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NoTES ON [SOPARAMETRIC HYPERSURFACES
Dirk FERUS

Introduction

We are concerned with the study of hypersurfaces in a standard
space of constant’ curvature: eaclldean space, sphere or hyper-
bolic space. According to a fundamental theorem such hypersur-
faces are uniguely determined up to congruence by their first
and second fundamental form. Lookimg for scalar rather than
tensorial invariants we are led ko the principal curvatures.
And If we want to understand théir geometric relevance it sesms
desirable to firast get a good understanding of the case of

constant principle curvatures:

How do hypersurfaces with constant prinecipal curvatures
look 1lke?

This guestion was solved for hypersurfaces in cuclidean space
by Levi=Civita [10) and Segre (471 in the late thirties. At the
same time E. Cartan solved the hyperholic case. In both cases
the pumber g of distinct princlpal curvatures is at most two,
and the hypersurfaces loocks like a tube around a totally
geodesic subspace (i.e. arcund an affine subspace in the eucli-
dean case),[4 1.

But in the spherical case Cartan found the situation guite
different [2 ][3]1 |47, The orbits of a group of isometrles acting
on the sphere obviously have constant principal curvatures,

if they happem ta be hypersurfaces. Cartan was able to con-
struct such homogeneous examples with up to g= 4distinct
principal curvatures. He could also show, that for g =< 3

all examples must be homocgeneous.

Remark. Hypersurfaces with constant principal curvatures are
characterized as level hypersurfaces of functions far

which the first and second "differential parameter" depends
only on the value of the function itself. They are thorefore

called Zsoparametric hypersurfacea.



Sfter Cartan the 'subject fell into ablivion until about 1970.
A that time Nomizu brought it up again with a survey aon the
nown results and open questions [147], Takagl and Takahashi [1e]
oticed that the classiflcation of homogeneous hypersurfaces
n the sphere given by Halang and Lawson L8 lsolved the
‘lassiflcation of homogeneous isoparametric hypersurfaces,
nd Minzner ﬁ*#i] showed that every isoparametric hypersurface
s algebraic with g = 1, 2, 3, 4, or 6 distinct principal cur-
‘atures. These g-values occur among the homogenecus examples,
nd no inhomogensous examples were known until the surprising
aper E‘W]mf Ozeki and Takeuchi, where two infinite series of
won-homogeneous hypersurfaces with g = 4 were constructed.
ttarting from this paper, Karcher, Milnzner and me recently
‘ound agnin a much larger number of [g = 4)- examples. They
ire constructed in a unifled way using Clifford representations
wid written in a form which easily yields detailed arnd, we think,
‘ery intermesting geometric information. In partleular we find
‘inite, but arhitrarily large families of compact riemannlan
wanifolds which are not lsometric, but have "the same" curvature
ensor.
n my lectures I wamt to present a survey of the results
wentioned above. One appealing aspect of the subject is the
rariety of methods applicable to it. After a short preliminary
iection on the egquations of Gauss and Codazzi, wa begin with
v tensor analytle study of the shape operator on an isopara-
webric hypersurface. Later we come to different approaches:
wnother geometric one, describing our objects asz tubes around
:heir focal manifolds, and an analytlic descriptlonkhat will
dnitely take us into algebra.

shall not go into Minzner's proof [41] that only g =% 1,2,3,4,6
re posaible: it uses very Intricate cohomology arguments which
re beyond the scope of these lectures. And I shall not go into
11 the detalls of the Clifford examples either. They will be
‘ontained in a paper in preparation [71 %

y notes are partially based on lecture notes by H.Karcher, and
n Minzner [41] . '
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The equations of GAUSS and CODAZZI.

The main intention of this preliminary section is to fix our

notation.
Let M be a submanifold of an (n+1)~dimensional space M of
constant curvature &. By «..,...>» we shall denote the

riemannian metric of either manifold. The Levi=Clvita covariant
derivative on M will be denoted by J, that on M by Vv .
If X and Y are tangent wvector flelds on M, then, with the usual

ldentifications

vxy = ny +R,Y), (1)

whers hiX ,Y) i8 a normal vector field. This defines a symmetric
bilinear map h from the tangent to the normal space called the
gecond fundamental form of M in-':!'. For mach normal field <

we obtaln a symmetric endomorphism fleld on tangent vectors

Ly

<8X.N> = <hix,¥) 52 t2)

The tensor S : A M =—2>End(™) is called the shape operator
or gecond fundomental temsor of M in M.

Note: IfM is a hypersurface with a distingulshed unit normal
field z . then we write

hi(X,¥) instead of (hD{,Y),'g‘;-

and
S instead of SI'

In this case h is real-valued and S simply a symmetric endo-
morphism field.

We shall repeatedly need the covariant derivative aof tensor
fields of varlous type. Without going into formal details we
recall, that it is defimed using the product rule as a guiding
principle. Fo- example, the covariant derivative of S is defined
by

tvzs)!x i= Vz(s‘x}

whore i%l is the normal covariant derivalive (= normal component
of V., T).

'Smgx"stvf' (3)



Let R and R be the curvature tensors of M andrﬁ. Then the
eguation of GAUSS reads

RK,YIZ = BX,Y)2 + S Y

hiv,2)® T Sh,z)

selcviyx - ox,2> v
+ 8 X ~
hiv, 2 = Snx,zY - v
For hypersurfaces with a distinguished unit pormal fleld, this

réduces Lo

RK,¥)2 =~ & {<Y,25% - <x,2> v 1
+ <5Y, 2> - <$K,2>8Y: (s)

The eguation of CODAZZT is

(VXSIEY = (VYS)sx, (6)

and £ can be ommitted in the hypersurface case.

For a proof of (4) - (6) see for instance the book of Koba-
yashi and Nomizu, vol II.

T it _— - § i
If M4 18 a hypersurface with a distinguished unit normal field
= ’
then the eigenvalues 5 c . 16 ined
: ge ues of 5 are called the prineipal curvaturaes
of M inM. If they are constant, thenM Is called an

taaparametric Aypersurface.

The two local unit normal fields lead to opposite siqns of the
principal curvatures. Therefore the "constancy" of the princi-
pal curvatures and hence the notion "isoparametric” makes

sense also for hypersurfaces without a distinguished normal
field.

The curvature foliations of isoparamatric hypersurfaces.

Let M be an isoparametric hypersurfac - of the h+1)-5pmnzﬁ.
The following considerations beeing local we can assume that
M has a distinguished unit normal field 2. Let A be one of

the principal curvatures of M, and put
R :=s - Ard. (n

For vector fields X, ¥, 2 with B = AY = O we find

= »

<V oy B2> = <R(o,¥),2>
- _
= SV, BY).2 > - <(INY, 2>
= - <(g Bz, Y>> 4

(%) (symmetry of ,?)
o (TN, Y > (Codazzi)
o - <9 )Y >+ <B(IX) YD>
- <vle§‘{>
= 0.
Hence
X = AX and SY = 2Y implies S(9, ¥) = D(Y,Y). - (8)

Therefore the eigenspace distributions of S are autoparallel in
M. Each principal curvature A determines a foliation of M by
totally geodesic submanifolds, the A ~curvature leavas.
Since for X and Y tangent to such a leaf we have

VXY

vxy+ hX,Y)

i

T ¥ 4N, >T

N
these leaves are A -umbilical in M with mean curvature vector
parallel to ¥ . So M cconsists of mutuallyrorthogona] families
¢f unbilica. submanifolds of M.



