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Abstract

For an integral polyhedral cone C' = pos{a',...,a™}, a' € Z%, a subset B(C) C C NZ% is
called a minimal Hilbert basis of C iff (i) each element of CNZ< can be written as a non-negative
integral combination of elements of B(C') and (ii) B(C') has minimal cardinality with respect to
all subsets of C'NZ for which (i) holds. We give a tight bound for the so-called height of an
element of the basis which improves on former results.

1 Introduction

Throughout the paper R? denotes the d-dimensional Euclidean space, and pos S the positive hull
of a subset S C R%. The cardinality of a (finite) subset S C R? is denoted by #S and the i-th
unit vector is represented by e’. A cone C' C R? is a set with the properties that « +y € C if
z,y € Cand A\ € Cif x € C, A > 0. A cone C is called pointed if the set C\{0} is strictly
contained in an open halfspace, i.e., there exists ¢ € R? such that ¢’z < 0 for all z € C\{0}. If
C = pos{al,...,a™} with vectors a’ € R? 1 < i < m, then C is called a polyhedral cone or a
finitely generated cone.

Here we are studying integral polyhedral cones C C R%, i.e, there exist vectors a’ € Z%\ {0}
for 1 < i < m such that C = pos{al,...,a™}, or equivalently, C = {z € R? : Az < 0} for an
appropriate matrix A € Z"*9,

From Gordan’s lemma (cf. [1], [2]) we know that for every integral polyhedral cone C' there
exists a set B(C) ¢ C' NZ< such that

1. each z € CNZ? can be expressed as a non-negative integral combination of elements in B(C),
ie., z= ZbeB(C) zp b, zp € N.

2. B(C) has minimal cardinality with respect to all subsets of C' N Z< for which (1) holds.

B(C) is called a minimal Hilbert basis of C'. For short we just say basis of C. If C' is a pointed
cone then B(C') is uniquely determined (cf. [3], [2]),

B(C) = {b e CNZN{0} :b is not the sum of two other

1.1
vectors in C'N Zd\{O}}. -
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This implies that the basis B(C) is contained in the zonotope generated by al,...,a™. More
precisely, we have

B(C) c {d',...,a™}U

m 4 1.2
{aeCﬁZd\{O}:a:ZAiaZ,OS/\i<1,1§i§m}. (1.2)

i=1

We want to remark that (minimal) Hilbert bases occur under many different names in various
fields of mathematics such as integer programming (cf. [2], [4], [5], [6]) or in the context of special
desingularizations of toric varieties (cf. [7], [8], [9],[10]). However, very little is known about the
geometrical structure of the basis elements. Here we focus on the height of the Hilbert basis.

Definition 1. Let C = pos{al,...,a™}, a' € Z¢, be a pointed cone. For b € B(C) the number

lm@y—mm{E:&:b—z:&d“&ZQ1§i§m}

i=1 i=1
1s called the height of the basis element b.

It is straightforward to see that for dimension 2 the height is not greater than 1 and from
Caratheodory’s theorem and (1.2) one easily derives the bound hc(b) < d, b € B(C), C C R4
Indeed, it was proven by Ewald & Wessels [11] that

hc(b) <d—1, beB(C), d=>3,

is an asymptotically tight upper bound for the height (see also [12]). Here we sharpen the bound
in the following way.

Theorem 1. Let C = pos{a',...,a™}, a' € Z%, be a d-dimensional pointed cone. For b € B(C)

one has
d—2

ho(b) < (d—1) = |det(a®, ..., a')|’

where {a@, . ,aiff} C {a',...,a™} is a subset of d linearly independent integral points such that
b € pos{a™,..., a"}.

This bound is tight for various families of cones. For example, let » € N\{0} and let (cf. [11])

d—1
Cg = pos {el, e et 4 Zez} .
i=1

The point b = (1,...,1)7 is an element of the basis with

im@y:u—1yT*1+1:d—1— =2 .
r r |det(el, ..., ed=1 red + 7971 i)

2 Proof of Theorem 1

The proof is prepared by the next two simple lemmas.



Lemma 1. Let p,r € N such that 1 < p < r —1. We define M(p,r) = {j € {0,...,r — 1} :
(j-p) modr < p}t. Then #M(p,r) = p+ ged(p, 7).

Proof. Obviously, if ged(p,r) = 1 then {(j-p)modr : 0 < j <r—1} ={0,...,r — 1} and the
statement is true. Hence #M(p/q,r/q) = p/q + 1 where ¢ = ged(p, ). Since

<j+z'-r> -pmodrzq-(j-pmodr>, ogjgf—l, 0<1<qg—1,
q q q q
we get #M(p,r) = q- #M(p/q,r/q) = p+ ged(p, 7). O

The next lemma, is quite obvious and can easily be proved by induction on the number n.

Lemma 2. Let m,n be positive integers and let Ny C {1,...,n} for 1 <i<m. If Y7" #N; >
(m—1)-n+k, ke{l,...,n}, then # (N2, Ni) > k.
O

We are now ready for the proof of Theorem 1.

