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The height of minimal Hilbert bases

Martin Henk and Robert Weismantel

Abstract

For an integral polyhedral cone C = pos{a1, . . . , am}, ai ∈ Zd, a subset B(C) ⊂ C ∩ Zd is
called a minimal Hilbert basis of C iff (i) each element of C∩Zd can be written as a non-negative
integral combination of elements of B(C) and (ii) B(C) has minimal cardinality with respect to
all subsets of C ∩ Zd for which (i) holds. We give a tight bound for the so-called height of an
element of the basis which improves on former results.

1 Introduction

Throughout the paper Rd denotes the d-dimensional Euclidean space, and pos S the positive hull
of a subset S ⊂ Rd. The cardinality of a (finite) subset S ⊂ Rd is denoted by #S and the i-th
unit vector is represented by ei. A cone C ⊂ Rd is a set with the properties that x + y ∈ C if
x, y ∈ C and λx ∈ C if x ∈ C, λ ≥ 0. A cone C is called pointed if the set C\{0} is strictly
contained in an open halfspace, i.e., there exists c ∈ Rd such that cT x < 0 for all x ∈ C\{0}. If
C = pos{a1, . . . , am} with vectors ai ∈ Rd, 1 ≤ i ≤ m, then C is called a polyhedral cone or a
finitely generated cone.

Here we are studying integral polyhedral cones C ⊂ Rd, i.e, there exist vectors ai ∈ Zd\{0}
for 1 ≤ i ≤ m such that C = pos{a1, . . . , am}, or equivalently, C = {x ∈ Rd : Ax ≤ 0} for an
appropriate matrix A ∈ Zn×d.

From Gordan’s lemma (cf. [1], [2]) we know that for every integral polyhedral cone C there
exists a set B(C) ⊂ C ∩ Zd such that

1. each z ∈ C∩Zd can be expressed as a non-negative integral combination of elements in B(C),
i.e., z =

∑
b∈B(C) zb b, zb ∈ N.

2. B(C) has minimal cardinality with respect to all subsets of C ∩ Zd for which (1) holds.

B(C) is called a minimal Hilbert basis of C. For short we just say basis of C. If C is a pointed
cone then B(C) is uniquely determined (cf. [3], [2]),

B(C) =
{

b ∈ C ∩ Zd\{0} : b is not the sum of two other

vectors in C ∩ Zd\{0}
}

.
(1.1)
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This implies that the basis B(C) is contained in the zonotope generated by a1, . . . , am. More
precisely, we have

B(C) ⊂ {a1, . . . , am}∪{
a ∈ C ∩ Zd\{0} : a =

m∑
i=1

λia
i, 0 ≤ λi < 1, 1 ≤ i ≤ m

}
.

(1.2)

We want to remark that (minimal) Hilbert bases occur under many different names in various
fields of mathematics such as integer programming (cf. [2], [4], [5], [6]) or in the context of special
desingularizations of toric varieties (cf. [7], [8], [9],[10]). However, very little is known about the
geometrical structure of the basis elements. Here we focus on the height of the Hilbert basis.

Definition 1. Let C = pos{a1, . . . , am}, ai ∈ Zd, be a pointed cone. For b ∈ B(C) the number

hC(b) := min

{
m∑

i=1

λi : b =
m∑

i=1

λia
i, λi ≥ 0, 1 ≤ i ≤ m

}

is called the height of the basis element b.

It is straightforward to see that for dimension 2 the height is not greater than 1 and from
Caratheodory’s theorem and (1.2) one easily derives the bound hC(b) < d, b ∈ B(C), C ⊂ Rd.
Indeed, it was proven by Ewald & Wessels [11] that

hC(b) < d− 1, b ∈ B(C), d ≥ 3,

is an asymptotically tight upper bound for the height (see also [12]). Here we sharpen the bound
in the following way.

Theorem 1. Let C = pos{a1, . . . , am}, ai ∈ Zd, be a d-dimensional pointed cone. For b ∈ B(C)
one has

hC(b) ≤ (d− 1)− d− 2
|det(ai1 , . . . , aid)|

,

where {ai1 , . . . , aid} ⊂ {a1, . . . , am} is a subset of d linearly independent integral points such that
b ∈ pos{ai1 , . . . , aid}.