If the number of distinct principal curvatures is g = 2, then Proof: Extend X to a vector field in ker(s - >Id), and
the hypersurface 18 obtalned locally by taking a ?\rumbi].ical let Y be any vector field. Then

submanifold of dimension egqual to the multiplicity m., of k.|,

1

o g - d))Yy = (9,(8 = wid)IX
and M-)parallel translating an orthogonal 7\2—umblltr:a1 sub~ (v:(( el ( Y
manifold of dimension . nlonq'lhe first one. = VY(SX - NK) = (S = 11’3)v\2(
If g>»2 then the situation becomes more complicated, because
’ o ' : oy . = (8 - Mi&)( - Y, RX)
for principal curvatures 7\i * 7\,’ the A -leaves will not in b
general be paral'el along the Kl—leavm:.BuL 1f we can get = (s - A Id)¢ -va‘ax)
control over the rotation of the leaves around each other, we
can again reconstruct M starting from a point x and from the = (S - XIdlefy¥.
eigenspaces of S at x.
We select a principal curvature XA, and a unit-speed geodesic Lemma 2. If Xe¢ T M is a vector in ker{$ - AId), then

¥ tangent to a A-~curvature leaf L. We want to describe the
9

behaviour of the R -leaves, p ¥ X , along ¥ . Por that purpose (PyC)y =C° + R, (12)

it is sufficient, to describe the behaviour of § - Ald alongy .

We shall see that this tensor field satisfies a first order where B Y := VR(VY,XIX.

linear differential equation along X which lnvolves a certain -

yof : ree tenso in (12} vanish on ker (s - AId) =
tensor field C. This field in turn satlsfies a Riccati equation. Proof: All three tensors R

aqge | i at ¥ be in ker (% ). We extend X and Y to
Pulting together both equations, we arrive at a second order Fa ‘x[-) B 2e P S f[-' B
rec e [Llelds ighborhood o . such wat
linear dlfferential equation for § - A Id which can be solved vector flelds on a neighbo of p
explicitely: ( VXX)p pe (qu)ﬂ =0 and X =X, ¥ =Y.
o

Let %€ and U denote the orthogonal projections onto ker (S - AId)

Using (10) several times, we find at p
and im(S -AId) respectively. Then

(9,0 Y = T (CY)
£ X X X
G ¥ :—-'UVY‘Kx (9)

= T, 439X
defines a (2,1)-tenvor field on M.Note that X Y

V(T
® and U are parallel along L, and ( Ty VX2

(B}
|

10 =
Cgo® =0 (10) - VREX, VX + G T ox o va‘fx VVQ(XJ
by (8).
“« =V R(Y,X)X + D IVVYXX) -V ox +V§§\x)
>
Lemma 1. Let X be a vector in ker(S - AId). Then P o
=gt + RY - Z <IN, >V
V(s - AId) = (S - XId)eCy . - .oan S
where the Y are orthorormal vector fields with 'UYi = Yi
But at p - h(\o\
P iy

=¥ - , T,x.> = 0
<O Y > = V<X > < X, T ¥y
»
This finishes the proof of Lemma 2. o




Remark. Lemma 2 is true for any totally gendesic foliation.
In the present geometric situation the Gauss equation yields

more information on F&:

ReY = REVY,X)X = <X X> (€ + Ag)Uy. (13)

Now let (be a unit-speed geodesic tangent ko a A -leaf L.

We write C := CS‘ ¢ R im R& and denote by (..)' the co-
variant derivalive along ¥ - Then (12) reads

¢t =c? 4 R, (1a)
Let Y be an L-normal vector field a]nnqﬁsunh that
Y' + CY = 0. (15)
Then
Q0 =Y¥" + C'Y + CY'

%y

=yY" + C2Y 4+ RY = O

=YY" + RY. {16)
Hence © defines (and is determined by) a certain class of
Jacobl fields mzlongt, which are in a sense {(specified for
example in [ ¢ ]) "adapted to the foliation”.

We define

=1
Alt) := {(5 - ATd) ey, on image (ug(t)) (17)
o] on ker c"aem)).
Then along Y

V = aels - X1d),

and from (10) and (11)

O =A'"(5 - AId) + A(s - AId)!

A'(S -21d) + A(S -XId) C

A'(S ~ANId) + C

A' + CA = 0. (18)

P B e i b e i o

This is the tensor analeg af (15} and implies the following

analog of (16):
A" 4+ RA = 0. (19)
By (13) and® by = 1 we find

A" + (& +ASB)A = 0. (20)

Using (5 - WId)~A = VUV we conclude
A" o+ (Z +2a%)a + AU =0, (21)

and arrlve at the following combination of Lemmas 1 and 2

Proposition 1. Let y be a unit-speed geodesic tangent to
a A-leaf L. Then, with U and A defined as above we have
for & +7\2 # 0

(E+xHa +a0)" + @ +2 @ +A%Ha+ V) =0 (2)
and for €+ A% =0

A" + XU=o. (z2%)

These differential equations are easily integrated explicleely,
(Note that UV is parallel along L.) But A determines S completely,
and therefore our problem seems to be solved: we know the
rotation of the A-leavies around [,. There is only ane little point
which unfortunately turns out to spoll much of our glorious
victory. We don't know the initlal conditons good enough. Besides
A, which we can assume to be given at our starting point, we
need ijts derivatives with respect to all L-tangent directions.
At least for ¥>0 it seems to be guite unclear, which data

lead to a smooth field A on the sphere L. Even worse: after
translating the Ki-leaves, 1> 1, along a 11-1[-..-1!', wa have

to translate the ll—lea'.res, j> 2 ;, along all the lz—lﬁavms.

But for thi: we need th: initial data for A = A
whole ?«1—1e; s

, A long the
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Nevertheloss, Praposition 3 gives valuable infarmation
that we are now going to exploit.

The eguations (22), (22') have the solutions

(E+?\2)A+ X0 = cos Taa¥ e g + slnigixti (23)
A =- %220 + tB + E (23

with parallel tensorfields E, E along , Ee'Ra=E «® = 0.
~ 2 -
(If 54 3°<0 we substitute coshVictait etc. to get real

solutions. ) 1f the eigenvalues of § are

A=A A X ...'Xg

gt Bar s

with multiplicities

Mar wens mq
then the eigenvalues of A are O and 1/li-k , and those of

(c + )4 + XU are

) E+ )g)& ;F'?-FAIA} i3
i R o vt Xy =2, L

with the same multiplicities, and they are constant along y .
Note that the ;8 are not necessarily distinct, because k. "ilis (o)
may happen for an 1L >1, but slnce we are finally interested

only in A lknu (®) this will cause no trouble.

