) sin(y — 203)
(1 — cos?(a) cos?(B))(1 — cos?(«) cos?(y — 3))
sin(a) cos(a) cos(y — 3)  sin(a) cos(a) cos(3)
11— cos?(a)cos?(y — B) 1 — cos?(a) cos?(B)
2sin(a) cos(a) sin(vy/2) sin(y/2 — ()
(1 + cos(a) cos(3))(1 + cos(a) cos(y — 3))
1©1988,1991,1992 von Wolfram Research Inc.
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It is easy to see that

95 f., <0:0<f<7/2, m+y/2<p<2m,
85” =0:0=7/2, B=m+7/2,
>0:9/2< B <T+79/2,
9% g1 >0:0<3<~/2, m+~v/2<8<2m,
ag” {0:67/2, B=m+9/2
& <0:7/2<B<T+7/2

Thus for given « € [ag, 7/2], 5 € [0,27] and v € [0, 7/2] we have (cf. (4.2.5)):

It remains to show that the combination («,7/2,7) satisfies the “angle restric-
tion” (4.2.2). Now, (4.2.2) implies

cos(a) (| cos(B)| + | cos(8 — 7)]) > 2cos(3).

From v < 7/2 follows | cos(3)| + | cos(8 — 7)| < 2cos(/2) and therefore, we get

cos(a) cos(y/2) > cos().
Finally, for the partial derivatives with respect to o we find:

a%;i’j (,7/2,7) = <ag;3 + ag;’?’) (er,7/2,7)
sin(a) cos(y/2)
\/1 — cos?(a) cos?(v/2)
- (B2 B2 B2) o
cos(a) sin(7) Ly ( sin(vy/2) )
1 — cos?(a) cos?(7y/2) 1 — cos?(a) cos?(7y/2)

%
B 2sin(vy/2)
1 + cos(a) cos(v/2)

03 gij
o (,7/2,7)

Hence the function fi(a,v/2,7,d) is monotonely increasing in «. In view of
(4.2.6) we obtain for « € [ag, 7/2], 8 € [0,27] and v € [0, 7/2]:

fl(a7 ﬁ) Y, d) 2 fl(aOy ’7/27 s d) (427)

Obviously, if (a, 3,7) satisfies (4.2.2) then also (ap,3,7). From the discussed
behavior of the function fi(a, (3,7, d) with respect to the parameters 3 and v we
see that fi(ao,v/2,7) is monotonely increasing in . Together with (4.2.7) this
shows the assertion. [ |
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4.3 Perturbing points

Now we return to the 2-dimensional set U(¢) from definition 3.1.1. As in the
last section let v be the angle between y' and y? and let a € [0,7/2] be the
maximal angle of a vector of the configuration with the 2-dimensional plane L
(cf. (4.2.1)). For § € [0,7] let ws be the point of the boundary of U(¢) with
(ws/|ws|,y') = cos(§). Then U(gp) = { ws : X € [0,1], 6 € [0,7]} and by the
definition of D7 (cf. definition 3.1.2) we have

o
= [ [ v (i + ) oDy ) drde.
0o Jo lws|

To evaluate the inner integral we use polar coordinates for the set (rﬁ +LY)ND,
and obtain

V(D)) = T 2/ / |lws|? / 7 h(r,ws, ) 2drdzds,

gd—1n[L
where for r € [0,1], 6 € [0,7] and z € S¥ ' N L+
h(r,ws, z) = max{h € R=% : rws + hz € D;},

denotes the “height of D;” in direction z over rws. For § € [0,~] and z € S¥INL+
we are only interested in points rws with a “height” in direction 2z not less than 1.
Hence we set

75, = max{r € R=": h(r,ws,2) > 1, r < 1}

With this notation we get

V(Dy) > d 2/ / lws|? / h(r, ws, ) 2drdzds. (4.3.1)

Sd—1npL

In general we can not assume that conv{0,ws} + z C H, i.e. 15, = 1, because
there might be a hyperplane M; = {z € E¢: (27, ) = |27]?/2}, which separates
a part of the set conv{0, ws} + z from H, i.e.
|27 ]2

2 )
But beside this negative influence, such a perturbing point 27 has also a positive
effect: For sufficiently small values of r we find rws+e¢,2 € conv(B?Uz? +BY)NH
for suitable numbers ¢, > 1. Hence h(r,ws,z) > 1 for small r and on account
of the exponent (d — 2) in (4.3.1) the inner integral becomes large. Figure 4.3.1
shows this situation where the shaded region belongs to Dy if there are no further
perturbing points.

(27, rws + 2) > > T

In the following we discuss the relationship between perturbing points and
the size of the integral [ r- h(r, ws, )4 2dr for a fixed pair of points w;s, z. The
main result is:
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Figure 4.3.1.

Theorem 4.3.1 Let d > 45, 6 € [0,7] and 2 € S N LL. Then
T8,z

[ o ws, 22 = fa(ad)
0
1/2 ta < /4,

1—sin(a)
— “cos(a)

min 1/2, [ r (—TCOS(O‘) + = )d72 drp:m/4 < a < (7/20)r.
0

sin(a) sin(a)

Let us remark, that the theorem is also true for dimensions less than 45. But
since the crucial dimension is 45, as we will see in the proof of theorem 45, we
state all theorems and lemmas with the bound 45. As an immediate consequence
of theorem 4.3.1 we obtain:

Corollary 4.3.1 Letd > 45, a € [0,(7/20)7] and ¢ € [0,7/2]. Then
V(D) 2 V(U(9))ka—z - 2 fo(e,d).
Proof. By (4.3.1) and theorem 4.3.1 we have
7 |ws]”

1
V(D) > H/J / ws|fo(ev, d) dzdd = (/0 ; d5> ka2 fola, d).

Sd=1nLt
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At the end of this section we show that a similar result holds for the volume
of the set D?, but with a function depending on ¢ instead of a.

The proof of theorem 4.3.1 is prepared by two lemmas for which we need the
following functions:

Definition 4.3.1 For a € [0,7/2) and 0 < ¢ < min{2sin(«), 2 cos(a)} let

pla,¢) = (\/4 — (- 251n(a))/(2 + (¢ — 2sin(a)),

w(a,§)

C 9 d—2
e = /<m+m> o

(2-0)/(2+¢)
92(047 Cv d) = / r <7“

wla,$)

g3(a7C7d> = gl(a,C,d)+gz(a,§,d),
g(a,d) = min{gs(e,(,d): 0 < < min{2sin(«),2cos(a)}},

sin(a) =1 [24¢ 1\
sin(a) | 2—¢ * sin(a)) dr,

1—sin(«a)
cos(a)

R B G

0

We note that gs(a, (,d) is a continuous function for « € [0,7/2) and 0 < ¢ <
min{2sin(a), 2 cos(a)} with gs(e,0,d) = g1(,0,d) = 1/2, a € [0,7/2).

Lemma 4.3.1 Let o € [0,7/2), d € [0,7] and z € ST NLL. Then

"5,z 9 g(a, d) ta < /4,
/0 rh(r, wg, 2)" % 2 { min {g(a,d),p(a,d)}: /4 < a.

Proof. Instead of ws we write w for short. For the proof we replace the Dirichlet-
Voronoi cell H by the “smaller” set Hy, C H given by

HS:{xEEd:<x,yj>§1,1§j§n—1}
and define analogously to h(r,ws, z), 5.

he(r) = max{h € R=":rw+ hz € H,N (conv(C) + B},
re = max{r € R=": hy(r)>1,r <1}
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As hy(r) < h(r,w, z) and ry < rs, it suffices to show

e a2 - | gl d) o< 7/,
/0 rhs(r)™" 2 { min {g(a,d),p(a,d)}:7/4 < a. (4.3.2)

Observe that B¢ C H, and thus w € (conv(C) + B?) N H,. In the case ry = 1
there is nothing to prove because [ rhy(r)¢2dr > 1/2 and g(a,0,d) = 1/2. So

we may assume 7, < 1. Hence there exists a point u € {2y',...,2y" "1} with
(u,rsw + z) = 2. (4.3.3)
Let
w
u=0ov+717— + (2,
|wl

with ¢, 7,¢ € R and v € lin(w, 2)*, |v] = 1. Then
o+ 71+ (=4 (4.3.4)

and (4.3.3) is equivalent to
Tlwlrs + ¢ = 2. (4.3.5)
Obviously, we have 0 < 7,( < 2. We claim that
¢ < 2sin(a). (4.3.6)

By the definition of a we get (y7, z) < sin(a) for allz € S™'NLt and 1 < j < n.
Since ry < 1 we have o > 0 and thus

(1/sin(a))z € H,, z€S™'NL* (4.3.7)

As (2/()z ¢ int(H,) it follows 2/¢ > 1/sin(a).
In particular (4.3.6) and (4.3.5) imply 7 > 0 and we may write
_2-¢

wlr

(4.3.8)

T's

Moreover, by (4.3.7) and lemma 3.1.1 (with Hj instead of H) we obtain the lower
bound
lwlrs > ¢1(1,1/sin(a) — 1) = (1 — sin(«))/ cos(a). (4.3.9)

Now we study the positive effects of such a perturbing point u. For r € [0, 1] let
W (r) = max{h € R=" : rw + hz € conv{0,u} + B*}.

The function A'(r) can easily be determined by the equality

rw -+ B ()2 — (rw + h'(r)z,u/2)u ? 1

?
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which says that the point given by the orthogonal projection of rw + h'(r)z onto
the hyperplane with normal vector u has unit length. We obtain with (4.3.4):

[wlrr¢ +24/4 = 2+ (=4 + 72 + (2)[w|?r?
1-C
lw|rr¢ + 2\/4 — (% = ow|?r?
1_C ‘

h'(r) =

We distinguish two cases.
i) 1/sin(a) < W'(0) = 2/y/4 — C%
Then sin(a) > (1 — (¢/2)?)"? and by (4.3.6) we get sin(a) > cos(a). Hence

a > 7/4. Furthermore, since h/(0)z € conv(C) + B? we may deduce from (4.3.7)
that (1/sin(a))z € (conv(C) + B?) N H,. Together with (4.3.9) it follows

1 1 —si 1 —si
conv {0, . z sm(a)w sm(a)w + z} C (conv(C) + B*) N H,.

sin(a) 7 cos(a)|w| 7 cos(a)|w|
N ] cos() (@)
1 w| cos(a 1 — sin(a
> — —.
ho(r) 2 sin(a) sin(a) forr & 10, |w|cos(oz)]
As |w| < 1 we have
/TS rh(r)4=2dr > p(a, d) for o > /4. (4.3.10)
0

ii) 1/sin(a) > 0'(0) = 2//4 — (2.