This bound is tight for various families of cones. For example, let r ∈ N\{0} and let (cf. [11])

Cd
r = pos

{
e1, . . . , ed−1, red +

d−1∑
i=1

ei

}
.

The point b = (1, . . . , 1)T is an element of the basis with

hC(b) = (d− 1) · r − 1
r

+
1
r

= d− 1− d− 2

|det(e1, . . . , ed−1, red +
∑d−1

i=1 ei)|
.

2 Proof of Theorem 1

The proof is prepared by the next two simple lemmas.
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Lemma 1. Let p, r ∈ N such that 1 ≤ p ≤ r − 1. We define M(p, r) = {j ∈ {0, . . . , r − 1} :
(j · p) mod r ≤ p}. Then #M(p, r) = p + gcd(p, r).

Proof. Obviously, if gcd(p, r) = 1 then {(j · p) mod r : 0 ≤ j ≤ r − 1} = {0, . . . , r − 1} and the
statement is true. Hence #M(p/q, r/q) = p/q + 1 where q = gcd(p, r). Since(

j + i · r

q

)
· p mod r = q ·

(
j · p

q
mod

r

q

)
, 0 ≤ j ≤ r

q
− 1, 0 ≤ i ≤ q − 1,

we get #M(p, r) = q ·#M(p/q, r/q) = p + gcd(p, r).

The next lemma is quite obvious and can easily be proved by induction on the number n.

Lemma 2. Let m,n be positive integers and let Ni ⊂ {1, . . . , n} for 1 ≤ i ≤ m. If
∑m

i=1 #Ni ≥
(m− 1) · n + k, k ∈ {1, . . . , n}, then # (

⋂m
i=1Ni) ≥ k.

We are now ready for the proof of Theorem 1.

Proof of Theorem 1. Let b ∈ B(C) and w.l.o.g. let {a1, . . . , ad} be a subset of the generators
a1, . . . , am of the cone C such that a1, . . . , ad are linearly independent and b ∈ pos{a1, . . . , ad}. Let
Λ ⊂ Zd be the lattice generated by {a1, . . . , ad, b}, det(Λ) its determinant and

r = |det(a1, . . . , ad)|/ det(Λ) ∈ N

be the index of the sublattice generated by a1, . . . , ad w.r.t. Λ (cf. [13]). In the following we show

hC(b) ≤ (d− 1)− (d− 2)
det(Λ)

|det(a1, . . . , ad)|
= (d− 1)− d− 2

r
, (2.1)

which is a slightly stronger inequality as posed in Theorem 1. To this end let b /∈ {a1, . . . , ad}.
Furthermore, since b is also contained in the minimal Hilbert basis of the cone pos{a1, . . . , ad} we
may assume by (1.2) that b =

∑d
i=1 λia

i with 0 ≤ λi < 1. It is quite easy to see that the coefficients
λi have a representation as

λi =
pi

r
, pi ∈ {0, . . . , r − 1}, 1 ≤ i ≤ d,

with gcd(p1, . . . , pd, r) = 1 and that{
d∑

i=1

(
(j · pi) mod r

r

)
ai : 1 ≤ j ≤ r − 1

}
⊂ C ∩ Zd\{0}. (2.2)

Now, by definition we have hC(b) ≤
∑d

i=1(pi/r) and thus it suffices to show
∑d

i=1
pi

r ≤ (d − 1) −
(d− 2)/r (cf. (2.1)). Assume the contrary, i.e.,

d∑
i=1

pi ≥ (d− 1)(r − 1) + 2. (2.3)

Then r ≥ 3 and we show that b can be written as the sum of two elements contained in the set on
the left hand side of (2.2). This contradicts (1.1).

For 1 ≤ i ≤ d let
M(pi, r) = {j ∈ {0, . . . , r − 1} : jpi mod r ≤ pi}.
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Lemma 1 yields the bound #M(pi, r) ≥ pi + 1 and by (2.3) we get

d∑
i=1

#M(pi, r) ≥ (d− 1)r + 3.