Therefore the eigenvalues on the right hand side of (23),(231')
must be independent of t. This implies in particular that
in case © + AS £ 0 the trace of E (and F ) must be zero. In

cass &+ A% =0 Lt foliows A= 0. In either case we have

Proposition 4. For an 'soparametric hypersurface with distinct

principal curvatures /,,..., 11 of multiplicity Myrese Mg in

a space of constant curvature c we have

‘ L h. )
7 jmj Eoto A - § (25)
j-‘. ?\3 - }*l

for ali i. j¥2

A — b

11

{25} is Cartan’s fundamental eguation for isoparametric
hypersurfaces. From it he obtained the classification in the

cases of non-positive .

Consider first the case €<0, say ¢ = -1. By changing the
normal fleld if necessary, we may assume that there are positive
A;s. Let

X = sups\ 7\i; Q< Aj_f 1} and r:r lﬂf{}‘i; 1< )\i}.

assume First that X exists, and that there is no princlpal
curvature in ]?,5{\[ - Then

-1 4 ,\,\1'

= TRl M o= 1/
. R |
>‘3 /\) pe
is positive for all )‘j A A . except possibly A.= 1/X . Hence,

if g>1, by (25) we have g = 2, and )~1X2 = 1.

Assume next that A exists, and that there is a principal eur-
vature in ]M‘ﬁ[.Thc—n also » e]A,‘fA[. and there is no
principal curvature in ]"r, K [ .we can therefore apply the
above argument to p instead of X .

Finally, if there is no R,l in 30,1] , then p exists, and

again 1?’ . [ does not contain any .'\i'

~
For ¢ =0 a much simpler argument works, which I leave to the

reader. We get

Theorem 5. If M is an isoparametric hypersurface in a space
M of constant curvature & £ O, then the number of distinct
principal curvatures is ¢ < 2. For g=1 M is totally umbilic
and very well known, if -P; is a standard space. For g=2 the

two distinct curvatures satisfy

- XAy =<, (26) (

and loc~*ly M is obtained by taklng the two curvature leaves
(witich are totally umbilical submanifolds) throush a given point,
and then (ﬁ—)patnllel translating one along the other.

This solves the local classification problem for T < 0. One
can show that each connected isoparametric hypersurface is an
open part of a complete one, and for those the classification
is the same. In euclidean space the isoparametric hypersur-

faces are (open parts of) spheres and hyperplanes (g=1), and



spherical cylinders (o=2).

For & > 0 the above arguments fail, but proposition 4 still

gives lnteresting information about the principal curvatures.

Proposition 6., Let M be an lsoparametric hypersurface of the
standard sphere Sﬁ” of curvature 1. Let M have the distinct

principal curvatures %, < 32 K oo € with corresponding

1
multiplicities Myyenns mq. Then, for indices mod g, we have

mg =m0 (27)
and Lthere exists oa Y0, :E‘ C +Stch that
'Li = cok ( = + (g‘—i)g ) & (28)

1f g is odd, then all multiplicities are egual.
: t= i s T >0
Proof: Put '}\j = cob o, with ™ g, > ‘-j’,&

Choose some X = ?\i, and define A correspondingly. Then by (24)
the eigenvalues of {1 + A4a o+ AV l ker (%) are

1 4+ AN y
in o = got ('?; ~ij) with multipl. m. (29)
I 3 - . '__.-1 §
Evaluating (23) for t =0 and '{1-“ £ =T shows that

with oot (?i - (?j) also - got (<fi - 'f_J) is an eigenvalue,
which by continuity must have the same mulbiplicity m].
From

f-h-‘s‘_“z__, < . —-tf‘ < M+ tf‘.—cf“ €. omees gy =W L

we obtain

cotlp, =G, 41> ... >ootig, - gq) > cot(g, - @ h.>cotlg - P _,)

with corresponding multiplicities

L mq ) m;_4
Since the negative of the biggest sigenvalue is an elgenvalue,
it must be the smallest one ete. Hence Mypy = My_ye indices

mod g . Moreover

cot (@, ~@;4¢) = = cot (g -P, ;)

L e—— — _ — — =

S

el

lmplies

®; = F549) + %, ~ 9,4 = 0 moa=x

’

and

i 7 %1 = P, -@,  modw,
Indlices mod 9. Hence the 9.
33

: are equidistant modT
This proves the pProposition. e
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’arallel hypersurfaces, focal manifolds and isoparametric families

e concentrate on the spherical case as the most interesting one,
out must of the following considerations carry over to the gene-

ral situation.

Let M be a hypersurface of the standard sphere Sn+1, and let

E be a unit pormal field along M. Then for most real numbers

t the map
p — expp( £t E(p) )

defines a parallel hyperaurface My and the shape operators
5 and 5% of M and My
The eigen spaces of St are parallel (even in euclidean space)

are related ln a very simple way:

along the curve t s exp (¢ §(p)), and the eigen-value of
5 corresponding to the principal curvature N onM is

cot (¢ - t), where A = cotg. (30)

Hence, 1if M is isoparametric, so are the parallel hypersurfaces
Mt. Isoparametric hypersurfaces come in so-called fZsoparametrice
families.

If ¥ has principal curvatures X 1= cot Qg0 --e v hg = cot ?‘J
with multiplicities ml,...,mg, then the mean curvature ofMt at

the corresponding point is
t 1
HY == 20 my cot (g, - t) (31)

If each Mt (for vaiues t in some open interval) has constant
mean curvature, then (31) is an analytic function of t, the

poles ¢f whichdetermine uniquely mod x the LK and hence the
principal curvatures. This yields

Propositicn 7. If all parallel hypersurfaces M, of 4 for ¢
sufficiently close to zero have constant mean curvature, then

they have constant principal curvatures and are isoparametric.

