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Arrangements of Lines

Pairwise crossing lines.



Arrangements of Pseudolines

1-crossing curves extending to infinity on both sides.



Our Version of Arrangements of
Pseudolines

Euclidean: arrangements in IR2 and not in P.

simple: no multiple crossings.

marked: a special unbounded cell is the north-cell.
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1-crossing x-monotone curves.



Isomorphism
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Two isomorphic arrangements.



Dual of an Arrangement
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Dual of an Arrangement
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Zonotopal Tiling

A tiling of an 2n-gon with rhombic tiles.



Wiring Diagram
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Confine the n pseudolines to n horizontal wires and add

crossings as Xs. (Goodman 1980)

Remark.

Relates to sorting networks and reduced decompositions.



Counting Arrangements – Values

Bn number of isomorphism classes of simple arrangements

of n pseudolines.

n = 3 2
4 8
5 62
6 908
7 24698
8 1232944
9 112018190 Knuth ’92
10 18410581880 Felsner ’96
11 5449192389984 Yamanaka et al. ’10
12 2894710651370536 Samuel ’11
13 2752596959306389652 Kawahara et al. ’11
14 4675651520558571537540
15 14163808995580022218786390 Tanaka ’13
16 76413073725772593230461936736 Rote ’21



Counting Arrangements – Asymptotics

It is known that Bn ≈ 2bn
2
.

We are interested in the value∗ of b.

History

Goodman & Pollak ’83 1/8 = 0.125 < b
Knuth ’92 1/6 = 0.166 < b < 0, 7924
Felsner ’97 b < 0.6974
Felsner & Valtr ’11 0.1887 < b < 0.6571
Dumitrescu & Mandal ’20 0.2083 < b
CK & D & F & S ’24 0.2721 < b

For n ≤ 16 the log2 Bn

n2 is increasing up to 0.3748.

∗existence: lim inf
log2 Bn

n2

?
= lim sup

log2 Bn

n2
.



Counting Arrangements

Early lower and upper bounds

• Triangle flips and triangular grid spanned by 3 bundles.

• Encoding of local sequences as binary sequences.



Cut-Paths

A curve from the north-cell to the south-cell crossing each

pseudoline in a single edge.



Cut-Paths

If γn is the maximal number of cut-paths of an arrangement

of n pseudolines, then

Bn ≤ γn−1 · Bn−1 ≤ γn−1 · γn−2 · . . . · γ2 · γ1.

Task: Find good bounds on γn.



Edges of a Cut-Path

• We distinguish left, middle, right and unique edges on

a cut-paths



The Key Lemma

Lemma. [Knuth ’92]

For every pseudoline j and every cutpath p: p sees a middle

of color j at most once.

pseudoline j

w

w ′ c ′

cutpath p

c



Encoding Cut-Paths I

With a cutpath p we associate two combinatorial objects:

• A set Mp ⊂ [n] consisting of all j such that pseudoline

j is crossed by p as a middle.

• A binary vector βp = (b0, b1, . . . , bn−1) such that

bi = 1 ⇐⇒ p takes a right when crossing wire i.

Fact. The mapping p → (Mp, βp) is injective.



Encoding Cut-Paths I

With a cutpath p we associate two combinatorial objects:

• A set Mp ⊂ [n] consisting of all j such that pseudoline

j is crossed by p as a middle.

• A binary vector βp = (b0, b1, . . . , bn−1) such that

bi = 1 ⇐⇒ p takes a right when crossing wire i.

Fact. The mapping p → (Mp, βp) is injective.

γn ≤ 2n 2n = 4n.



Encoding Cut-Paths II

If |Mp| = k, then we only need n− k entries of βp.

Redefine βp so that bi encodes the left/right step at the ith

lookup.

γn ≤
n∑

k=0

(
n

k

)
2n−k = 2n (1+

1

2
)n = 3n.



Reversed Cut-Paths

We don’t need an entry of βp when taking a unique.



Reversed Cut-Paths

We don’t need an entry of βp when taking a unique.