Proof of Theorem 1. Let b € B(C) and w.lo.g. let {a',...,a%} be a subset of the generators
a',...,a™ of the cone C such that a',...,a? are linearly independent and b € pos{a',...,a%}. Let
A C Z4 be the lattice generated by {a',...,a?,b}, det(A) its determinant and

r=|det(al,...,a?)|/det(A) € N
be the index of the sublattice generated by a',...,a? w.r.t. A (cf. [13]). In the following we show

he(b) < (d—1) - (d— 2)\det((i?t(,/,\,) = d-D- d;z’ (2.1)

which is a slightly stronger inequality as posed in Theorem 1. To this end let b ¢ {a!,...,a%}.
Furthermore, since b is also contained in the minimal Hilbert basis of the cone pos{al, ... ,ad} we
may assume by (1.2) that b = Z;‘i:l \ia® with 0 < \; < 1. It is quite easy to see that the coefficients
A; have a representation as

N=D piefo,...r—1}, 1<i<d,
.

with ged(pi,...,p4,7) = 1 and that

d .
{Z (U'Pi)m()d?”> ai;1<j<r—1}c0mzd\{0}. (2.2)

- r
1=1

Now, by definition we have ha(b) < Ele (pi/r) and thus it suffices to show Zle B<(d-1) -
(d—2)/r (cf. (2.1)). Assume the contrary, i.e.,

d
Y piz(d=1)(r—1)+2. (2.3)
=1

Then r > 3 and we show that b can be written as the sum of two elements contained in the set on
the left hand side of (2.2). This contradicts (1.1).
For 1 <i<dlet
M(pi,r)={j€{0,...,r —1} : jp; mod r < p;}.



Lemma 1 yields the bound #M (p;,r) > p; + 1 and by (2.3) we get

d

S #M(pi,r) > (d—1)r +3.

=1

Lemma 2 says that the intersection N& ;M (p;, ) contains an element k € {2,...,r — 1}, say. By
the definition of the sets M(p;,r) we have

pi:((k-pi)modr)+<((r—1—k)-pi)mod7"), 1< <d,

and we get the desired contradiction

d

bzz<(k pﬂmodr)az_i_zd:( (r—1—k pi)modr>ai‘

i=1

O
3 Some consequences of Theorem 1
Theorem 1 may be used to derive the following lower bound.
Corollary 1. Let C = pos{al,... ,ad} be a pointed cone such that a',...,a® € Z% are linearly

independent. If B(C) = {a',...,a®} U{z € Z%: 2 = 3" Na’, 0 < \; < 1} then for b € B(C)
contained in the interior of C' one has

d—2
|det(al, ..., a%)|

hco(b) > 1+

Proof. Since b is contained in the interior of C' the lattice point b = Z?Zl a' — b is contained in the

half open parallelepiped generated by a',..., a?. Hence, by assumption b € B(C) and Theorem 1
yields B
he() =d —he(d) > 1+ (d—2)/|det(a’, ..., a%)|.

The next corollary shows an application of Theorem 1 in integer programming.

Corollary 2. Let A € Z™*% with all subdeterminants at most o in absolute value and let b € Z™,
c € Z% be given vectors. If Z is a feasible, non-optimal solution of the program max{c’z : Az <
b, z € 79, then there exists a feasible solution Z such that ¢T'Z > ¢'Z and

~ d—2
where | - |« denotes the mazimum norm.

Proof. Let z* be a feasible solution with ¢?z* > ¢I'Z. We split the system Az < b into subsystems
Az < by, Asx < by such that 412 < A12* and Asz > Asz*. Let C be the cone

C={zeR?: Az <0, Apz >0}



and w',...,w" € Z% such that C' = pos{w!,...,w"}. Using Cramer’s rule we obtain that |w/|s <
a, 1 <j <n. Since z* —z € C there exist [ < d linearly independent vectors w", ..., w" such that
2* —Z € C =pos{w™,...,wi}. It follows that

k
F—Z=) mt', n;eN\{0}
=1

for some b',..., 0% € B(C). It is easy to see that Z + b, i € {1,...,k}, is a feasible solution. On
account of the condition ¢’ z* > ¢'Z we may assume that ¢’'(Z 4 b') > ¢T'Z. We define 2 := Z + b!

and write b! as l
o= Nuh
=1

with A1,...,\; > 0. Applying Theorem 1 to the /-dimensional cone C together with the Hadamard
inequality gives

!
[—2
E—Zo<a| Y N ga<(z—1)—..>.
27 i Jw)

As |w'| < d"/?a, we obtain

~ = -2 d—2
’Z—Z|oo§(l—l)a—mﬁ(d—l)a—W7
where the last inequality can be verified with elementary algebra. O

We remark that the bound of Corollary 2 strengthens the bound of da given in [14].

We are grateful to Les Trotter jr. and Giinter M. Ziegler for helpful discussions and comments.
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