The focal set of M is the set of singular values of the map
(t,p} Y exp (t ¥(p)). From the curvature foliations of M
we see that to each mi—fold principal curvature li of an iso-

parametric hypersurface there corresponds an (n - mi)—dimensional

15

sSmoot) 0
1 focal manifolg M(}j), and the h

Sl e e yYpersurface is (}ocally)
i

corresponderce of shape operators
~

described above remaing true on the

cal manifolds in the

following sense: PEM determines a P int

P,eM(X.) and a unit
T, of M(2, ) at iy >
i 1 E, namely the tanp
normal great circle t o exp_(t E(p)) PeSs
' gl at t '—Ti'

normal vector

Then the ef gen-values a -shape Operator § - (=lal -
- | bN ) F 8 = ith IEEP 30

cot (p. - iE i
TJ Ti) + 3£ i, where lj = cot ?5 (32)

a Sy e A 5 » 4
S =R Q
nd the iqP]I- ACEeE corres pond to thase f S at P under

lation along the normal gre
We see that on the

parallel trans
at circle,

focal manifolds of an isoparametric
; alues of the shapa
independent of the po
given a submanifald w

hyper-
Qperator are constant -
int and of the unit normal vector.

surface the eigenv

Conversely,

o ’ ith this property, the tubes around it
SOparametric family. The shape oprrators of

manifold in a f1iwxe e
L S

o : xed point correspond ln the way described above
-e¢ shape operators of %he } q : X
¥ 1 ] .
é Ypersurface along a wholehggxgatqig

nts based on the differential equation
be carried out i
3 ‘ i 2 - 1n the linear
context of focal manifolds, compare (29) and (31)

The ver Xplicite kr owledge of the Arinci Ve € 5
il ijal curvatures also

dives Y i

s a very good global Plcture: lat M he a compact
rected isoparametric hypersurface in g"t! el
field E and elgenvalues

iggf- Therefore the argume

in Proposition 3 can also
algebra

with unit normal

: PRI -4
i cot (= +<9§%t ) of multiplicity m .

Then

7!‘1 PP = exp ((wm + g;—lrrjg(p))
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is a submersion of M onto the focal manifold M(zi), which is
therefore connected. M is a tube around each M(xi) with the
li-)envus as ti-fibres. If we fix peM, then the normal
great circle bt exp (tE(p)) =icas tip +(sin t)E(p) will
therefore meet the hi—loaf throngh p again at

g + =1 .
exp (2 (< = miZ(p))
This lmplies
M(xi) = M(Ri+2) (33)

where by contrast with (27) the indices are not mod g.

\3_‘1.1 : o s iy

2Ry
" £ B
peir
A ]‘ ren
A nop M= R jnos
n
3
T NG = i
Al # / nUy
m)':\_/ non ‘\'§0-\.““ :
.

The image of the normal exponentlal map of M is the union of
these focal manifolds and of the parallel hypersurfaces of M,
and therefore compact and open in Sn+1. Hence the isoparametric
family determined by M fills the whole sphere

divides 5"’1 intoe two components. Therefore M has exactly two
focal manifolds, and Sn+1 is the union of two solid tubes
around the focal manifolds which intersect in M.

This topological situstion was studied by MUNZNER [ 42 ]

using cohomology theory. He obtained

Theorem 8. {42 JIf M is an isoparametric hyperéutface of Sn+1

with g distinct principal curvatures, then g€ {1,2,3,4,6 3.

(The compactness-assumption for ¥ is not needed in the theorem
for reasons to become apparent Iin the following section.)

Each hypersurface

N _ e

N e e — e

i I M ——
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W ; :
e close this section with a brief remark about minimality

questions in connection with i8opa ametric families

he mean curvature vecto 't i
r 1 racterizod
The t t of a sul uifolad is cha o

n<m, > = trace s

b3

for eac e
r each pormal vector E. Since the right hand side ls constant

E?r isoparametric submanifolds, we obtain the first assertion
L 1) of the following thepram, The

sacond one f
ok ollows easily

Theorem 3. The focal manifolds of an is
are minimal submanifolds.

minimal hypersurfaces.

oparametric hypersurface
Bach isoparametric family contalins

Not? that by (32) the minimality of the focal manjifolds implies
again Cartan's fundamental equation (25).
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oparametric functions
i this section,which very closely follows MUNZNER [ 144 7 let
. . .n+1 . . . .
be an isoparametric hypersurface of S with distinct prin-
.pal curvatures
'Ai = cot (o + 9?;—1-11'), multiplicity m
1<1i ¢g, and the shape operator is taken with respect to

nere
unlt normal field %. Then there is a smooth function

(a.by : "o U s mRxM,
efinzd on an open neighborhood U of M, such that
q = exp ((«- alg))Eb(q)))

alM =« . Up to an additive constant a is the oriented

wnd
and b is the nearest point map- Then

jistance from M,
2
fgrad all® =1 (34)
and

(Hess a)grad a = Vgrad J9rad a = 0.

The mean curvature of the level hypersurfaces of a is given

by [ 5]

' _ <(Hess a)grad a, grad a >
nlgrad afj#H = Ba T T

nH = Da.

and if we restrict ourselves

But from (28} and (30) we know nH,
= 2k, we get

to the slightly more complicated case of even g

from those two equations
= g-1
nH = Zmicot(u+ —FR - (- a))

g-ig
Zmicot(a+ 3 )

mg_.IZc:ot(a + 3}}3] +omg Dlcot( a + 9;—11)

-1z a0y g-3e0m)

S .

é—
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N = ;
ni = m12_._,cot(a FER 4+ om

=Mk cot ka ~ m_k tan ka.

2

Il we chonse w e o, C such rhar
2
c . — i
05 w - , :s1n2c0 =
then we can concinue

nH = f cos?
k(m' + m2] 1 €O57w cot ka - sinzw tan ka }

2 2
COs O
2n = »&_\ Ka .lill"yth “ll'n“k.]

sin ga

= n CO8 Jen
sin ga + oot ga f.

Therofore
Aa = n ( cot ga + —==_
This becomes still sy
comes s Slmpler if we substitute
S SRAREltute f = cos ga For a
5 f = Acos ga
= - 5 4 g 2
9 sln ga Aa - g“cos ga lgrad ﬁll2

= - 9gn cos ga - gn cos 2w - gzcu-.; ga

2

=-9n f - g°F - gnm';@"-

:n,l+m2 '

or
Af + g(n + g)f = gz Me —iny
o # (315)

The s:¢ 2 equatio g 1e 5 quit
€ 3 n is true for d ¢+ an the proo &
h am t 1 od d o f e

SLmil .. The eguation (34) implies

l grad sz = g% 4
: =g (1 - £5)
: (36)
Finall i
. Y we extend f as a Positive-homogencous function F of
Qc
hJref-z g onto the open cone -[tq; t>0, g EU} Then i
the eucitde iffe i : i
Ctrdean differential Operators instead of the sphe 'g
ones, we obtain the first claim of .
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. +
porem 10.{4171 Let M be an isoparametric hypersurface of g¥!
.th g distinct principal curvatures, and F defined as above,

wen, with r{x) =txu,
i) F satisfies

yarad F(° 2 2 (37)

!
[Vs]
2

AF = ¢ ¢97® (38)

there ¢ := qum,vmW)/Z (= Q for g odd).

1) F is the restriction of a homogeneous polynomial of degree q.

Tonveraely, for each homogenecus-polynomial F of degree g,

(37) and (38) the level hypersurfaces of F]SnH

that satisfles
family. We call such polynomials fao~

form an lsoparametric

parametric funs

(1) 1s a trivial consequence of (36), (35), and the

grad and A .

