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Abstract. It is a well known fact that for every polynomial time algorithm which
gives an upper bound V (K) and a lower bound V (K) for the volume of a convex

set K ⊂ Ed, the ratio V (K)/V (K) is at least (cd/ log d)d. Here we describe an
algorithm which gives for ǫ > 0 in polynomial time an upper and lower bound with

the property V (K)/V (K) ≤ d!(1 + ǫ)d.

1. Introduction

Since it is hard to compute the volume of convex bodies in high dimensions one
might ask for polynomial deterministic algorithms which give an upper bound V (K)
and a lower bound V (K) for the volume V (K) of a d-dimensional convex body K.
Indeed such algorithms were given by Lovsz (cf. e.g. [GLS], pp. 122) with a ratio
V (K)/V (K) ≤ d3d/2 and Applegate&Kannan [AK] — quoted by [DF] — with
V (K)/V (K) ≤ 2d · d!(1 + 1/d2)d. Here we give an algorithm which computes for
any ǫ > 0 in polynomial time V (K), V (K) such that V (K)/V (K) ≤ d!(1 + ǫ)d.

The bounds given above appear to be very weak. But Brny&Fredi [BF] showed
— see also Elekes [E] — that for any polynomial deterministic algorithm the ratio
V (K)/V (K) is at least (cd/ log d)d = dd(1−o(1)) for some constant c independent of

d and we have by Stirling’s formula d! =
√

2πd(d/e)d(1 − o(1)).
Algorithms of this kind are not only of interest in their own sake as the newly

devised randomized algorithms for computing the volume need an approximative
algorithm as a starting point (cf. e.g. [DF], [DFK]).

Thus it seems to be worth while not only to show polynomiality but to compare
the running times somewhat closer. Here it turns out that the running time — in
a sense made more precise below — of our algorithm is 1/d2 of the algorithm of
Applegate&Kannan.

To make our ideas more precise we need some notation and we must state how
the convex bodies are given: Let Ed denote the d-dimensional euclidean space and
the set of all convex bodies — compact convex sets — in Ed is denoted by Kd. ei

denotes the i-th canonical unit vector and for a vector x ∈ Ed the i-th coordinate
is denoted by xi. Further ‖ · ‖ denotes the euclidean norm, ‖ · ‖∞ denotes the
maximum norm and for y1, . . . , yd ∈ Ed the determinant of the matrix with column
vectors y1, . . . , yd is denoted by det(y1, . . . , yd). Finally L(y1, . . . , yi) denotes for
y1, . . . , yi ∈ Ed the linear space spanned by y1, . . . , yi.

For the description of a convex body K we adopt the oracle model as studied in
detail in Grtschel, Lovsz and Schrijver[GLS]. This means that a convex body
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K ∈ Kd is given by a so called weak membership oracle WMEMO. This is a black box
with the following properties:

Given a point y ∈ Qd and a positive rational number ǫ ∈ Q, the oracle
answers that y ∈ S(K, ǫ) or that y 6∈ S(K,−ǫ),

where S(K, ǫ) = {x ∈ Ed | ‖x − y‖ ≤ ǫ for some y ∈ Kd} and S(K,−ǫ) = {x ∈
Ed | S(x, ǫ) ∈ Kd}.

Moreover we must make the assumption that we have the following information
about the convex body K, given by a WMEMO: Two rational numbers R, r > 0 and a
point a ∈ Qd with S(a, r) ⊂ K ⊂ S(0, R). For simplification we may assume

S(0, r) ⊂ K ⊂ S(0, R). (1.1)

By using a special version of the ellipsoid method Yudin&Nemirovskĭi ([YN],
[GLS], pp. 107) showed that there exist oracle-polynomial time algorithms that
solve the following problems for a convex body given by WMEMO and (1.1) :

(1) The weak violation problem (WVIOL):

Given a vector c ∈ Qd and rational numbers γ, ǫ, ǫ > 0, either
assert that cT x ≤ γ + ǫ for all x ∈ S(K,−ǫ), or
find a vector y ∈ S(K, ǫ) with cT y ≥ γ − ǫ.

(2) The weak optimization problem (WOPT):

Given a vector c ∈ Qd and a rational number ǫ > 0, either
find y ∈ Qd such that y ∈ S(K, ǫ) and cT x ≤ cT y + ǫ for all x ∈
S(K,−ǫ), or
assert that S(K,−ǫ) is empty.

The result of Applegate&Kannan [AK] can now be stated as follows: Given a
convex body K ∈ Kd by a WMEMO and (1.1). Then we can find a parallelepiped P
and a simplex S, such that S ⊂ K ⊂ P and V (P )/V (S) ≤ d!2d(1 + 1/d2)d. Beside
some elementary matrix operations the running time of this algorithm is dominated
by at most 2d3 ln(2dR/r) calls of the WVIOL.