Then 4 sin?(a) < 4 — ¢2 which implies ¢ < 2 cos(a) and together with (4.3.6)
¢ < min{2sin(«), 2 cos(a)}. (4.3.11)
Now we determine the smallest value of ry such that the point row + h'(rg)z lies

in the hyperplane M = {x € E?: (u,x) = 2}. Such a pair (ro, h'(rg)) (if it exists)
must satisfy the relations:

rolw|T + 1 (ro)¢ =2, 7"8|w|2 + h’(r0)2 = 2. (4.3.12)

The first equation means that the point lies in the hyperplane M and the second
one expresses the property that row + h/(rg)z belongs to the boundary of the
(d — 1)-dimensional unit ball with center u/2 embedded in M. By (4.3.12) we

find )
2012 2 _Tolw’T
To‘w‘ + f =2
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and so

2T — C\/2(7'2 +¢?) —4
N jw|(7>+¢*)
We note that ry is well-defined, i.e. 72 4 ¢* > 2: Since r, |w| < 1 we have
T+ ¢ > 2 (cf.(4.3.5)) and thus 72 + ¢* > 2. Moreover, from (4.3.11) we get

¢ < /2 which implies ry > 0. We also have ry < r,. To show this we use (4.3.8)
and obtain

ro (4.3.13)

8 27’—{’\/2(7'2+C2)—4<2_C
jw|(7? + ¢?) ~ fwlr
& —TO2AT ) — 42— =)
s P4 < 2C+T\/2(72 +¢?) — 4.

Let h(r,{) =72+ (* —2¢ — T\/Q(Tz +(¢2) — 4. In order to show h(7,¢) < 0 for
0<(<+V2andTte€ 2 — ¢, v/4 — ¢?] we calculate the first partial derivative of h
with respect to 7:

Oh(r,C)  2mJ2(r? + (%) — 4 — 472 — 2 44
or J2(r2 +?) — 4 '

From this we deduce

Oh(r,()
or

<0 & /2P + () —4<2tr R -2

s 72 i—|—1 <2774 (2 -2
272 4 (2 -2 - '

Since ¢ < V2 and 72 + ¢? > 2 the function h(, () is monotonely decreasing in 7.
Thus h(r,¢) < (2= ¢,¢) =22 =) (1= ¢) = /(1= ¢)?) < 0. Hence rg < 7.

From the right hand side equation in (4.3.12) it follows A/(ry) > 1 and substi-
tuting 7o from (4.3.13) in the left hand side equation of (4.3.12) yields

2 2(r% + (?) — 4
W (ry) = C”VTZ(:;C) . (4.3.14)

Now let

Sy = conv{0,'(0)z, row, row + h'(ro)z},
Sy = convi{row, row + h'(ro)z, rsw, rsw + z}, (4.3.15)
T(a) = conv{0,(1/sin(a))z,rsw,rsw + z}.
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Clearly, S, Sy C conv(C') + B? and from the definition of r, and (4.3.7) we have
T (o) C Hy. Hence

T(a) N (S;USy) C (conv(C) + BY N H,.

In the following we derive from the set T'(a) N (S U S3) a lower bound for the
function h4(r). To this end we first show that we may assume 72 + (% = 4. Let

71 = rolw| + A’ (rg) and {; = B (ro) — rolw].
Then on account of (4.3.12), 1o, |w| < 1 and A/(r9) > 1 we have
1,0 >0, 7+ ¢ =4 and mro|lw| + G (o) = 2.

Now let & = myw/|w|4¢ 2 and let 7, B (1), 7o, S, S, T((@) be defined as above for
the point u. By the choice of 7, (1 we get 7o = (7'1 G1)/(2lw|) and W (7o) =
h'(ro) = (11 + ¢1)/2 (cf.(4.3.13), (4.3.14)). Furthermore as Trolw| + Ch'(rg) = 2
and 72 + (% < 4 we obtain 7, > 7, ¢(; < ¢ and (cf. (4.3.8)):

2 2 2. 2-¢
= < = 1'(0), Fs = <
GV © |w[m wlT

Hence we have S; € Sy, Sy € Sy and T(a) C T(«). Figure 4.3.2 shows the set

S, U S, and the new set S; U Ss.

= 7.

To :fo fs rs 1 2
lw[ 71

BN

“w-axis”

Figure 4.3.2.



72 CHAPTER 4. THE SAUSAGE CONJECTURE

So the sets S1,S2,T(«) becomes “minimal” (with respect to inclusion) for
parameters 7,( > 0 which satisfy 72 + (? = 4 and ¢ < min{2sin(«a), 2 cos(a)
(cf. (4.3.11)). Therefore, in the sequel we assume 72+(* = 4 and thus (cf. (4.3.8),
(4.3.13), (4.3.14)):

Y. SR oy '
2+l 2l (4.3.16)
HO) = ——— W)= L2 C
RV ek 0 2 '

Next we determine the intersection T'(a) N (S7 U Sy). Let xjw + x22 be
the point of intersection of the two segments conv{(1/sin(«a))z,rsw + z} and
conv{h/(0)z, row + ' (ro)w} (see figure 4.3.3).

“z-axis”

1/sin(a)
X2
2/4/4 — (? "
1 e
X1 Ts 1 9 “w-axis”
wl 71

Figure 4.3.3.

Observe that on account of A'(0) < 1/sin(«) < 2/¢ such a point exists. Then
we obviously have

T(a)N(S1USy) = convi{0,h'(0)z, xaw, x1w + X272}

U conv{xjw, xyiw + x22,Tsw, rsw + z}

and for x1, x2 we find (cf. (4.3.16)):
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X1 = :u(av >/|w|7

e = = e = (4.3.17)
B 1 V2 4+ (sin(a) — 1
~ sin(a) +pla ) 2—( sin(a)
Hence
2 ¢ pa; ¢)
hs(r) > Nzye + 7|w| Nzpe for 0<r< ] and
1 V24 Csin(a) — 1 p(a, Q) V2—(
() 2 S P =T Y Tl TS Al
Together with |w| <1 and the first case (4.3.10) this shows (4.3.2). ]

In the next lemma we give a lower bound for the function g(«, d) depending
on the dimension and a.

Lemma 4.3.2 Let d > 45. Then
= 3 ra < /4,
9(a, d) Zmin{%,p(a,d)}:ﬂ/élgag (7/20).

Proof.  First we consider the behavior of g3(a, ¢, d) with respect to a.. For a given
¢ the set T'(«) in (4.3.15) becomes “smaller” (with respect to inclusion) if we
increase the angle . So, by construction, the function gs(«, ¢, d) is monotonely
decreasing in a. On account of ¢ < min{2sin(«),2cos(«)} this means that

g(o,d) > min{gs(n/4,¢,d) : 0 < ¢ <V2}, a<m/4,
and for a > 7/4:
g(a,d) > min {gg(a,Qcos(a),d),
min{gs((7/20)7,¢,d) : 0 < ¢ < 2cos((7/20)7)} }.
For o« > 7/4 we have
g3(a,2cos(a),d) = go(a,2cos(a),d)
_ ( cos(a) 1 — cos(a)

1 —sin(a) \ 1+ cos(a) ) p(a,d) 2 p(a,d),

where we use the substitution r = cos(a)/(1—sin(a))-(1—cos(a))/(1+cos(a)) /2 ¢.
So, as g(a,d) < g3(a,0,d) = 1/2 and g3 increases in d it suffices to prove
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min{gs(m/4,¢,45) : 0 < ¢ <V2} = 1/2,

min{gs((7/20)7,(,45) : 0 < ¢ < 2cos((7/20)m)} = 1/2. (4.3.18)

Figure 4.3.4 shows a plot of the functions log,(gs(7/4,¢,45)), ¢ € [0,v/2] and
log,(g3((7/20)7,(,45)), ¢ € [0,2cos((7/20)m)]. The plots were generated by the
program Mathematica®.

log(gs(7/4,(,45))

54

- \/va

log,(g95((7/20)7,(,45))

1

. ~j/ cos((7|/20)7r) 2cos((7|/20)7r)

Figure 4.3.4.

We “see” that (4.3.18) holds. But beside this more visual proof we give in the
following for a fixed a a lower bound of g3(a, (,45) from which (4.3.18) follows
by evaluating a certain auxiliary function at finitely many points. To this end
we write for abbreviation m.s. or m.d. for monotonely increasing or monotonely
decreasing, respectively. We recall (cf. definition 4.3.1):

#(aC) ¢ 9 d—2
g1(a, ¢, d) = / T<T\/4—7C2+\/m> dr.
0

2(©1988,1991,1992 von Wolfram Research Inc.