Proof:
formulas relating the euclidean and the spherical

(i) Put G ;= F - s r? for some real number s. Then

lgrad Cﬂz = u 92 4 & rq—%G, (39)

O. This is

]

since G is homogeneous. Choose s such that AG

possible by (28), and tor odd g we have 35 =v = 0.
From (39)

a9 farad Glz = 0.

On the other hand, since the partials of G are harmonic,

0= a9 ) araa G* = 29 2:(31 i ?% 62,
o q

whence all partial derivatives of G of order g+i1 vanish. Hence

G, and therefore F is a polynomial of degree g.
(ifL) ls a simple computation using Proposition 7.

Corollary 11. Each connected isoparametric hypersurface of gh*1

is an open part of a compact isoparametric hypersurface imbedded

in a “global" isoparametric family.

According to Theorem 10 (ii) the determination of all isopara-

metric hypersurfaces in the sphere is an algebraic problem,

thougyh a difficult one, because (37) is non-linear.
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Hom Meneous examples
8

The Tie algebr; [
$agesod quxn 9 of 5U(3) dd€composns into a direst
Gubalgeh = ik
y r{x : : ia * = ¢0(3), and the vectar subspa L
i B2 E =%, teing CH i .
nner ;
e product op o4, this decomposition i
& acts isnmﬂerically on the eucliqg ‘
automorphisms . Consider the orbit M fe
o
% imdfs 9 o
P £ o €
2 \o o o g

for X e ® we have

= trace X¥) as ap
S orthogonal, and

an S-space ﬁ by inner

[k' X] =0 =D % =

and it follows thae

k Ad(k)x = k x k*-l

is g COVerlnfl ma fr nt =] iIm M = 3
P om 50(3) 0 O M. H nce d In 3 and
Il n 1

ig a hf‘xnu‘w[;'rprw 5 s f -
Yyaneou €refore lso Arame
1 and th 3 of & ames

5

trie hypersurface of

The tangent Space of M at x is

T}M o FF, x].

The geodesic ip M with
(exp tX) x (exp -tx) .
re

initial vector I
X .x]at x is
Therefore the s given by

sha

s . Pe ope .

pect to a unie normal vector E is giv pbrator R i
en Y

(40)

+1/73 and o. Hence M hag
each of multiplicity 1.
Ace i
. ording to ouyr consideratjong on page 4¢
i5 a focal manj
ifolq, corresponding to 9\ = O. The j
& Sotropy group

of ¥ is S{ o(2
projectiy )x0(1) ). Hence the focal manifold i1
€ plane 50(3)/5(0(2)x0(1)) S a real

- 3 i
q distinct Principal Curvatures

the orbit through

imbedded ag a S0-called
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Veronese surface.

The above example of a homogeneous hypersurface can be
generalized very much. Instead of (SU(3),50(3)) one can
start with any Hiemannian symmetric pair of compact type,
and look for an orbit of maximal dimension of the isotropy
representation. Its euclidean codimension turns out to be
the rank of the symmetric pair. Hence for pairs of rank 2
w2 get isoparametric hypebsurfaces of the spheres. The prin-
cipal curvatures and their multiplicities can be computed
from the roots of the pair. In this way one obtains homogeneous
examples with the following values of g and (m,,mzl:

___?7 (mlile_», Remarks o eme
1 = M is a hyperaphere
2 {(k,n-k) M is a product of two round spheres
3 (173 (2,2)(!1 is a tube around a projective plane
(4.4),(8,8)lover R, €, H, Cay.
4 (1,%=1}
(2,2k=1) % any natural number
(4,4k-1)
{(2,2)
(4,5)
(9,6)

& (a1 02,3)

A more detalled list, gilving also the Hiemannian symmetric pairs,
is contained in |_48 1, where you can also find detalls of the
construction outlined above. Moreover [ 418 ]contains the proof of
Theorem 12. {743 ], 8 7 Each homogeneous (isoparametric) hyper-
surface of the sphere is an orbit of the isotropy representation
of a Riemannian symmetric pair of rank 2, and hence contained in

the list given in [ 127,

- e,
e A W
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Cliffc[g_‘tgmmgles for g = 4
An (n+1)-tuple -
(= (Po,""Pm) of aymmetric endomorphisms of m“

1s called a Crlford system, if

P.P. + =
1Py + PyRy =2 J'].de. (41)
We have the following
=
el mreeeeB) cmm‘l,
5 3 = m-1 are Positive, then

T re G
heorem 13. [71 Siven a Clifford system (p

sSuc .=
such that My :=m and m

1t i ) < "
. - 7] o
Fix = X P <P.x,x (42)
is an BOparametric funect inn def inih

g an 1ﬂﬂ1_pardmetr.ic Family

with g = 4, i i
and multiplicities l‘m.l,m;,).

Proof: we have

gradxF =4 dx,x>x - g =z <~’P1x,x> Pox
L i

2
bgrad F1° = 16 ¢x 2
g PX> + 6T e
sPix,x$< ij,x><Pix,ij>

- 64 -Z‘(Pix,x>2<x,x>

= 16 (x,x>3,
because ¢ p x P.x>
» = <p, =
S, { j . PiPx,x> = <x,x>d Note that
3P Skew-symmetric for 4 3. *
Furthermore
ol 4
xF = 4Q21+2) ¢<x,x> - 2 T2 <CByXOBCP X, x>

+ 2fgradq <Pix,x>12)
= e(mz—mj) CHeXD> L

The assertion follows from Theorem. 10
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We shall now study the following questions: (
How many Clifford systems are there? I

To what extent is a Clifford system determined by the induced
isoparametric family?

Which Clifford examples of isoparametric hypersurfaces are
homogeneous?

We begin with the study of Clifford systems. From Pf = Id

i are 1. From

PP, + ngi =0, L #3, 1t follows that Pj interchanges the

it follows that the eigenvalues of P

L]

eigenspaces E+{Pi) of Pi' whence dim E+(Pi) = dim E—(Pil = 1.
For j» 2 we have PO(P1Pj) = (P1Pj)P°. Therefore we can
define
By = PP B ) 2 B p) —>E (), ;‘

‘or 1< i¢m-1. Then the Ei are skew-symmetric and satisfy

| e 8

EE. +EE =-2 8 14.
lJId (42) 1
In other words, the E.1 give an orthogonal representation of ‘
tﬁu Clifford algebra Cm—1 on the l-space E+(Po)' Conversely, J
given skew—symgvtric ET""’Em-1 on ", we define symmetric

by
P lx,y) 1= (x,-y), P, (x,y) := (y.,x), Pyyq(2ey) z= (E,¥,~E;x).

Then we obtain a Clifford system.