Lemma 2 says that the intersection ∩d
i=1M(pi, r) contains an element k ∈ {2, . . . , r − 1}, say. By

the definition of the sets M(pi, r) we have

pi =
(
(k · pi) mod r

)
+

(
((r − 1− k) · pi) mod r

)
, 1 ≤ i ≤ d,

and we get the desired contradiction

b =
d∑

i=1

(
(k · pi) mod r

r

)
ai +

d∑
i=1

(
((r − 1− k) · pi) mod r

r

)
ai.

3 Some consequences of Theorem 1

Theorem 1 may be used to derive the following lower bound.

Corollary 1. Let C = pos{a1, . . . , ad} be a pointed cone such that a1, . . . , ad ∈ Zd are linearly
independent. If B(C) = {a1, . . . , ad} ∪ {z ∈ Zd : z =

∑d
i=1 λia

i, 0 ≤ λi < 1} then for b ∈ B(C)
contained in the interior of C one has

hC(b) ≥ 1 +
d− 2

|det(a1, . . . , ad)|
.

Proof. Since b is contained in the interior of C the lattice point b =
∑d

i=1 ai− b is contained in the
half open parallelepiped generated by a1, . . . , ad. Hence, by assumption b ∈ B(C) and Theorem 1
yields

hC(b) = d− hC(b) ≥ 1 + (d− 2)/|det(a1, . . . , ad)|.

The next corollary shows an application of Theorem 1 in integer programming.

Corollary 2. Let A ∈ Zm×d with all subdeterminants at most α in absolute value and let b ∈ Zm,
c ∈ Zd be given vectors. If z̃ is a feasible, non-optimal solution of the program max{cT z : Az ≤
b, z ∈ Zd}, then there exists a feasible solution ẑ such that cT ẑ > cT z̃ and

|ẑ − z̃|∞ ≤ (d− 1)α− d− 2
dd/2αd−2

,

where | · |∞ denotes the maximum norm.

Proof. Let z∗ be a feasible solution with cT z∗ > cT z̃. We split the system Ax ≤ b into subsystems
A1x ≤ b1, A2x ≤ b2 such that A1z̃ ≤ A1z

∗ and A2z̃ ≥ A2z
∗. Let C be the cone

C = {x ∈ Rd : A1x ≤ 0, A2x ≥ 0}
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and w1, . . . , wn ∈ Zd such that C = pos{w1, . . . , wn}. Using Cramer’s rule we obtain that |wj |∞ ≤
α, 1 ≤ j ≤ n. Since z∗− z̃ ∈ C there exist l ≤ d linearly independent vectors wi1 , . . . , wil such that
z∗ − z̃ ∈ C = pos{wi1 , . . . , wil}. It follows that

z∗ − z̃ =
k∑

i=1

nib
i, ni ∈ N\{0}

for some b1, . . . , bk ∈ B(C). It is easy to see that z̃ + bi, i ∈ {1, . . . , k}, is a feasible solution. On
account of the condition cT z∗ > cT z̃ we may assume that cT (z̃ + b1) > cT z̃. We define ẑ := z̃ + b1

and write b1 as

b1 =
l∑

j=1

λjw
ij

with λ1, . . . , λl ≥ 0. Applying Theorem 1 to the l-dimensional cone C together with the Hadamard
inequality gives

|ẑ − z̃|∞ ≤ α

 l∑
j=1

λj

 ≤ α

(
(l − 1)− l − 2

|wi1 | · · · |wil |)

)
.

As |wij | ≤ d1/2α, we obtain

|ẑ − z̃|∞ ≤ (l − 1)α− l − 2
dl/2αl−1

≤ (d− 1)α− d− 2
dd/2αd−1

,

where the last inequality can be verified with elementary algebra.

We remark that the bound of Corollary 2 strengthens the bound of dα given in [14].

We are grateful to Les Trotter jr. and Günter M. Ziegler for helpful discussions and comments.
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