4.3. PERTURBING POINTS 75

Substituting r = p(a, ) - t yields

1

2
.G = (0 1600, C.0) i ot ) = ]
(4.3.19)
Obviously, p(a, () is m.d. in (. We claim that for ¢ € [0, 1]:
w(t, ¢, a) is m.i. in (. (4.3.20)

Since 2/4/4 — ¢? is m.i. in ( it suffices to prove that w(1, (, «) is m.i. By (4.3.17)

we have

u}(LC’&):1_i_sin(oz)—1\/2+C( ( 7()_\/2—(>'

sin(a) /2 —¢ e V2+ ¢
Now pu(e,¢) — ((2—¢)/(2+¢))? < 0 and thus it even suffices to show that
(e, Q) — ((2—0)/(2+ ()% is m.d. for 0 < ¢ < min{2sin(a),2cos(a)}. This

can be easily verified by calculating the first derivative. Altogether we obtain for

¢ € [¢, ¢l

(4.3.21)

gi(a, ¢, d) > p(a, ()? /01 tw(t, ¢, o) 2dt. (4.3.22)

For the function g, we use the substitution 7 = p(a, Q)t4+(1—1)((2—¢)/(2+¢))/?
and get (cf. (4.3.21)):

nlaCt) = (Vg —nla0)) x

/(,m, )t+(1—t)\/_vzlg> (W1, ¢ a) — D)t + 1) 2 dt

/1 (“ - twﬁ) (w(l, ¢ a) = Dt + 1) 2dt

Since ((2—¢)/(2+ )% — u(a,¢) is m.i. and ((2—¢)/(2+¢))"? is m.d. in ¢ we
find for ¢ € [(1, (o] (cf. (4.3.20)):

V2—G V2—G
92(a7C7d) > (m_u(a>C1)> 2+<—2

/(1 1) (W1, G a) — D+ 1) 2 dt,

X

(4.3.23)
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Let u(a, 1, (2, d) be the sum of the right hand sides in (4.3.22) and (4.3.23). For
¢ € [¢1, ¢ it follows:
g3(a, ¢, d) = u(a, Gi, Ga, d). (4.3.24)

Unfortunately, for ¢; = 0 and ¢, > 0 we have u(«, 0, (3, d) < 1/2. Hence for small
values of ¢ we need another estimate for the function gs;. By (4.3.19) we get

gg(Oé,C,d) > gl(a7<7d>
9 d—2 ) 1
- (yza) weor]
1
2

9 d—2 1¢ d—2
> (2 2= (2> 1
> () wlacry (jamec 1)
where the last inequality results from the convexity of the function ¢(t{u(c, () /2+
1). So, in order to prove g3(a, ¢, d) > 1/2 it suffices to show

\/42_7C2,u(a,g“)2/(d_2) (i,u(a, )+ 1) > 1. (4.3.25)
To this end let ¥ (a, ¢) be defined by
pag) = VL
’ L+ (¢/2)¢(a, Q)"
$(0,C) = VA4 =+ 2sin(a)(2—vV4—-C?)/C
’ V4 — %+ 2sin(a) '
By the BERNOULLI inequality (1 + z)™ > 1+ mx for > —1, m € N, we obtain
2 ¢ ¢ _ VA=)
<1+d_22¢(0%§)> > 1+§¢(047C)—W~
Hence
N(O‘a C)Q/(d—Q) > (V 4 - C2/2)2/(d_2) > \4 4— C2/2

T 14 (2/(d=2))(¢/2)¢(a, ) T 14 (2/(d = 2))(¢/2)¥(a, ()
So (4.3.25) holds for all ¢ with

i, Q) > (e, Q) (4.3.26)

Calculating the first partial derivative with respect to ¢ shows that ¥(a, () is
m.i. in ¢, ¢ < V2. As p(a,() is m.d. in ¢ we have shown that for each (,(a)
satisfying (4.3.26) and ¢ € [0, («(a)] one has

g3(a, ¢, d) > 1/2. (4.3.27)
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Finally, let (*(«) = min{2sin(«), 2 cos(a)}, m € Nand [(i) = (.(a)+(i/m)(C* ()
— ((a)), 0 < i < m. From (4.3.24) it follows

ple.C.d) > | min {u(o10), 16+ 1))} for €€ [G.a). (). (4329
Hence for the proof of (4.3.18) it suffices to find for d = 45, a € {n/4,(7/20)7}
a («(a) such that (4.3.26) is satisfied for ( = (.(a) and an m € N such that the
right hand side in (4.3.28) is > 1/2. It can be easily verified by some numerical
computations that (,(m/4) = 1/10, m = 30 and (. ((7/20)x) = 1/1000, m = 5000
meet the requirements for o« = 7/4 and a = (7/20)7. [

Obviously, theorem 4.3.1 is an immediate consequence of lemma 4.3.1 and
lemma 4.3.2.

In order to obtain a result for the volume of D? similar to that one stated in
corollary 4.3.1 for V(D7) we can proceed completely analogously as in the case
D}. First observe that

V(DY) => |V ((ryi + N(U, conv{0,2y'})) N D1> dr,

1

where N (U, conv{0,2y'}) denotes the normal cone of the edge conv{0,2y'} with
respect to U = conv{0, 2y', 2y?}. For i = 1,2 and 2z € N(U, conv{0, 2y'}) N S¢-1
we define h;(r,z) = max{h € R=% : ry’ + hz € Dy} and r;, = max{r € R=° :
hi(r,z) > 1,r < 1}. Using polar coordinates we get (cf. (4.3.1)):

2 Ti,z
V(D?) > —— d Z / /hi(r, 2)drdz. (4.3.29)
=1 gd-1AN(U,conv{0,2yi}) 0

For z € N(U,conv{0,2y'}) N S ! we have to estimate [;"* h;(r, 2)?*dr. To this
end we must adjust some of the functions defined in definition 4.3.1:

Definition 4.3.2 For ¢ € [0,7/2) and 0 < ¢ < min{2sin(¢),2cos(¢)} let

w(#,6) ¢ 9 d—1
01(9,¢,d) = Q‘ + ) dr,
' 0/ VI—Z JI=C

poca — [ (et FEC 1)
92D 6, ¢) = o sin(@) V2—C ' sin(g) ’

§3(¢7C7d) = gl(¢7C7d)+92(¢7C7d)7
9(¢,d) = min{gs(¢,¢,d) : 0 < ¢ < min{2sin(¢), 2cos(¢)}},
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1—sin(¢)

cos(¢) d—1
o = | (5 mm) "

With these notation we have:
Lemma 4.3.3 Let ¢ € [0,7/2) and z € N(U, conv{0,2y'}) NS¢, Fori=1,2

one has (6.d) 5 /4
oz A1 g(o, o < T7/4,
[ e 2 { min {G(6, d), j(6, d)} :7/4 < 6.

This lemma can be proved in the same way as lemma 4.3.1. Indeed, we just have
to set |w| = 1 and to replace the angle o by ¢ in (4.3.7). Therefore, we omit
a detailed proof. Analogously to the proof of lemma 4.3.2 we can estimate the
function g(¢,d) and get:

Lemma 4.3.4 Let d > 45. Then

5 -1 cp < m/4,
9(¢,d) { > min {1, p(¢,d)}:7/4 < ¢ < (7/20)7.

Clearly, the last two lemmas imply (cf. theorem 4.3.1):

Theorem 4.3.2 Let d > 45 and z € N(U, conv{0,2y'})NS4L. Fori=1,2 one
has

Ti,z

i1 - 1 HORS 71'/4,
/ hi(r, 2)™dr = fa(o,d) = { min {1, 5(¢,d)} :7/4 < ¢ < (7/20)7.

0
Finally, on account of (4.3.29) we obtain:
Corollary 4.3.2 Let d > 45 and ¢ € [0, (7/20)x|. Then

V(D}) > kg1 fa(o,d).

4.4 Proof of theorem 45

Before we start with the proof we remark that the functions fa(cv,d), fa(¢,d)
(cf. theorem 4.3.1, theorem 4.3.2) are monotonely decreasing in «, ¢, respectively
and monotonely increasing in d. Hence for o, ¢ < o = (41/120)7 and d > 45 we

have fo(a, d) > fo(a*,45) = 1/2 and fo(p,d) > fo(a*,45) = 1. Thus
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—_

fg(Oé, d) =

B 2’ for a, p < o™, d > 45. (4.4.1)
fQ((bad) = 1,

We recall that the quotient rq_1/k4 is strictly monotonely increasing in d.

Proof of theorem 45. As in the proof of theorem 3.1.1 we distinguish three cases
depending on the angle ¢ and the sign of (y',y?).

i) ¢<m/3and (y',y%) > 0.

So we have the “end of the sausage” case and by lemma 3.1.2, lemma 3.1.5,
corollary 4.3.1 and corollary 4.3.2 we get

V(D1) > V(Dy)+ V(D) + V(DY)
> Gfola,d)rg—s + fo(d, d)ra—1 +
Since a < ¢ < 7/3 we obtain by (4.4.1):

1—¢/m
2

Rd-

1 _ 1
V(D1) > Ka-1+ —ka+ ?/fd (ﬁd 2 _ )

2 2 Kq T
1 1 1

Z Kd—1 + =Kq + ?/id <H43 — > Z Kd—1 + =Kd, d Z 45.
2 2 K4s T 2

ii) ¢ <n/3and (y',y?) <O0.
First assume ¢ < 7/4. Then by lemma 3.1.2, lemma 3.1.6, corollary 4.3.1,
corollary 4.3.2 and (4.4.1):

V(D)) > V(D})+V(D})+ V(D))
; cos(¢) — sin(¢)
>
> ¢faa,d)ka—s + fo(@,d)ka—1 + cos(6/2) Kd—1
¢ Kg—o  cos(¢) —sin(¢)
2Kq_ 1= —1].
-1 (2 Rd—1 * cos(¢/2)
Calculating the second derivative shows that the function in the brackets is con-
cave with respect to ¢, ¢ < 7/2. Hence for d > 45 and ¢ < 7 /4:

v

V(D;) > min {2/<;d_1, 2641 + Kqg_1 ( — 1)} > 2Kq_1. (4.4.2)
8 K44

Now let 7/4 < ¢ < /3. As above we obtain for d > 45:
V(Dy) = V(Di)+ V(DY) 2 ¢falar, d)rg-z + fol¢, d)rg

> 2Kg-1+ Kd-1 (g Zd_z — 1) 2> 2K4-1 + Kda—1 <g:43 — 1)
d-1 44

2/’id,1.

>
Together with (4.4.2) it follows V(Dy) > 2k4—1 for d > 45.
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iii) ¢ > /3.

Here we distinguish two cases depending on the angle a. In both cases we have to
evaluate certain integrals which involves the function ¢(d, 1, m,r) from definition
4.1.1. Instead of determining the exact value of ¢(d,l,m,r) we use the following
upper bound:

M(d, 1, k(m,r),m,r)

d,l <
q(d,1,m,7) < K(d,l, k(m,r),m,r)’

where k(m,r) is the smallest integer greater (1+r%)/(1 —r?) +m. If k(m,r) ¢
Q(d,l,m,r) then we use the trivial upper bound co. The numerical calculations
of the integrals were carried out by the program Mathematica® with a working
precision of 40 digits.