Two Clif 21
ifford systems (Po,...,Pm) and (Qo,...,Qm) on IR are

called algebraically equivalent, if they are conjugate under
an orthogonal transformation A ofIRZL: Qi = AP.At
k i

Given two Clifford systems (P ,...,P ) on:lR21 and (Q_,...,Q )

2% ] m I (] “m
on R"", the;(lPi?Q1 : (x,.y) w—o(Pix,Qiy) defines a Clifford

+ " <

system on IR + the direct sum Of the P-system and (-system.
A Clifford system, which cannot be written as a non-trivial
direct sum (up to algebraic equivalence) will be called irreducible.
Obviously each Clifford system is the direct sum of irreducible
ones, and the latter are obtained in the indicated way from

irreducible representations of Clifford algebras.

25
Now from the Clifford representation theory, see for example

[ 3 1, we obtain the following facts:

(i) There are (rreducible Clifford syst-ms (Pu""'Pm) on mzl
for,and only for the following values of m and 1 = &m):

‘
m 1 2 & 4 5 6 7 B oemain m+ 8
i ——a e Y (43)
5 (m) 1 2 4 4 8 8 8 8 ..... 16 &' (m)

(i) Por m # O mod 4 there is exactly one irreducible system
up to algebraic equivalence, for m= 0 mod 4 there are two,
which can be distinguished as follows: for m = O med 4, irredu-
cible systems (Po,...,Pm) and (QO,...,Qm) are algebralcally
equivalent if and only I

trace (PO...Pm) = trace (Qo.--Qm) =+ 2 Em).

It follows that for ms=f O mod 4 and 1 « ké&m] there is only
one#lqebraic equivalence class of Clifford systems, for m= 0O

mod 4 there are k+1.

We now come to our second question: To what extent is the
Clifford system determined by the induced isoparametric family,
or rather by the congruence class of that family?

It follows immediately from

<ar Atx,x > = (PiAtx.é\tx>

i

that algebraically equivalent systems induce congruent families.

But the converse is not true. To see this, let (xij) be an

orthogonal {m+1)-matrix, and let (PO,...Pm) be a Clifford system.
Put
fuid
% =y
A straight-foreward computation shows that (QO,...,Qm) is

again a Clifford system, and induces the same 1lsoparametric
function as (PO,...,Pm). But taking (aij) = -Id gives alge-
braically inecuivalent systems for m =0 mod 4, 1 = S(m).

As a conseque:r ce of these considerations the isoparametric
function depends only on SPa"‘Po""’Pm) in the space of

symmetric endomorphisms, and each orthonormal basis of this

span is a Clifford system. We call the unit sphere in span[PD,.,PmJ
the Clifford sphere determined by Po""'Pm and denote it by
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WP ..-..P ). We are thus led to define: dwo Clifford systems

, 21 ] y
I"), oo ipm) and (Qt.': o ;Qm) in IR are geometrio

tiow for | x% =1 the vectors Pox,...,me are orthonormal,
whence

eguivalent

f there exists an orthogonal transformation A of m‘] such

M_ = -{xs Sn+1; exists PeZ]PO,..,Pm) s.t. Px = x I .
hat the two Clifford spheres are conjugate under A:

(44)
n t
ZXPO.---,PN) = AEB(QO,....Qm)A "

Since any orthogonal P,Qe€ 12“2#"'Pm] anticommute, the P 1in

(44) is uniguely determined by x. Hence M_ is foliated by the

i i+ 1
intersection of s"

¢ our earlier remarks the irreducible Clifford systems for

=0 mod 4 re geomeltrically equivalent: just replace one
mod 4 are geometrically equivalent: j aplace o with tha (+1)-eigenspaces E+(P),

Pe ZﬂPD,....Pm). We shall show that this foliation can be
characterized geometrically: the tangent space of the leaf

by its megatlve. One can easlly show that

X
| trace (PO...lm)l

through xeM_ is spanned by the kernels of the non-zeroc shape

i invarfant under geometric equivalence, and therafore there operators of M_ at x. But the foliation determines the E_(P),

re 1:] ¢ 1 geometric equivalence classes of Clifford systems and therefore :E(pa""'Pm)'

(th 1 =kdim), m= 0 mod 4. We have to compute the shape operators of M_. But M_ consists

1e congruence class of the lsoparametric family depends only of singular points of F, and the direct computation of its

1 the geometrlie equivalence class, and the converse of this ceometrical data is somewhat awfull. We thersfore first compute

T " em £ ui
3 How thde 1n *mostY eages: them for the simpler M _ instead of M_, and then use the fact,

3 that the elgenspaces of the shape coperators are parallel along

wepram 14. {7 1Let ¥ be an isoparametric hypersurface of gh* ¥

normal great circles of our family, and the change of eligen-
b2 = 21, with multiplicities m, £ T, If there exists a

then

values is explicitely known. M is simpler to handle than M _,

lifford system (Pﬁ....,Pm) inducing M with m = m, . because

:{PD,...,Pm] is uniquely determined by M im a geometric way. 2
. M, = {yes™ <p y,y>=..=<p y,y>=0l
wark. It follows from (43), that for Clifford examples

=my £ m, = k&(m) - m - 1 except for finitely many {namely admits a set of m+1 independent defining equations.
®) exceptions. Therefore the assumption m =m, < m, is At yeM
)t very restrictive. We shall come ‘back later to the exceptio-
1 M, =span{P y,...P_y) (45)
11 cases. Note moreover, that the congruence class of Z:(Po,...,Pm) Y o o

; already determined by « and 1, unless m = O mod 4. But TYM*= S X: €X,y> = <x’poy) = ...=X,P y> = 0](45)

m
- {Pipjy: 1 £37F.

The shape c)wrator SI with respect to the normal field

ran in the case m=# O m>d 4 the following proof gives a
.co geometric description of §E(Po,...,Pm)A

‘oof of Theorem 14: Let F be the isoparametric function deter-

ned by M. Then the two focal manifolds of M are y+~—>P,y 1s easily computed:

M oi= 5“1((.r1l1) SX =0 forX =PP.y, j A1 (47)

]

r are interested in s

|-l-><+ )-‘-><+

=-BX for X € TYM' <X,Piny> =0 for all i,j (48)

a.
M_ ={x6 8 Z 4Py’ = 1}
27e
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28 1
since Pyx,...,Pmx € E_(P_ ). Pﬂ""‘Pm*l € E (P.).
Mow, given x<e¢M_  and , say, Px = x, put Now
N{x) := {-1 € E_{Po): (‘1,P]x‘> =...=<~l,me> = 0}. ,‘QSPEH(P’IT"“’PH’U « 0, (55)
This space has dimension 1l-m = 1"2*"‘1, and for \16 N(x), l"'li'l =1, This can be seen as follows: Lf we had O # UEFP&H‘”'.I'L,..).
we have ’ then for every vLﬁ g in _Lfl_ there would exist

P e span (P1 Py Pm) such that

y &= (x-q)/ﬁ € M,

P~L= u
Py = (xeq) /T2 € LM,
ar
and

npuz,?:r'zwl = Pu.