Briefly our algorithm can be described in the following way: We construct a
parallelepiped which contains the given convex body K and a polytope which is
contained in K such that the volume of the parallelepiped is not greater than d!
times the volume of the inscribed polytope. To do this we need 2d calls of the WOPT.
Since we have no exact arithmetic our main result is

Theorem 1. There exists an oracle-polynomial time algorithm that, for a convex

body K ∈ Kd given by a WMEMO and (1.1) and for every ǫ > 0, computes by 2d calls

of the WOPT an upper bound V (K) and a lower bound V (K) of the volume of K
such that

V (K)

V (K)
≤ d! · (1 + ǫ)d.

Let us remark, that if we want to compute for a convex body K ∈ Kd given by
a WMEMO and (1.1) nontrivial upper and lower bounds of the volume by using the
WOPT we need at least d + 1 calls of the WOPT: After d calls of the WOPT we have
the information, that K is contained in some unbounded polyhedron and contains
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d points, which lie in a suitable affine hyperplane. Together with (1.1) we only get
upper and lower bounds which depend on the input data R, r. From this point of
view our algorithm is best possible up to a factor 2.

Further the running time of our algorithm — measured in the number of calls
of the WVIOL — is approximately 1/d2 of that of Applegate&Kannan as pointed
out in the third part of this paper where the proof of Theorem 1. is given. In
the second part we describe our algorithm in a more geometrical form. From this
presentation we deduce our basic theoretical result (Theorem 2.). As a theoretical
application of our algorithm we get an inequality connecting the volume of a convex
body and certain successive diameters and widths. This result is indicated at the
end of the second part and is a special case of a series of inequalities concerning
successive diameters and widths, which are described in more detail in [BH].

2. The Algorithm

Geometrical version. Let K ∈ Kd.

(1) let c1 ∈ Ed and i = 1;
(2) find zi, zi ∈ K such that for all x ∈ K holds

(ci)T zi ≤ (ci)T x ≤ (ci)T zi;
(3) let yi = zi − zi;

(4) if (i = d) then STOP;

(5) find ci+1 ∈ Ed such that ci+1 is orthogonal to L(y1, . . . , yi);
(6) let i = i + 1;
(7) GOTO (2).

Theorem 2. With the notation above we have

|det(y1, . . . , yd)|
d!

≤ V (K) ≤ |det(y1, . . . , yd)|.

Proof. Let P be the parallelepiped given by P = {x ∈ Ed | (ci)T zi ≤ (ci)T x ≤
(ci)T zi, 1 ≤ i ≤ d} and C the polytope with vertices z1, z1, . . . , zd, zd. We obviously
have C ⊂ K ⊂ P and in the following we shall prove

V (P ) = |det(y1, . . . , yd)| and V (C) ≥ |det(y1, . . . , yd)|/d!. (2.1)

This will be done by induction with respect to the dimension. For d = 1 (2.1) is
trivial. Hence we may assume d ≥ 2. Let H = {x ∈ Ed | (y1)T x = 0} and let
zi

p, z
i
p be the images of the points zi, zi under the orthogonal projection onto H,

1 ≤ i ≤ d. Application of the Steiner symmetrization ([BoF], pp.69) to P and C
with respect to the hyperplane H gives convex bodies PS , CS with V (CS) = V (C)
and V (PS) = V (P ) .

By definition of this symmetrization CS contains the polytope with vertices
z1

p + 1
2y1, z1

p − 1
2y1, z2

p, z
2
p, . . . , z

d
p, z

d
p and hence we have

V (C) ≥ ‖y1‖
d

· V (C;H), (2.2)
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where C is the polytope with vertices z2
p, z

2
p, . . . , z

d
p, z

d
p and V (C;H) denotes the

volume of C with respect to the euclidean space H. On account of the choice of the

directions ci we have PS = {x ∈ Ed | −‖y1‖2

2 ≤ (y1)T x ≤ ‖y1‖2

2 , (ci)T zi
p ≤ (ci)T x ≤

(ci)T zi
p, 2 ≤ i ≤ d} and thereby

V (P ) = ‖y1‖ · V (P ;H), (2.3)

with P = {x ∈ H | (ci)T zi
p ≤ (ci)T x ≤ (ci)T zi

p, 2 ≤ i ≤ d}. Now, the situation for

P ,C in the space H is the same as for P,C and hence the assertion follows from
(2.2) and (2.3) by using the induction hypothesis. �

Remark. A first way to choose the directions ci from a theoretical point of view is
as follows: Choose the ci in (1), (5) such that the breadth in direction ci becomes
minimal (maximal). If we do this it is easy to see that we can find zi, zi such that
L(c1, . . . , ci) = L(y1, . . . , yi). Further ‖z1 − z1‖ gives the width (diameter) of the
convex body and for i = 2, . . . , d the length of the projections of zi − zi onto the
orthogonal complement of L(y1, . . . , yi) gives the width (diameter) of the projection
of K onto this space. Thus we obtain upper and lower bounds for the volume with
respect to the product of ’iterated’ widths (diameters). This essentially proves the
main theorem in [BH] for the case of projections.