Let a < o* = (41/120)7. For V(D?) we use corollary 4.1.2 and for V(D7) we use
corollary 4.3.1. On account of ¢ > /3 and (4.4.1) we get for d > 45:

1 1
D) > V(D! D) > Lpy —/ dr.
V(D) 2 V(D) + V(DY) 2 Ghacs b ha [ g ma gy

Now [y 1/(1 4 q(45,2,1,7))dr > 0.65837342 and as ¢(d,2,1,r) is monotonely
decreasing in d (cf. remark 4.1.1) we have

Rd—2

V(Dy)

v

Qg1 + K1 (g _ 1.34162658)

Rd-1

(4.4.3)

> 2Ky 1+ K (W’“‘?’ - 1.34162658) > 9%y, d>45.
6 K44

For @ > o we apply theorem 4.2.1. First we check that for d > 45 the re-
striction (4.2.5) is satisfied: Since the functions w;(d), 1 < i < 3, are monotonely
increasing in d we have w;(d)/ws(d) < 1/ws(45) for d > 45. For the values of
w;(45) we find

w1 (45) > 0.63554953, wo(45) > 0.21627735 and w;(45) > 0.089235868.

Hence for d > 45 we have w;(d)/ws(d) < 12 < 27kq_3/Kkq—1 and (4.2.5) is
satisfied. Theorem 4.2.1 yields

V(D1> Z fl(a*vv*/277*7d)>

where v* € [0,7/2] is given by cos(v*)/ cos(7*/2) = cos(a*), i.e. v* ~ 1.1274629.
By (4.2.4) we see that fi(a*,7*/2,7*,d)/kq_1 is monotonely increasing in d and

3(©1988,1991,1992 von Wolfram Research Inc.
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with fi(a,7*/2,~",45) /K > 2.00510026 we get

fl(a*,v*/Q,v*,d) _ 2)
Rd—1
fl((l/*, 7*/27’7*a 45) o 2)

R4

V(D1) > 2K4-1+ Ka1 (

> 2K4-1 + Ka—1 (

> 2Kg_1, d > 45.

Together with (4.4.3) we obtain also in this case V/(Dy) > 2k, for d > 45.
Now the first case (¢ < 7/3, (y',y?) > 0) can occur at most twice and this
shows that a sausage configuration is a best possible configuration for d > 45
(cf. proof of theorem 3.1.1). Furthermore, it follows immediately from the proof
that a sausage configuration is the only best possible configuration for d > 45. B

Remark. The crucial point for the dimension 45 is the case ¢ > 7/3 of the above
proof. There we have to find an angle o* and a dimension d such that

e for o < o* the volume estimate of V(D;) based on corollary 4.3.1 (“per-
turbing points”) and on corollary 4.1.2 is sufficient, and

e for @ > o the estimate of V(D;) given by theorem 4.2.1 (“3-dimensional
sections”) is large enough.

With computer aided methods one can “show” that the cases i) and ii) of the
proof are harmless for dimension > 30.



5. Lattice packings

In this chapter we consider the relation between finite lattice packings and infinite
lattice packings in the sense of chapter 2. The basic definitions will be given in
section 5.1; in particular we will introduce a critical lattice parameter for convex
bodies by analogy with definition 2.1.2. An upper bound for the critical parameter
will be established in section 5.3. This estimate is based on a result from section
5.2, where we study a certain problem in the Geometry of Numbers, that may
be of interest in its own.

5.1 Introduction

In section 1.1 we have already given an outline of the infinite lattice packing
problem and the following notation has been introduced: For K € K¢, P*(K)
denotes the set of all packing lattices with respect to K, and the density of a
densest lattice packing of K is denoted by 6*(K).

Now, what is a finite lattice packing? In order to obtain a relation between
finite and infinite lattice packings it seems natural to regard

P*(K,n) ={C € P(K,n) : there exists a A € P*(K) with C C A}

as the set of all finite lattice packing sets or lattice packing configurations of
cardinality n. So C' + K, for C € P*(K,n), is called a finite lattice packing of
K (of cardinality n). For example, the first packing set {0, z!, 2%} in figure 5.1.1
is a lattice packing set of cardinality 3 for the 2-dimensional unit disk. The set
is part of the hexagonal lattice, whereas the second set {0, z', %} is not a finite
lattice packing set since any lattice containing x!, 2 must also contain the point
z=al+ 2%

As in the non-lattice case we are interested in densest packings. By analogy
with definition 2.1.1 we define, for a parameter p > 0, the following parameterized
densities.

82
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8

Figure 5.1.1.

Definition 5.1.1 Letn € N and K € K. For p € R let

0 (K,n) = sup{d,(K,C):C e P*(K,n)},
0,(K) = limsupd,(K,n).

65(K,n) is the density of a densest finite lattice packing of cardinality n with
respect to the “density measure” induced by 6,(K,C). §%(K) may be considered
as the “density” of a densest finite lattice packing as n tends to infinity.

It is not hard to see that we may replace “sup” in the definition of 5;([( M)
by “max”. In order to give a little insight in the special nature of lattice packings
we give a proof.

Proposition 5.1.1 Letn € N, K € K¢ and p > 0. Then

0, (K,n) =max{d,(K,C): C € P*(K,n)}.

Proof. Let C™ = {a'»,... 2"} € P*(K,n) with lim nV(K)/V(conv(C™) +
pK) = §5(K,n). Without loss of generality we may assume 0 € C™. From
the definition of §%(K,n) it follows that the diameter of conv(C™) is bounded
from above by a constant only depending on n,d and K. Hence every sequence
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{27} en, 1 < j < n, is bounded and thus, by the theorem of BOLzZANO-

WEIERSTRASS, there exists a subsequence {my }ren and points zt,... 2" € B9
with 2/ — 27 as k — 0.
Let C' = {z',... 2"}. With respect to the HAUSSDORF metric we have

conv(C™) — conv(C) for k — oo and by the continuity of the mixed vol-
umes (cf. [Sch93]) we obtain §%(K) = nV(K)/V(conv(C) + pK). It remains
to show that C € P*(K,n). To this end let A(C™) = {z € E? : x =

m ozt 2z € Z,1 < i < n}. Since each C™* is part of a packing lattice
of K we have A(C™) € P(K). Now, limy_o Y5 zix'™ = 3" | z;2" and thus
ANCO)={z e Et:2 =", 22" 2 € Z, 1 <i<n}isapacking set for K. Hence
A(C) is a discrete subgroup of E4. In general A(C') need not be full-dimensional,
i.e. we may have dim(A(C)) < d. In this case it is easy to see that A(C') can be
supplemented to a packing lattice A of K. [ ]

The influence of the parameter p on the shape of a best possible finite lattice
packing is the same as in the general case (see section 2.1). Since every sausage
configuration in the sense of definition 2.1.3 is also a finite lattice packing set, we
may make the following definitions (compare to definitions 2.1.2, 2.1.4, 2.1.5):

Definition 5.1.2 For K € K% let
pi(K) = inf{peR”":05(K) = 6"(K)}
pi(K) = sup{p e R™": §*(K) = &5(K)}.

The number pi(K) is called the critical lattice parameter of K and p%(K) is called
the sausage lattice parameter of K.

It can easily be checked that the statements of theorem 2.1.1, theorem 2.1.2
and theorem 2.1.3 also hold for the functionals 05 (K, n), 0;(K), pi(K) and p;(K).

So without a needing of a new proof we summarize these properties in the next
theorem:

Theorem 5.1.1 Letn € N, K € K¢, and let 0 < p*(K), pi(K) < oo.

i) 05(K,n), 6;(K) are monotonely decreasing in p.

i) Let A : E? — E% be a non-singular affine transformation. Then
63 (AK,n) = 63(K,n) and 63(AK) = 63(K).

pl—d ; n
n{&=—— p,9\ ~ <9,(K,S,(K
ii1) mln{ 7 , P } d(n l)pd_l pd < 5,(K, Su(K))

< 05(K,n) < max{p~ ¢ 1}.

w) 6,(K,n), 6,(K) are continuous in p.
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v) There exist packing sets C,, € P*(K,n), n € N, such that hlnn_?;ip 0,(K,Cy)
= 6*(K) for all p € R7.

(K) > 6*(K) for all p € R>.

vii) 53(K) = 8(K) for p € (0. p3()].
(K) = 8(K) for p € [p2(K). o0).
(K) < pi(K).

z) Let n € N and p' > 0 with 6, (K,n) = 6,(K,S,(K)). Then for 0 <
p < p' each C € P*(K,n) with §,(K,C) = §3(K,n) is a densest sausage
configuration.

i) 5Z§(K)<K) <6(K) < 5p (K)(K)

From the last inequality we may deduce (cf. corollary 2.1.1):

[

(LK) 5 < 6°(F) < (pi(K))' ™. (511)

Also, as in the non-lattice case we see that any lower bound for p*(K) gives an
upper bound for 6*(K), and any upper bound for p’(K) yields a lower bound for

5 (K).
Obviously, P*(K,n) C P(K,n), and thus
p1(K) > pu(K). (5.1.2)

Hence any lower bound on ps(K) is a lower bound of p#(K). Summarizing the
results for the sausage parameter of section 2.4 and section 3.1 we have:

Theorem 5.1.2 Let K € K%,

1d 32 for K = —K,

Y

1
piK) = o5d”
5d~? : for general K.

ligninfp:(Bd) > V2.

In general a relation of the form (5.1.2) does not exist for the critical lattice
parameter. Indeed, the determination of a “good” upper bound on p}(K) appears
to be much harder than in the non-lattice case. Namely, suppose we could prove
for centrally symmetric convex bodies the upper bound 2 as in the non-lattice
case (cf. corollary 2.3.1), then by (5.1.1) we would have proved a lower bound
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on 0*(K) that is of the same order of magnitude as the famous MINKOWSKI-
HrAwkA bound (cf (1.1.9)). So we can not expect to show pi(K) < « for any
a < 2. Unfortunately, even a proof for pi(K) < 2, K € K, is currently out of
reach. In section 5.3 we will show

V21/2 . for K = BY,
3 : for K = —K,
(3/2)(d+1): for general K.

po(K) <

At least for the d-dimensional unit ball the bound is not too bad with respect to
the MINKWOSKI-HLAWKA bound. The proof of this result is prepared by section
5.2, where we study a certain problem in the theory of infinite lattice packings.