_{_w.,_ = spun(r’oy,...,Pm) = span(Po(x—v,..-,Pm(x-*[)) (49)

v But then the linear map
ker 8 = span(PoPay, .. POPLy) sspan (P (x4m),..0) (50)

V.
5par1(P1, i .,P'm] — ]R‘]‘, P +—»Pu

ot - o . = = = F 3 =
E_(S_) »{Xe BB <X ,y> =<X By > = . .= &, F y> o}

would have rank greater or equal to dim J.)JVI_ = mytl,

=ixe Pl <X x> =(X,F1-‘) Eabban s ™ O.![ (1) contradicting m = m < m,.
+
E, (5) = {X€E_(P): <X,y>=<X,Py>=..=<X,P y>=0] From (54) and (55) we have
: o L
= {xer p ) <X, q>= (X, P> == <X, P x> = 0].(52) span { ker 57 7 o} = (span(P x,....P )",

Using the normal great clrcle te—(cos t)y + (sin t)P .y ‘o the orthogonal complement being taken in T M_. But this ortho-
translate the data to x = (cos ™/4)y + (sin %/4)P_y we obtain gonal complement contains only vectors in E (P ), see (53) and
a ’ (51'), and has dimension Z‘m.l + m, - m, = m, 4 m2 =1-1.

}-._(S‘l) = span (P, (x~71) reea P (x=m)) (49") Therefore
E_(5.) = span(P, (x+n),...,P_(x+n)) (50") 3
L | k 1 k m " BulR) = spaniker S\; 0 i‘-“GlxM_ 1 ® TRx,

ker 8, = {x €L (R); <X, x> =<X, B>

1

It

= b L
o (X'Pm‘\_> O} (511 and the theorem follows.

_prl_ - f.‘(( E_[PO); <X, x> =<x,P1x§ =...= <X,me>= 03,{':2')
Hence
Tqu_ - s;)an(P1x,...,me) 2] sp&n(Pﬂ,...,Prﬂ) @ ker S,L (53)

and

il

L
(nspan(P]x, . .,me) & span(!’ﬂ T ,me‘)\
110

(span(?lx,. s nspan(Pﬂr...,pml) )-L
e (54)

span {ker S,:L: 'VL # 0}

L}
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From the theorem and the results on Clifford systems mentioned

earlier we see:

For m= 0 mod 4 there are [%] + 1 incengruent

isoparametric families on euclidean 2k d(m)-space.

The only possible exceptions are m =4, k =2, and m =8, k = 2,
because for these m1> My It can however e shown, that in these
cases too the two geometric eguivalence classes of Cllfford
aystems lead to incongruent families, see W folleweisg seckon e 34 f( .
Besides the problem of the m, > m,-cases, there is a relaled  problem
not touched upon so far: Can two Clifford examples with multi-

plictties (m,,m,} and 451,ﬁ ) = {m,,m]} be congruent? We

2
just mentlion the results without golng into proofs. Since this
my >y = Irregularity occurs only for small dimensions,
we flrst present a list of the low-dimensional Clifford examples.
Here ﬂﬂhJﬂ%), (migﬂal,... means that there are two, three,...

geometric squivalence classes with multiplicity (m1.m?).

, .
- - - - (5,20 (6,1 - - g 19.8)
- (2,1)  (3,4) (4,3) (5,10) (6,9 (7,8) (8,7) (7
00 (el ThHBE T e "[..
(1,2% (2S) (1312 14,08 . b B e
(101 LYY S Lp
. il & o 5w e aen &b in?

Hence m, > m., only for (2,1),(5,2),(6,1),(8,7),(9,6),(4,3).
The familiecs with the first three multiplicities can be shown

to be congruent to (1,2),(2,5),(1,6) respectively, while (9,6)

and the two (8,7)s are not congruent with (6,9) or (7,8). Finally,
one of the two (4,3)s (the indefinite one with trace Po...P4 = 0)

is congruent to the (3,4), while the other is not, fece B folowing reckon.

Jefore turning to our third question I want to stop briefly to
dlscuss a very fascinating consequence of the above. Nota that

our Clifford hypersurfaces have at least three prinecipal curvatures
different from zero, and are therefore rigid in the sphere.

Bt if we take two incongruent families with the same multi-
plicities, and from each we choose a hypersurface, such that these
two have the same principal curvatures (possible by (28),(30)),
then on both hypersurfaces the shape operator and (equatlon of

Gauus) the curvature operator behave pointwise the same.
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To make this precise, let us define: “wo riemannian manifolds
M and M' have the same curvature tensac at xeM and x'eM’,
if there exists an isometry Jj: TJ%-——* Tx.M' such that for

the respective curvature tensors we have
JRC,Y)Z = R'(§X,3i¥)i%.
Then we have the following congequence of Theorem 14:

Corellary 15. For m = O mod 4, and any natural number k, there.
exist [k/Z] + 1 non-isometric compact riewannian manifolds with
the same curvature tensor (at any two points of any two of them).
The dimension of these manifolds is 2k80n) - 2.

We now turn to the third guestion: Which Clifford examples are
homogeneous? Obviously, most are not: look at the multiplicities.
But we can extend our guestion, and also ask for local geometric
invarlants which prove inhomogencous examples to be inhowogeneous.
Let Po,...,Pm be a Clifford system on]R21 with m = m1 e 3,

My = Il -~m-1%0, and consider the focal manlfold M+.

Let N be the set of all points yct4+ such that there are

orthonormal vectors -vh,vlz e J'YH"' such that

dim( ker S n ker S ] > 1

" 7

Then we have

Lemma 16. N, is the set of all yeM_ for which there are
orthonormal Qo""’QJ in span(Po,...,Pm) with

Proof: Flrst let vye N, . By replacing Po,...,Pm by another
orthonormal basis of their span we may assume that

ker SPoy n ker 5P1y = span{ P P.Yi i }n span(POPi: 1#1}
has dimension greater thin 1, compare (45),(47). Hence in this
Ilntersection there is a 1init vector u orthogonal to POP1y.

Then u = Pogzy = P103{ with QZ’QJ € span(Po,...,Pm),
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<P°,Qz> = <P1,Q3> = 0. Now for i{x{ = 1 the map Q —> Dx
la isometric, whance Qo 1= Po, Q1 s Pl' Qz, 03 are orthonormal,
and

Qe --Qy¥ = = Q0,007 = - 0.0,0.0,¥ = ¥.

Conversely, let Qyree- -03 € Span (Fo, i ,Pml be orthonormal,

OQ..-ij = y. Then Q.0,y and Q::Pz!' = 405y are independent
véctors in the intersection of the kernels of the shape opera-

torg corresponding to the normal directions Qoyf QY.

Theorem 17. [ 7] Suppose 9 < 3my<m, + 9, and in case m=4
moreover P ...P, A +Td. Then

@ £ N £ M
+

A
Hence the isoparametric family is inhomogeneous.