3. Proof of Theorem 1.

First we state the algorithm in its computational form.

Input: A rational number ǫ > 0 and a convex body K ∈ Kd given by a WMEMO and

(1.1)

Output: An upper bound V (K) and a lower bound V (K) of the volume of K with

the property V (K)/V (K) ≤ d!(1 + ǫ)d.

[1] let δ := min{ r
3 , ǫr

6+ǫ}, α := r
r+δ and β := r

r−δ

(

1 + δ
r−2δ

)

;

[2] let c1 := e1 and i := 1;
[3] find zi, zi ∈ S(K, δ) such that for all x ∈ S(K,−δ) holds

(ci)T zi − δ ≤ (ci)T x ≤ (ci)T zi + δ;
[4] let yi := zi − zi;

[5] if (i = d) then

V (K) := αd|det(y1, . . . , yd)|/d! and V (K) := βd|det(y1, . . . , yd)|;
STOP.

[6] find ci+1 ∈ Qd such that ci+1 is orthogonal to L(y1, . . . , yi) and ‖ci+1‖ ≥ 1;
[7] let i := i + 1;
[8] GOTO [3];

Proof of Theorem 1. First we study the correctness of the algorithm above. Since
S(0, r) ⊂ K we have by simple geometric arguments r

r+δ x ∈ K for all x ∈
S(K, δ) and r−δ

r x ∈ S(K,−δ) for all x ∈ K. Hence the polytope with vertices

αz1, αz1, . . . , αzd, αzd is contained in K. From (2.1) follows

V (K) ≥ αd

d!
· |det(y1, . . . , yd)|. (3.1)
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On the other hand we have for all x ∈ K the relations

r

r − δ
((ci)T zi − δ) ≤ (ci)T x ≤ r

r − δ
((ci)T zi + δ), 1 ≤ i ≤ d.

Since ‖ci‖ ≥ 1 and S(0, r−δ) ⊂ S(K,−δ) we have (ci)T z+δ ≥ r−δ and (ci)T z−δ ≤
δ − r and hence the convex body K is contained in the parallelepiped {x ∈ Ed |
(ci)T βzi ≤ (ci)T x ≤ (ci)T βzi, 1 ≤ i ≤ d}. Again, from (2.1) we get

V (K) ≤ βd · |det(y1, . . . , yd)|. (3.2)

On account of the choice of δ we have by (3.1) and (3.2) the bound V (K)/V (K) ≤
d!(1 + ǫ)d.

Next we consider the running time of the algorithm. To this end let 〈〉 denote
the numbers of bits needed to write down a rational object ([GLS], pp. 30). The
size of the input of the algorithm is 〈K, ǫ〉 = d + 〈r〉 + 〈R〉 + 〈ǫ〉. Step [3] of the
algorithm can be done with the WOPT in oracle polynomial time with respect to the
input size d + 〈r〉 + 〈R〉 + 〈δ〉 + 〈ci〉. The size of the output of the WOPT oracle
depends on the precision needed by the WOPT to carry out its arithmetic operations.
As pointed out in [GLS] the number of binary digits which are needed by the WOPT

is a polynomial in d+ 〈r〉+ 〈R〉+ 〈δ〉 and hence a polynomial in 〈K, ǫ〉. This means
that all the calculated points zi, zi are of a fixed size and by using the well-known
Gaussian elemination we can find in polynomial time with respect to 〈K, ǫ〉 a vector
c which is orthogonal to L(y1, . . . , yi). In particular the size of c is bounded by a
polynomial in 〈K, ǫ〉. If we use a suitable normalization to get ‖c‖ ≥ 1, we see that
we can find appropriate directions ci in polynomial time. Since the sizes of these
directions are bounded by a polynomial in 〈K, ǫ〉 the running time of the WOPT is
also bounded by a polynomial in 〈K, ǫ〉. So we have an oracle polynomial time
algorithm. �

Remarks.

(1) Using binary search one can easily see that the WOPT in Step [3] of our
algorithm can be solved by at most log2(3‖ci‖R/δ) calls of the WVIOL. Hence,
if we take the special normalization ‖ci‖∞ = 1 we obtain that the running
time of our algorithm is dominated by at most

2d log2(3
√

dR/r) + 2d log2(6/ǫ + 1)

calls of the WVIOL. This shows that the running time of our algorithm —
measured in the number of calls of the WVIOL — is approximately 1/d2 of
the running time of the algorithm of Applegate&Kannan.

(2) If we take, for example, as direction ci+1, 1 ≤ i ≤ d− 1, the vector which is
orthogonal to L(y1, . . . , yi, ei+2, . . . , ed) and satiesfies ci+1

i+1 = 1, we do not

need to compute det(y1, . . . , yd), since

|det(y1, . . . , yd)| =
∏d

i=1(c
i)T yi.
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