However, in dimension 2 we have much more information. Since §*(K) = §(K)
for K € K? (cf. (1.1.11)) it is easy to see that theorem 2.2.1 and theorem 2.2.2
are valid for finite lattice packings. As a consequence of corollary 2.2.2 we obtain:

Theorem 5.1.3 For K € K2 one has

< 1) = () = S = ) = ) < 1

A~ w

Proof. Obviously,

6" (K) = 6(K) = limsup 6,,(x) (K, n) > limsup 6, (K, n)

n—oo

and so 05 4y (K) < 6"(K). On account of theorem 5.1.1 vi) and i) this implies
Pi(K) < p.(K). With corollary 2.2.2 and (5.1.2) we obtain

ps(K) = ps(K) = = pe(K) = pe(K).

From p(K) < pi(K) we now get the assertion. [

Finally we remark that BETKE [Bet93] has proved p*(B3) = p(B?). This
indicates that a “lattice” version of the strong sausage conjecture (see section
2.1) might also be true.

5.2 Lattice refinements

A well-known problem in the Geometry of Numbers is to find a lattice which is
simultaneously a good packing and covering lattice of a given centrally symmetric
convex body (cf. [GL87], [EGH89]). To be more precise we define:
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Definition 5.2.1 For K € K& and a lattice A C E? let
(K, A) = min{y € R”%: A + uK = B9},

w(K,N) is called the inhomogeneous minimum (or covering radius) of A with
respect to K.

w(K, A) is the smallest factor p of dilation with the property that A is a covering
lattice for K. In terms of the distance function (cf. [GL87]) we get

p(K, A) = max min{fx(z —a) : a € A}. (5.2.1)

zeE

This means that p(K,A) is the smallest number p such that, for each point
z € E% one can find a lattice point a € A with fx(2—a) < p. Since A+u(K,A)K
is a covering of the space we have

V(u(E, N K) > det(A).

Hence for A € P*(K) follows (cf. (1.1.3)):

S(K,A) > (M(; A)>d. (5.2.2)

Now the simultaneous packing and covering problem is the task:

Simultaneous packing and covering problem. For K € K¢ find a packing
lattice A € P*(K) such that u(K, A) is minimal.

Here we are dealing with the following “special” version of the above problem:

Lattice refinement problem. For K € K and A € P*(K) find a packing
lattice A" of K with A C N such that u(K, ") becomes minimal.

So, starting with an arbitrary packing lattice A of a centrally symmetric con-
vex body we are looking among all packing lattices containing A for one whose
inhomogeneous minimum is minimal. The existence of such a “minimal” lattice
follows from the selection theorem of MAHLER (cf. [Gru93]).

In view of the MINKOWSKI-HLAWKA bound (cf. (1.1.9)) and (5.2.2) one can
not expect to solve one of these problems with an inhomogeneous minimum less
than 2. However, in 1972 BUTLER [But72] showed:

Theorem 5.2.1 (Butler) Let K € KZ. There erists a packing lattice A €
P*(K) with
(K, A) =2+0(1), d — oo.
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The proof of Butler is based on a mean value argument. Therefore his result can
not be applied to the refinement problem.

But ROGERS [Rog50] proved in 1950 that the ratio of the density of a thinnest
lattice covering to the density of a densest lattice packing of a centrally symmetric
convex body K € K¢ is at most 37! (see also [Ban90]). As an immediate
consequence of ROGERS’ proof of that result we obtain:

Theorem 5.2.2 (Rogers) Let K € K& and A € P*(K). There exists a packing
lattice A" € P*(K) with A C A’ and

(K, N') < 3.

Proof. Let K € K& and A € P*(K) with u(K,A) > 3. In the following we show
the existence of a packing lattice A’ € P*(K) with A C A’ and det(A) = § det(A).
Since the determinant of a packing lattice of K is bounded from below by V(K)
(cf. (1.1.3)) this implies the assertion.
By the definition of the inhomogeneous minimum there exists a point z € E¢
with
fr(z—9) > w(K,A), geA. (5.2.3)
Moreover, we have p(K, %A) = %,u(K, A), and thus there exists a lattice point
a € A with ) )
fx (z _ 3a> < Su(KA). (5.2.4)

Clearly, %a is not a point of A and hence the determinant of the lattice A’ =
AU <%a + A) U (%a + A) is one-third of the determinant of A. It remains to show
that A’ is a packing lattice of K, i.e. fx(u —v) > 2, u,v € A’. To this end it is
sufficient to prove fx (%a - g) > 2 for all g € A. Since fx : B4 — RZ° is a norm
we obtain by (5.2.3) and (5.2.4) for g € A:

fic(50-9) 2 Ix(z—9)— i (3a—2) 2 (K. 0) 22

Figure 5.2.1 gives an illustration of the proof, where A is the orthogonal lattice
spanned by x! and z? (the shaded disks). The new lattice A’ is generated by the
points ! and za (the shaded and the blank disks).

Now, based on ROGERS idea, we get a slightly better bound for the special
case K = B,

Theorem 5.2.3 Let A € P*(B?). There exists a packing lattice A' € P*(B?)
with A C A" and
(B A < V/21/2 ~ 2.2913.
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Figure 5.2.1.

Proof. Let A € P*(B?) with u = u(B? A) > \/21/2. We construct a lattice
A’ containing A such that det(A’) < 3 det(A). To do this we consider not only
points of the lattice %A as in the proof of theorem 5.2.2, but also points of the
lattice $A. First we note that there exists a z € E? with (cf. (5.2.3)):

lz—gl>p, geA. (5.2.5)

Let 5 =4/21/5. We distinguish two cases.

[) There exists an a € A with

1 7

— —a| < =. 5.2.6
2= 50 < 3 ( )
Since 8 > 1 the point %a is not a lattice point of A and thus the determinant of
the lattice A’ = AU (%a + A) is one-half of det(A). To show that A’ is a packing

lattice of BY it suffices to prove ‘%a — g‘ > 2 for all g € A. By (5.2.5) we get

1 N 1 2 - ,LLQ
2! 79T T =y
1 2 1 1 2
& 209 +Z|g—z|2+(§a—g,g—z) > MZ (5.2.7)
On the other hand we have by (5.2.6):
1 2 u2
Ea—g—kg—z < I
1 2 1 2
S [ge—y +|g—z!2+2<§a—g,g—z> ggz. (5.2.8)
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Substituting (3a—g, g—z) from (5.2.8) in (5.2.7) yields on account of [g—z[* > p*:

2 2
>0 >u

ﬁZ

1
7a/_
9 g

IT)  There exists no g € A such that (5.2.6) is satisfied. Then we have

-Z— = - = A. 5.2.9
5 g’ 3 ’ g’ =35 < (5:2.9)
Now, let a € A be a lattice point with (cf. (5.2.4)):
Ll <# (5.2.10)
z——a| < = 2.
3173

We consider the lattice A’ = AU( a+ A) ( a+ A). Clearly, det(A’) = % det(A)

(cf. proof of theorem 5.2.2) and it remains to show A’ € P*(B%). To this end we
proceed as in the first case. Let g € A. From (5.2.9) we get

‘ n 1 2>4u2
3 9 g9 - 3 =93
112 4 , 4, 1 42
o lg—za 4 —gPtig-zar—g > (5211
9- g0 +5le-alt - gaz-n 2 gk (21
and from (5.2.10):
1 2 /J,2
_ _Zq <
TITITRY =
12 ) 1 w
= ‘g - ga +lz—gl*+2(g— gauz —g) < 9 (5.2.12)

Substituting (g—3a, z—g) from (5.2.12) in (5.2.11) yields on account of |z—g|* >

2
4 3
M<@+J>24

2

In any case we obtain a lattice A’ € P*(B?) containing A with det(A’) < I det(A).

Since the determinant of a packing lattice A € P*(B?) is bounded from below,

this “construction” gives a lattice of the required form after finite many steps.
]

2

‘ 1
- =a
973

Remarks.

e For sphere lattice packings the inhomogeneous minimum is the radius of
the so called “deep holes” (cf. [CS93]). The above result says that deep
holes in a “good” packing lattice can not be “too deep”.
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e In view of (5.2.2), theorem 5.2.3 implies that for every packing lattice A €
P*(B?) there exists a refinement A’ € P*(B?), A C A/, with

5(B% A) > (213)d

In particular we obtain the lower bound 2.3~ for a densest lattice sphere
packing. Clearly this bound is worse than the bound given by the theorem
of MINKOWSKI-HLAWKA, but on the other hand the proof is simple and
in a certain way constructive. Indeed, one can show that starting with

appropriate orthogonal lattices one can construct densest packing lattices
in up to 8 dimensions by successive refinements (cf. [Hen94]).

5.3 An upper bound for the critical lattice parameter

Before we can state the bound we have to introduce the so called honeycombs or
“Wabenzellen”.

Definition 5.3.1 Let K € K¢ and A C E? be a lattice.
H(K,A) = {z € E*: fx(z) < fx(z —a), Vae A}
is called the honeycomb of K with respect to A.

H(B9,A) is also called the DIRICHLET-VORONOi-cell of the lattice A. The next
lemma collects some elementary properties of honeycombs.

Lemma 5.3.1 Let K € K¢ and A C E? be a lattice.
i) H(K,A) is a compact centrally symmetric ray set with H(K,A) + A = E4,
i) u(K,A) =min{p € R=°: H(K,A) C pK}.
If, in addition, K is strictly convex then
i) int(H(K,\)) = {x € B?: fr(x) < fx(x —a), Ya € A\{0}}.

iv) H(K,A) is a centrally symmetric starbody.

v) H(K,A) + A is a tiling and thus V(H (K, A)) = det(A).
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We note that a ray set in E?¢ is a non-empty set S C E¢ with the property: if
x € S and A € [0,1] then Az € S. A star body is a ray set S for which the
following conditions hold: S is closed, and for z € S, A € [0,1), the point Az is
an inner point of S. A convex body K is called strictly convex if for all z,y € K
and A € (0,1) the points Az + (1 — \)y are inner points of K (cf. [GL8T7]).

There exists a proof of some of the properties claimed in the lemma for 2-
dimensional honeycombs (“domains of action”) by BAMBAH, ROGERS & ZAs-
SENHAUS [BRZ64]. Although their arguments also work in higher dimensions for
completeness’ sake we give a short proof of the lemma.