Proof: Put P 1= PO...P3. Then P is symmetrie¢, and anticommutes
with each Pi’ O« 1 3, and commutes with any other F1.

put E(P) := E(P) A 8",

For xeE_(P) we have

m

FIX) = <307 = 2 2w,y
1ele

y - =

For m=3 we have R {P)c M, .
For m=4 by cur assumption Py 1s indefinite on E+_(P), whence
EL(B) A M = {xea;tp) i (I",x,x> = 0} has dimension 1 - 2.
For m >4 we have a Clifford system Pyeewn Pon E_(P) whose
(+1)-fogal manifold has dimension l-m+2, and is just E+(PJ nn.

Thus in all three cases N, 2E (P)n M, £ 9.

On the other hand, it is not too hard to show that P = Q ...Q0,
for any other orthonormal basis QD,...,03 af spantPo,..,PJb.
Since the Grassmannian G"tapan(Po,...,Pm)) has dimension 4 (m-3),
the dimension of N, is atmost d4(m-3) + dim E _(P)a M =

4m‘ + o, - 9. If we compare to dim'n+ =m, + me. we see

1
4m1+m2-9 < |'n1+2rﬂ2
1 f (and only if)

3m1 < m2+9.

This proves Theorem 17.
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The exceptions not covered by the theorem are:

A) m €2, (4,4k=1) and P_...P, = +1d, (5,2), (6,1),(9,6)
B) (4,3) and P_...P, A *Id, {6,9),(7.8),(8,7), (8,15}, (10,21).

The cases A) are homogensous. One possible way of proving this

is to use explicite Clifford systems (obtained from real division
algebras), and then construct sufficiently many isometries leaving
the isoparametric functlon invarlant, see W felouing tmekon.

On the other hand the cases B) are Inhomogeneous. This can bhe
shown similar to Theorem 17. Only in the cases (8,15}),(10,21)

we don't have such a proof. But theirmultiplicities do not occur

in the list of homogeneous examples.

gesides the homogeneous examples there were two i nhomogeneous
series of multiplicity (3,4k) and (7,8k) known before, ras 6] .
These series coincide with our Clifford series of the same
multiplicities. Again this can he shown uzing explicite Clifford
systems, and checking conditions (A}, (B) of [4s].

The only isoparametric families known that are not Clifford ar=s
the homogeneous examples of multiplicities {2,2) and (4,5).
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Specific Clifford examples

In this section we discuss some of the questlons concerning
Clifford examples using explicite representations.

Lot EI,iz,ia be the imaginary units of the quaternions M.
Define

Ej:mn—-mn, i (56)

to be left-multip!ication by ij. Then the E. are skew-symmetric,
“satisfy (42), and hence define a Clifford 595tem P(n) ...,P(n)
n n 2+4n 4. 4

on H & H =R s

Put €y =1, Bj 1= ij-1‘ 2 & 3 s 4. Then the lsoparametric

function assocliated with Pén),...,Pén) is

Flu,v) = (1usl + Iv||2)2 - 2{(“un2 - Ivnz)2 + 4;;(u,civ>23
{57}

where u,v e m". If n=1 then F = -1, and m, = 4-4-1< 0.

This does not give an isoparametric family. For n>1 however
we qob one, and we concentrate on the case n=2.

Put P, := P{z). Then
[ trace Py---P, | = [trace (-1a)| = 15,

and the family corresponding to (Po"“'Pq) has multiplicities
(4,8-4-1) = (4,3).

Now F is invariant under the following isometries

{ tcos s)p_ 4 (sin S)P, i seRr | (58)
{1 ® «1d ;wem, lal=1} (59)
ia®a;: aespir }. (60)

The invariance is trivial for (60) and easily verified for (58).
For (59) note that the last sum in (57) is the square of
fvi-times the length of the orthogonal projection of u onto

Hv = «Hv.
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A point (u,v) € SISC 11-12 @ ]H2 can be moved by an [some-

2 v =172,

try of type (58) into a point (u',v') with Ru'l
Using (60} we may therefore assume that (u,v} = (1A?,O,v1,v2).
By (59) we can moreover have v1‘-m, vlb 0, and, using ({(60)

again, we see that (u,v) is equivalent with & point

(a,v) = (1,0,cos t,sin t)7/12 , oste¥/2.
But then F(u,v) = F{u,v) = cos 2t . Therefore the isometries
(58) - (60) generate a group acting transitively on the

level hypersurfaces of the function: the family s homegeneous.
(Note that this can be proved similarly for arhitrary n as
well as for IR or € instead of H.}

On the other hand, if we omit PO we get a Clifford system

P B, on ]Hd (<] mz = TR"’ which induces a function

1777774

Flu,v) = (lun2+HVI2J2 = BZ<u,ciV>2.
and a family of multiplicities (3,4). Conslider the focal

mani fold H+ of this famlly. Obviously y := (1,0,n,!)/{5
is a point of M_, and at this point we have by (47)

e o = & 4 i
Ko SPLY span {PjPiy ;o3 A 3 "
= span {(Cjéi,0,0,chi) P | 5. e
whencuo
% i
r\ ker S, = {0}.
A Pyy

On the other hand for 2z := (1,0,0,0)€ M+

span {(Cng'G‘O'O) A I | 1

+
ker sP.z
1

L}

{(x,0,0,00 ; % = -x }

1s independent of i, and hence the kernels intersect in a
3-dimensional space. Therefore M , and hence the family fe

not homogeneous.
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Finally we can do the abowe construction for the Cayley
numbers Cay instead of the quaternions. For n=1 we obtain

a Clifford system P;,...,Pé on Cay @ Cay = ®'6.

Then Pé,...,Pa and P;....,Pé are two Clifford systems leading
to familles of multiplicities (4,3) and (3,4) respectively.

Since

Z(P'.ltu,\e), (\.1,v)>2 (|u[;2 —w|12)2 + 4 ‘Z{u,civ’>2
&

wap? ~vyr 2 + 4 g wy?

= Wue? +pephy?
16
we see that for x = (u,vlg W
% 8
it - 2 I{P;x,x)z = -yt - 2_Z<F’1x.X>2)-
i=e =K

Hence the (4,3)-famlly and the (3,4)-family coincide.

By the algebraic results cited earlier(91,....?‘)must be
equivalent thh(p%,....Ph) {Exercise: Construct an explicite
equivalence!) By contrast, since Pé...P; antlicomnutes with

P;, lts trace must be zero, and(P;,,.,,Pslls not geometrically
equivalent with (P, ..., P,) above.

To sum up our results: There are two Clifford examples with

multiplicitias (4,3) or (3,4). The definite (4,3) ls homogeneous

[as are the definite (4,4k-1)s), while the indefinite (4,3)
colncides wifh the (3,4), and is inhomogeneous.

Final remark.

We know more about the geometry and topology of the Clifford
examples than discussed in these notes, see [T ] The central
problem however remiins open: the classification of lsopara-
metric families wit! g=4 and g=6.

a7
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