Lemma. A middle of p is a unique of the reversed cut path.



Encoding Cut-Paths III

If Γ(k, r) is the number of cutpaths that take k middles

and r unique edges, then Γ(k, r) ≤
(
n
k

)
2n−k−r and by the

reversal symmetry Γ(k, r) ≤
(
n
r

)
2n−k−r.

Lemma. Γ(k, r) ≤ min
{(

n
k

)
,
(
n
r

)}
2n−k−r.



Encoding Cut-Paths III

γn ≤
∑
k,r

Γ(k, r) ≤
∑
k,r

min
{(n

k

)
,

(
n

r

)}
2n−k−r

≤ 2 · 2n
n∑

k=0

(
n

k

)
2−k

∑
r≥k

2−r

= 2n+1
n∑

k=0

(
n

k

)
2−2k

∑
j≥0

2−j

= 2n+2
(
1+

1

4

)n

= 4
(5
2

)n

Corollary. log2(Bn) ≤ 0.6609n2 for n large.

Further improvement from 0.6609 to 0.6571 with more

technical arguments.



The FV Lower Bound

The MacMahon formula for the number of plane partitions

in n×n×n, i.e., rhombic tilings of a hexagon with all sides

of length n is

P(n) =

n−1∏
a=0

n−1∏
b=0

n−1∏
c=0

a+ b+ c+ 2

a+ b+ c+ 1
.



The FV Lower Bound

}

}

}

Group 1

Group 2

Group 3

The construction implies B3n ≥ P(n) Bn
3.



The FV Lower Bound

The rest is a Maple supported computation:

ln

n−1∏
a=0

n−1∏
b=0

(a+ b+ k+ 1) ≈
∫n
x=0

∫n
y=0

ln(x+ y+ k+ 1) dy dx

yields

lnP(n) ≈
(9
2
ln(3) − 2 ln(2)

)
n2

and finally:

Theorem. The number Bn of arrangements of n pseudo-

lines is at least 20.1887 n2
.



The DM Lower Bound

• λi(m) = # i-wise crossings when bundles have m lines.

∗Figure taken from Dumitrescu and Mandal: DOI:10.20382/jocg.v11i1a3



The DM Lower Bound

F(12n) ≥
12∏
i=3

B
λi(n)
i ≥ 2

283n2

35·122 · 8
7n2

8·122 · 62
7n2

20·122 · 908
27n2

140·122 ·

24698
23n2

140·122 · 1232944
19n2

280·122 · 112018190
9n2

140·122 ·

18410581880
13n2

280·122 · 5449192389984
n2

70·122 ·

2894710651370536
n2

10·122 ·



Lower Bound: Step 1

k bundles of lines
L1

L2

L3

Fk(n) a lower bound on the number of consistent partial

arrangements



Lower Bound: Step 2

L1

L2

L3

D3

D2

D1

Bn ≥ Fk(n)︸ ︷︷ ︸
Step 1

· (B⌊nk⌋)
k︸ ︷︷ ︸

Step 2



A Lemma for Step 2

Lemma. If Fk(n) ≥ 2cn
2−O(n) for some c > 0, then

Bn ≥ 2
ck
k−1n

2−O(n log n).



Six Bundles
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Six Bundles - Patches in Regions

This yields b > 0.2541.



Twelve Bundles

12 bundles and 19 different regions. This yields

b > 0.2721.



Twelve Bundles – Technicalities

• For regions with 3 slopes we use Lindström–Gessel–

Viennot on 1000× 1000 patches.

• Regions with more slopes are subdivides in patches.

• We use dynamic programming to compute the

number of partial arrangements consistent with a

given boundary bipermutation.

• Results for bipermutations are stored for reuse.

▷ Minimal representative of a bipermutation.



Splitting a patch
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F(P) =
∑

F(P1L) · F(P2L)

The sum is over linear extensions L on consistency poset

of curves crossed by ℓ1 in the patch.



In Preparation 16 Slopes

The End