Proof of Lemma 5.5.1.

i) Since fr is continuous H (K, A) is closed. By the definition of the inhomo-
geneous minimum we have

H(K, ) C u(K,\K. (5.3.1)

Thus H(K,A) is compact. Now let z € H(K,A), A € [0,1], and g € A with
Tk (A2) > fr(Az —g). Then

fr(g—2) = frxlg—Az+(A=1)2) < fx(g — A2) + (1 = N) fx(2)
< AMr(2) + (1= AN [fr(2) = fx(2).

This contradicts the choice of z and hence H (K, A) is a ray set. Obviously,
H(K,A) is centrally symmetric and moreover we have

H(K,\) + A= E" (5.3.2)

ii) Let H(K,A) C BK. Then K + A covers the space (cf. (5.3.2)) and so
B> p(K,A). Together with (5.3.1) we get ii).

iii) It is not hard to see that {x € E¢: fx(z) < fx(r—a), Va € A\{0}} belongs
to the interior of H(K,A). This holds for any centrally symmetric convex
body, not necessarily strictly convex. Let z € int(H (K, A)) and suppose
there exists an a € A with fx(z) = fx(z —a). Then

0,a € z+ fx(2)K, (5.3.3)

and both points lie in the boundary of z+ fx(2)K. Let {x € E?: 'z = 0}
be a supporting hyperplane of 2z + fx(2)K at the point 0 with ¢z > 0
for all x € z + fx(2)K and let @ € (0,1) such that z + aa € H(K,A).
Since K is strictly convex and on account of (5.3.3) we have c¢’'a > 0. Thus
'z > 0 for all x € 2+ aa + fx(2)K. Hence z + aa ¢ fx(z)K which
is equivalent to fx(z + aa) > fx(z). Furthermore, we see by (5.3.3) that
(1 —a)a € z+ fx(2)K and thus fx(z + aa —a) < fx(z). Altogether we
get fx(z+ aa) > fg(z+ aa — a), which contradicts z + aa € H(K, A).
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iv) Let z € H(K,A) and XA € (0,1). In view of i) and iii) we have to show
fr(Az) < fr(Az —a) for all @ € A\{0}. Suppose there exists a g € A\{0}
with fx(Az) > fx(Az — g). Clearly, we may assume g # vz, v € R. Since
K is strictly convex we have (cf. [Min96)) for z,y € E%

fr(x+y) = fr(x) + fx(y) & Iy € R with z = vy.

Hence

fr(g—=2) = flg = Az + (A =1)2) < flg = Az) + (1 = N[k (2) < fx(2),
in contradiction to the definition of H(K,A).

v) It suffices to prove (g + int(H (K, A)))N(h + int(H(K,A))) = 0 for g, h € A,
g # h. Suppose the contrary and let z be a point of the intersection. By
iii) we get fx(z —g) < fx(z —h) < fr(z —9). ]

Based on theorems 5.2.2, 5.2.3 and lemma 5.3.1 we obtain by analogy with
theorem 2.3.1:

Theorem 5.3.1 Letn € N and K € K%, Then

V21/2 . for K = B%,
6, (K,n) < 0" (K) for p > { 3 . for K = —K,
(3/2)(d+1): for general K.

Proof. First we prove the statement for the class of centrally symmetric strictly
convex bodies. From this case we may deduce the general case of symmetric
bodies by a standard approximation argument.

Let K € K¢ be strictly convex and let p € R with p > 3. By proposi-
tion 5.1.1 there exists a lattice packing set C' € P*(K,n) such that §%(K,n) =
nV(K)/V(conv(C) + pK). Let A € P*(K) be a packing lattice with C' C A. In
view of theorem 5.2.2 we may assume

u(K, A) < 3. (5.3.4)
With lemma 5.3.1 ii) we obtain
H(K,A) C pK. (5.3.5)

By lemma 5.3.1 v) we know that H (K, A) generates a lattice tiling with respect
to A and thus

.  aV(K) nV(K) V(K
O(Ksm) = V(conv(C') + pK) = V(C+ H(K,A)  det
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By theorem 5.2.3 we may replace p = 3 by p = v/21/2 in the case K = B<.

Now, let K be an arbitrary centrally symmetric body, p > 3 and let C, A as
above. Since the class of strictly convex bodies is dense in the space of convex
bodies (cf. [BF34]) there exists a L € K¢, L strictly convex, such that (cf. (5.3.4)):

u(L,A) (1 + ‘W) <3, (5.3.6)

where dy (L, K) denotes the HAUSSDORF distance (cf. [BF34]). In particular we
have L C K + dy (L, K)B? and so by (5.3.6):

H(L,A) C u(L,A)L C pK.

Hence

*  aV(K) nV(K)  _ V(K)
0p(K,m) = V(conv(C) 4 pK) = V(C+H(L,A))  det(A) ’

Finally, let K be an arbitrary convex body, p > 2(d+1), and let C, A as above.
Since C'is also a packing set for the difference body with respect to A (cf. (1.1.6))
we obtain from (5.3.7), (1.1.7) and the relation DK C 41K (cf. [BF34]):

. nV (K) nV(K)
() V(conv(C') + pK) = V(conv(C) + Z4DK)
V(K) .. V(K) .. o
< i s (DK € s (D) = 57 (K),

As an immediate consequence of this theorem and theorem 5.1.1 vi) we obtain
for the critical lattice parameter:

Corollary 5.3.1 Let K € K°.

V21/2 . for K = BY,
pZ(K)<{ 3 : for K = —K,
(3/2)(d+1): for general K.



Appendix

In this chapter we will give the proofs of some inequalities used in chapter 4.

A]_ Partial derivatives Of fl,g, f173, f273, 91’2, 9173, 9273

Since M = —1/v1 — 22 it follows:

Remark A.1.1 Let

f1,2(057577) = 7
fis(a, B,7) = arccos(cos(a) cos(f3)),
fas(a, B,v) = arccos(cos(a) cos(y — 3)).

Then
Sfa ., Ofhs  Ohs _
5y Y6 da ’
5o cos(@)sin(y = 8)  8fss _ —cos(a)sin(y - f)
oy \/1 — cos?(a) cos?(y — ﬁ) op \/1 — cos?(a) cos?(y — ﬁ)
Ofas sin(a) cos(y — )
do \/1 — cos?(a) cos?(y — 6)
df13 _ 0 0fis cos(a) sin(3)
0y Lo \/1 — cos?(a COSQ(ﬁ)
0f13 sin(a) cos(3)
oo \/1 — cos?(a 0082(6)

Remark A.1.2 Let

_ — sin’(a) cos(y) + cos*(a) sin(3) sin(y — )
a0, ,7) = axccos <\/1 — cos?(a) cos?( \/1 — cos?(a) cos?(y — ﬁ)) '
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Then
0912 —sin(a)
v 1 —cos?(a)cos?(y —3)’ (A.18)
0gip —sin(a) cos?(a) sin(v) sin(y — 23)
s (11— COSQ(Oé).COS2(ﬁ))<1 — cos?(a) cos?(y — 3)) (A.1.9)
Welanrn) = O AL

Proof. For abbreviation we set

\/ 1 —cos?(a)cos?(ff) and wy = \/ 1 — cos?(a) cos?(y — 7).
First we prove the following identity

! e B (A.1.11)

\/1 _( —sin®(a) cos(y)+cos?(a) sin(B3) sin(y—p) ) 2 SiIl(Oé) Sm(q/)

w1 w2

This equation is equivalent to
sin?(«) sin?(7) = wiwj — (— sin’(a) cos(7y) +cos® () sin(B) sin(y— 3))*. (A.1.12)
Now

wiw; — (—sin(a) cos(7y) + cos?(a) sin(3) sin(y — 3))?
— 1 — cos?(a) cos?(B) — cos*(a) cos*(y — 3)
+ cos?(a)cos® () cos*(y — 1)

(
— sin?(a) cos?(y) — cos*(a) sin?(B) sin?(y — 3)

+ 2sin?(a) cos®(a) sin(/3) cos(7) sin(y — )
cos? Fsin?=1 1 — cos?(a) cos?(B) — cos?(a) cos®(y — 3)
+ cos?(a) cos?(y — B3)
— sin*(a) cos?(y) — cos*(a) sin’ ()
+ 2sin?(a) cos?(a) sin(3) cos(7) sin(y — /)
= 1 — cos?(a) cos?(B) — cos*(a) cos*(y — 3)
+ cos’ () (cos (a) cos?(y — B) — cos*(a) sin?(3 ))
— sin*(a) cos?(y) + 2sin?(a) cos? () sin(3) cos(7) sin(y — f3)
cosf =l o (@) cos?(B) — cos*(a 2)cos (v—B)

+ cos?(a) cos?(y — 3) — cos?(a) sin?(3)
— sin?(a) cos?(a )(cos (v—p5) — Slnz(ﬁ))



A.1. PARTIAL DERIVATIVES OF fi,2: f1,3, f2.3, 912, 91,3, 92,3 97

— sin(a) cos?(y) + 2sin’(a) cos®(a) sin(3) cos(7y) sin(y — 3)
sin?(ar) — sin?(a) cos? (o )(cos v — ) — sin?(3 )

cos? +_sir12 =1

— sin®(a)sin®(a) cos?(7)

+ 2 sin?(a) cos®(a) sin(3) cos(7) sin(y — )
sin®(a) — sin®(a) cos?()(cos?(y — B) — sin*(3))
— sin®(a) cos?(7y) 4 sin®(a) cos?(a) cos?(7y)

+ 2 sin?(a) cos®(a) sin(/3) cos(7) sin(y — f3)
sin®(a) sin®(7) + sin®(a) cos®(a) x

(s0°(8) — o’y — B) + cos’(3)

+ 2sin(f) cos(7y) sin(y — ﬁ))

cos? —l—_sin2 =1

cos? Jr_sin2 =1

Cos(z:ﬂ:y’):ClOS'(Z> cos(y)
Fonlzlsin@) sin?(a) sin®(y) + sin?(a) cos®(a) x

(sin?(8) — cos?(7) cos(8) — sin’(y) sin’(5)
)

— 2cos(7) cos(B) sin(7y) sin(3)

+ cos?(7y) + 2sin() cos(v) sin(y — ﬁ))

sin?(a) sin?(y) + sin?(a) cos?(a) x

(2 cos?(y) sin?(3) — 2 cos(7y) cos(/3) sin(7) sin(3)

+ 2sin(3) cos(7) sin(y — ﬁ))

= sin?(a) sin®(y) + 2 sin?(a) cos®(a) cos() sin(B) x
(cos(y) sin(5) — cos(3) sin(vy) + sin(y — ﬁ))

cos? +_sir12 =1

sin(zfy)‘:sin‘('z) cos(y)
cos(z:)s,m(y) S]n2(a> SlIl2 (7)

Next we prove

sin?(a) sin(7) - <sin2(a) sin(7y) + cos?(a) sin(f) cos(y — 5)) wiwy

Wi W w3 wws

(— sin®(a) cos(v) + cos?(a) sin(3) sin(y — 5)) L cos? () cos(y — B) sin(y — )

wiws

(A.1.13)

This is equivalent to

sin?(a) sin(y) = (sin?(a) sin(7) + cos*(a) sin(3) cos(y — 3))w;
— ( sin?(a) cos(7) + cos?(a) sin(3) sin(y — 6)) cos?(a) cos(y — B) sin(y — f3)
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Now

(sin?(a) sin(y) + cos?(a) sin(3) cos(y — B))w3
— (— sin®(a) cos(7y) + cos?(a) sin(3) sin(y — ﬁ)) X
cos?(a) cos(y — B) sin(y — B)

= sin?(a) sin(y) + cos®(a) sin(3) cos(y — 3)

— sin®(a) sin(y) cos®(a) cos®(y — f3)

- costla)sin(9) cos’(; — 5)

(o) cos(7) cos?(a) cos(y — B) sin(y — 3)
— cos*(a) sin(B) cos(y — B) sin®(y — 3)
— sin?(a) sin(y) + cos?(a) cos(y — ) x
(sm( B) — sin®(a) sin(y) cos(y — 3)
) cos®(y = )
+ sin®(a) cos(7) sin(y — 3) — cos?(a) sin(3) sin?(y — ﬁ))

sin?(a) sin(7) + cos®(a) cos(y — ) x

(sm( ) — sin?(a) sin(y) cos(y — 3)

— cos?(a) sin(3)
)

— cos?(a) sin(3

cos? —l—_sin2 =1

+ sin?(a) cos(7) sin(y — ﬁ))
cos? +sin?=1

= sin?(a) sin(7) + cos®(a) cos(y — ) sin?(a) x
(sin(B) — sin(y) cos(y — B) + cos(7) sin(y — 3))

sin(z+y)=sin(z) cos(y)
+ cos(z) sin(y)

sin?(a) sin(y).

On account of (A.1.11) and (A.1.13) we find for the partial derivative of g, » with
respect to vy

0gr2 -1 9
5'7 \/1 — sin?(a) cos(y)+cos?(a) sin(3) sin(v—ﬁ))Q
wi w2

wiws

((sm (@) sin(y) + cos®(a) sin(B) cos(y — B))wrwy

wiws

(—sin®(a) cos(y) + cos*(a) sin(G) sin(y — B)) % cos() cos(y — 3) sin(y — ﬁ))

—wywy  sin’(a)sin(y) — sin(«)

sin(a)sin(y)  wywows 1 —cos?(a)cos?(y — )
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Before we consider the partial derivative of g, o with respect to 3 we prove
the following identity:

sin?(a) cos?(a) sin?(7y) sin(y — 23) = cos*(a) sin(y — 28)wiws;
+ sin®(a) cos(7) cos®(a) cos(B3) sin(B)w3
— cos( )sin(y — ) cos(B)?

*(@) cos(v) cos®(a) cos(y — ﬁ)sm(v Buwy

+ cos*(a) sin(B) cos(y — B) sin?(y — B)wi. (A.1.14)

Dividing both sides by cos?(a) gives

*(a) sin?(B3

— sin

sin’(a) sin®(y) sin(y — 23) = sin(y — 28)wiw)
+ sin®(a (7) cos(B3) sin(B)w3
— cos?(a (B) sin(y — B) cos(B)ws
?(a) cos(v) cos(y — B) sin(y — B)w]
(8) cos(y — B) sin®(y — B)ut.

«
Again we make some elementary transformations

~—

S
COS
SlIl2

~—

— sin

+ cos?(a) s

v\—/

sin

sin(y — 26)wiw;
+ sin*(«) cos() cos(3) sin(B)w;
— cos?(a) sin?(3) sin(y — 3) cos(B)w?3
— sin®(a) cos(7) cos(y — B) sin(y — B)w?
+ cos® () sin(B) cos(y — B) sin®*(y — B)w?
= sin(y — 26)wiws
+ sin®(a) cos(7) cos(3) sin(3)
— sin’(a) cos(7) cos(B) sin(B) cos®(a) cos®(y — 3)

— cos?(a) sin?(3) sin(y — 3) cos(B3)

+ cos?(a) sin?(B) sin(y — ) cos(3) cos*(a) cos*(y — f3)
— sin®(ar) cos(v) cos(y — B) sin(y — )

+ sin?(a) cos(7) cos(y — B) sin(y — ) cos?(a) cos®(3)
+ cos?(a) sin(B) cos(y — B) sin®*(y — 3)

— cos'(a) sin(B) cos(y — B) sin?(y — ) cos?(6)

(cos(’y B)sin(y — ) — sin(5) cos(ﬁ))
+ cos? () sin(B) sin(y — B) cos(y — B) cos(3) x
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in(y—) cos(y+
(y) s(y) st () ()

sin(z+y)=sin(z) cos(y)
=+ cos(z) sin(y)

cos? +_sin2 =1

APPENDIX

(sin(B) cos(y — B) — sin(y — B) cos(5))
+ sin®(a) cos?(av) cos(7) cos(3) cos(y — 3) x
(sin(v — [3) cos(3) — sin(f) cos(y — 5))

sin(y — 28)w?w3
+ sin®(a) cos(y)(—cos sin( —26))

(a) sin(3) sin(y — B)(cos(7) sin(y — 28))
+ cos? () sin(B) sin(y — B) cos(y — B) cos(3) x
(sin(B) cos(y — B) — sin(y — B) cos(3))

() cos?(ar) cos(7) cos(3) cos(y — B) x
(sin(y — 8) cos(B) — sin(B) cos(y — 8))

2

+ cos“(«

sin(y — 28)w?w3

+ sin®(a) cos(y )( — sin(y — 23) cos(y ))

+ cos?(a) sin(3) sin(y — )(COS(’)/) sin(y — Qﬁ))
+ cos? () sin(B) sin(y — B) cos(y — B) cos(3) x
( — sin(y — 2) )
+ sin?(a) cos? () cos(7y) cos(/3) cos(y — ﬁ)(sin(7 - 25))
sin(y — 23) x

(w1w2 — sin®(a) cos*(7)

+ cos?(a) sin() sin(y — ) cos(7)

— cos*(a) sin(B) sin(y — 3) cos(y — 3) cos(6)

+ sin®(a) cos® () cos(7) cos(3) cos(y — ﬁ))

sin(y — 2/3) x

(1 — cos?(a) cos®(B) — cos?(a) cos*(y — 3)

+ cos? () cos?(3) cos?(y — B3)
)

— sin®(a)cos®(7)

+ cos?(a) sin
(

)sin(y — f3) cos(7)

(8
— cos*(a) sin(B) sin(y — ) cos(y — B) cos(83)
+ sin?(a) cos?(a) cos(7y) cos(/3) cos(y — ﬁ))
sin(y — 2/) x

(Sin2(oz) sin?(7y)
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cos? —i—_sin2 =1

cos? —|—_sin2 =1

PARTIAL DERIVATIVES OF fi9, f13, f2.3,91,2, 01,3, 92,3

+ 1 — cos?(a)cos®(3) — cos?(a) cos®(y —
+ cos?(a) cos?(3) cos?(y — B) — sin?(a)

+ 6082

4

) sin(() sin(y — 3) cos(y)

sin(y — 23) x
(sinQ(oz) sin?(7)
+ cos? () sin®(3
(a) cos®(3
+ cos?(a) sin(3)
( )si

— cos*(a) sin(p

)
B) cos?(y — f3)
sin(y — ) cos(¥)
)
= sin(y — 203) sin”

+ sin(B3) sin(y — ) cos(7y)

— COSQ(Q) sin(f3) sin(y — ) cos(y — ) cos(3)
Y

+ sin®(a) cos(7) cos(3) cos(y — ﬁ))

(sinQ(ﬁ) — cos?(y — fB)
4 cos?(a) cos(f3) cos(y — fB) x

(cos(B) cos(y — ) — sin(f) sin(y — 3))
+ sin() sin(y — ) cos(y)

+ sin®(a) cos(7) cos(3) cos(y — ﬁ))

(s0°(5) ~ cos?( — )

+ cos?(a) cos() cos(y — 3) cos(7)
+ sin(B) sin(y — 3) cos(7)

+ sin®(a) cos(7) cos(3) cos(y — ﬁ))

+ sin(B) sin(y — B3) COS(V))

(a
— cos*(a) sin(8) sin(y — 3) cos(y — 3) cos(B)
+ sin®(a) cos?(ar) cos(7) cos(3) cos(y — ﬁ))

— cos?(a) cos*(y — 3)

(v = B) cos(y — ) cos(f)
+ sin?(a) cos?(a) cos(7y) cos(/3) cos(y — ﬁ))

() Sin2(7) + sin(y — 2) COS2<a) X
(sinz(ﬁ) — cos?(y — B) + cos*(a) cos®(3) cos(y —

)

= sin(y — 208) sin®(a) sin®(7y) + sin(y — 23) cos®(a) x
(

sin(y — 23) sin®(a) sin®(7) + sin(y — 23) cos?(a) x

sin(y — 23) sin®(a) sin®(7) + sin(y — 23) cos?(a) x
(sin?(8) — cos®(y = ) + cos(8) cos(y — ) cos(7)

101
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cos(zty)=cos(x) cos(y)
F sin(ﬂsin(y)

sin(y — 203) sin?(a) sin®(7) + sin(y — 23) cos?(a) x
(s0%(8) — sin(3) sin*(3) — cos(6) cos(3) sin(3) sin()
+ sin(3) sin(y — ) cos(7))

cos? +sin?=1 .
= sin(~y

— 23) sin®(a) sin®(7) + sin(y — 203) cos*(a) x

(cos?(3) sn(3) — cos(9) cos() sin( ) sin)
+ sin(B) sin(y — ) cos(7))

sin(z+y)=sin(z) cos(y)

+ cos(z:)sin(y) Sin(’y . ZB) Sil’lz(Oé) Sin2 (,y)

On account of (A.1.11) and (A.1.14) we obtain

591,2 _ wWi1Wsa

53 sin(a)sin(’y)x
C%%M@%WBmw—6%ﬂmWW%W—ﬁway_

wiws

wiws

[«wm%wwww+w§mmmwmmw—ﬁ»{

cos?(a) cos(8) sin(5) % — cos’(a) cos(y — B) sin(y — )Z:}D
cos™() sin(y — 20)wiwy

l(— sin?(a) cos(7y) + cos?(a) sin(B) sin(y — 3)) {

cos*(a) cos(f3) Siﬂ(ﬁ)ii — cos*() cos(y — ) sin(y — ﬂ)ZZ}D
"‘amwﬁiwwhéx

(cosQ(oz) sin(y — 26)wiw; —

+ sin?(a) cos(7) cos?(a) cos(3) sin(B)w3

— cos’(a) sin®(8) sin(y — 3) cos(B)w;

— sin®(a) cos(7) cos*(a) cos(y — B) sin(y — B)w?
(

)
+ cos*(a) sin() cos(y — ) sin?(y — ﬁ)w1>
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B sin(a) cos?(a) sin(7y) sin(y — 203)
(1 — cos?(a) cos?(6))(1 — cos?(a) cos?(y — 3))

Further from (A.1.11) follows

(591,2 _ w1 Wsa

Sa sin(a)sin(y)
((—2 sin(a) cos(7) cos(a) — 2 cos(a) sin(a) sin(f) sin(y — B))wiwy
(—sin?(a) cos(y) + cos?(a) sin(B) sin(y — 3)) y
[Zi cos(a) sin(a) cos®(3) + Z}; cos(a) sin(a) cos?(y — 6)} )

Hence

L =(0,7/2,7) = s1n(04;slin(fy) 8

Yo
( 2 sin(a) cos(a) cos(y) — 2 cos(a) sin(a) sin” (7/2)) , )
( 1= cos?(a) cos2(7/2) (1 — cos®(a) cos®(y/2))

(— sin®(a) cos(y) + cos?(a) sin?(7/2))(2 cos(a) sin(a) COSQ(’}//Q))>
1 — cos?(a) cos?(/2)
—2 cos(a)

- sin(y)(1 — cos?(a) cos?(y/2)) 8

<(— cos(y) — sin®(7/2))(1 — cos®(a) cos®(7/2)) —

(= sin?(a) cos(7) + cos?(a) sinQ(fy/Q))(cosZ(’y/Q)))

_ —2 cos(a) "
sin(y)(1 — cos?(«) cos?(y/2))

( — cos(7y) — sin®(7/2) + cos(7) cos®(a) cos*(7/2)
+ cos?(ar) sin?(y/2) cos?(7y/2)
+ sin?(a) cos(7) cos?(7/2) — cos®(a) sin®(7/2) cos2(7/2)>

cos? +:sin2:1 —2 COS(O{)
sin(7y)(1 — cos?(a) cos?(v/2))

(1= costr) = s (r2) + cos) o2

X
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s(z)=cos(z/2)?
a2 —2 cos(a)

cos™(7/2) (cos(7) —

1)

APPENDIX

sin(y)(1 — cos?(a) cos?(v/2))

227 ~2cos(a) cos?(7/2) (~2sin’(7/2))
sin(y)(1 — cos?(«) cos?(7y/2))

2 (e con(e) cos(a) sin(y)

(1 — cos?(a) cos?(y/2))

1217 ( _ Lsin(y) cos(@)(cos?(ar)(cos(y) + 1) — 2))
2 (1 — cos? () cos?(y/2))?

Remark A.1.3 Let

414 = arccos ( — cos(a) sin(y — () ) ‘
’ \/1 — cos?(a) cos?(y — )

Then
dg13  sin(a)cos(a)cos(y — )
v 1 —cos?(a)cos?(y —3)’
dg13  —sin(a)cos(a) cos(y — ()
68 1 —-cos?(a)cos?(y—3)

91,3 - — sin(y/2)
da (7/2,7) = 1 — cos?(a) cos?(v/2)

Proof. Again let wy = \/1 — cos?(a) cos?(y — ).

) —1
913 _ %

5’}/ \/1 [ —cos a) sm('y 3) )

(A.1.15)
(A.1.16)

(A.1.17)

/N

w3 w3
B sin(a)

—cos(a) cos(y — Blwy  — cos(a)? sin®(y — B) cos(y — 5);)

(— cos(a) cos(y — Blwa  — cos(a)?sin(y — B) cos(y — 5)@)

2 2
w3 w3
-1

= S X ( — cos(a) cos(y — B)(1 — cos?(a) cos*(y — 3)) +

sin(a)w;

cos(a)? sin?(y — 3) cos(y — 5))
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B cos(a) cos(y — )
N sin(a)w? 8

(1 — cos?(a) cos?(y — B) — cos?(a) sin?(7y — 5))
cos? +:sin2:1 COS(Q) COS(’Y - ﬁ) % (1 . COSQ(()())

sin(a)w?

cos? +sin?=1 sin(a) cos(a)cos(y — )  sin(a) cos(a) cos(y — )
B w} 1 —cos?(a)cos?(y — )

Replacing ( by v shows
dg1.3 _ _591,3 _ sin(a) cos(a) cos(y — f3)
Y6, oy 1 —cos?(a) cos?(y — )
Finally, for the partial derivative with respect to o we get

0g13 - —1

Yo" \/1 — cos(a sln('y ,6’))

(sm( )sm(y—ﬁ) wy oS ?(a) cos?*(y — B) sin(y — B) sin(a) - 1 )

X

w3 w3
_ —Wa
~ sin(a)
sin(a)sin(y — B)w,  — cos?(a) cos*(y — 3) sin(y — §) sin(a) -
w3 a w3
= _Smfuw X (1 — cos?(a) cos?(y — 3) + cos?(a) cos?(7y — ﬁ))
2
-~ —sin(y — §)
~ 1 —cos?(a) cos?(y — f3)
]
Remark A.1.4 Let
o5 — arccos ( — cos(a) sin(9) ) '
\/1 — cos?(a) cos?(B)
Then
0928 _ 0, (A.1.18)
oy
0ga3  sin(a)cos(a) cos(f3)
63 1 —cos?(a)cos?(p)’ (A.1.19)
0923 - — sin(y/2)
H(Q’W/Q’V) ~ 1 —cos?(a)cos?(v/2) (A.1.20)
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Proof.  Since gas(a, 8,7) = gi13(e, 3,203) the remark is an immediate conse-
quence of remark A.1.3. [ |
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Notation Index

In the order of first occurrence in the text.

Ed

R

/Cd
int(.5)
P(K)
V(S)
Wy
I(K,C)
d(K)

P (K)
5 (K)
det(A)
K

DK
¢(d)

Bd
conv(S), convS
P(K,n)

#(C)
0n(K,C)
(51 (K, n)

Kj

V(L,i,K,d— i),
Vi(L, K)
For(T)

F(T)

[« SO TR R W W WD NDNDND

(@)

oo

d-dimensional Euclidean space

set of real numbers

set of d-dimensional convex bodies

interior of S

set of packing sets of K

volume of S with respect to its affine hull
d-dimensional cube with edge length 2\ and center 0
density of the packing set C' of K

density of a densest (infinite) packing of K

set of all packing lattices of K

density of a densest lattice packing

determinant of a lattice A

family of all centrally symmetric convex bodies
difference body

zeta-function

d-dimensional unit ball

convex hull of a set S

set of all packing sets (configurations) of cardinality n with
respect to K

cardinality of the set C

(classical) density of the finite packing set C
(classical) density of a densest finite packing of K with car-
dinality n.

volume of the j-dimensional unit ball

i-th mixed volume of L and K

Minkowski-perimeter of a plane set 1" with respect to the
gauge-function of the body 2K

perimeter of the plane set T’
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-1 9 (d— 1)-dimensional unit sphere

S, (B%) 9 sausage configuration of B? with cardinality n

dp(K,C) 12 parameterized density of the finite packing set C of K with
respect to p

dp(K,n) 12 density of a densest finite packing of K of cardinality n with
respect to the “density measure” 6,(K,C)

dp(K) 12 limsup,,_., 0,(K,n)

pe(K) 15 critical parameter of K

fr(x) 16 distance function of K € kg

S (u, K) 16 sausage configuration of K in direction uw with cardinality n

Pt 16 orthogonal complement of the linear hull of P

(K|Pt) 16 orthogonal projection of K onto P+

Sn(K) 17 a densest sausage configuration of K with cardinality n

UK 17 unit vector such that S, (uk, K) is a densest sausage config-
uration of K with cardinality n

65 (K) 17 density of a densest “infinite” sausage configuration of K
with respect to p

ps(K) 17 sausage parameter of K

[ 24  Euclidean distance

() 24  inner product

R(K) 28 circumradius of K

r(K) 28 inradius of K

lin(S), linS 29 linear hull of a set S

dist(S,T) 29 Euclidean distance between two sets S and T’

cl(S), clS 36 closure of the set S

relint(S), relintS 36 interior of S with respect to its affine hull
cone(S), coneS 37 cone generated by S or positive hull of S

Vi (M) 39 spherical volume

N(P,F) 56 normal cone of the face ' with respect to P

6(P,F) 56 exterior angle of the face F' with respect to P

P*(K,n) 82 set of all finite lattice packing sets of cardinality n with re-
spect to K

6, (K, ) 83 density of a densest finite lattice packing of K of cardinality

n with respect to the “density measure” 6,(K,C)

6, (K) 83  limsup,,_,, 05 (K,n)

pi(K) 84 critical lattice parameter of K

pi(K) 84 sausage lattice parameter of K

w(K, A 87 inhomogeneous minimum of A with respect to K

)
dp(K,L) 94 Hausdorff distance between K and L



