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The Sampling Problem

e () a (large) finite set

e 1L: 0 — [0,1] a probability distribution

Problem. Sample from () according to L.
i.e., Pr(output = w) = u(w).



The Sampling Problem

e () a (large) finite set

e 1L: 0 — [0,1] a probability distribution

Problem. Sample from () according to L.
i.e., Pr(output = w) = u(w).

There are many hard instances of the sampling problem.
Relaxation: Approximate sampling
i.e., Pr(output = w) = pn(w) for some 1 ~ .



Applications of Sampling

e Get hand on typical examples from Q).

e Approximate counting.



Preliminaries on Markov Chains

M transition matrix o size () x Q)
e entries € [0, 1]
e row sums = | (stochastic)



Preliminaries on Markov Chains

M transition matrix o size O x ()
e entries € [0, 1]
e row sums = | (stochastic)
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M specifies a random walk



Instance of a Markov Chains

(Xo, X7, X2,...X,,...) an instance of M
e X; random variable with values in Q)

o Pr(Xiy1 =x|X;=s)=Mf(s, x)

Proposition.
Probability distribution of X; is yu; with

e = po M



Ergodic Markov Chains

M is ergodic (i.e., irreducible and aperiodic)
—> multiplicity of eigenvalue 1 is one

—> unique 7t with 7T = 7t M.

Fundamental Theorem.
M ergodic = lim poM' =

t—00



Ergodic Markov Chains

M is ergodic (i.e., irreducible and aperiodic)
—> multiplicity of eigenvalue 1 is one

—> unique 7t with 7T = 7t M.

Fundamental Theorem.
M ergodic = lim poM' =

t—00

M symmetric and ergodic
— M'1"'=M1" =1", hence IM =1

— 71 is the uniform distribution.



Example: Linear Extensions

A Markov chain for linear extensions
Li =x1,%2,...,X, the state at time t.
e Chooseie{l, 2, ..., n— 1} uniformly.

e If x; and x;,1 are incomparable, then

Lt—l—] = X1y X2y e« oy Xi—1y Xi{41, Xiy Xi42y -+ -y Xn

Proposition. The chain is ergodic and symmetric.



Measuring Convergence

Variation distance 1
/ s /
=Wl =5 D In(x) —p'(x)

xe)



Measuring Convergence

Variation distance 1
/ s /
=Wl =5 D In(x) —p'(x)
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Lemma. ||t— 1'[[yp = max(n(A)—u'(A))
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Mixing Time

ut = &, M* the distrib. after t steps starting in x
A(t) = max( ut o © x € Q)
T(e) =min(t : A(t) < ¢)

e T(¢) is the mixing time.

e M is rapidly mixing <= T(¢) is a polynomial function
of the problem size and log(e~').



Mixing Time and Eigenvalues

e M stochastic =— |A| <1 for all eigenvalues A.

e M lazy (i.e., my; > 1/2 for all i)
—> A > 0 for all eigenvalues A.

e M ergodic — multiplicity of eigenvalue 1 is one.

e M symmetric = ONB of eigenvectors.

Proposition. Mixing time, i.e., Convergence rate to T,
depends on second largest eigenvalue.
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Coupling for Distributions

i, v distributions on Q).

A distribution w on () x Q) is a coupling of n and v
& w has u and v as marginals, i.e.,
Zy w(x,y) = u(x) for all x and

> w(x,y) =v(y) for all y.

Coupling Lemma.
w a coupling of w and v and (X,Y) chosen from w then

It —Vllvo < Pr(X £ Y).



Coupling for Distributions

Lemma. ||p—v|wp < Pr(X#Y).

Proof. We use u(z) = Zy w(z,y) > wlz,z)
v(z) = ¥, wix,2) > w(z,2).

Pr(X#£Y)=1—-Pr(X=Y)
=) iz -) wzz)
> ) u(z)— ) min(p(2),v(2)

= > wz) -V

zv<pu

= max (1(A) = v(A)) = [k =l



Coupling for Markov Chains

A coupling for M is a sequence (Zy, Z1,7Z>,...) with
Z; = (X,Y;) such that (Xo, X7,X5,...) and (Yp, Y1,Y2,...)
are instances for M.

In particular

Pr(Xiy1 =x"Zi = (x,y)) =
Pr(Xip1 =x" [ Xi=x) = M(x,x’)



Coupling and Mixing Times

Z; = (Xi, Yi) a coupling for M.

Theorem | ].
It Pr (XT #= Y71 | Zp = (Xo,yo)) < ¢ for every initial (%0, Uo)
and T steps — (e)<T

Proof. Choose yy from stationary distribution 7t
Y, is in stationary distribution 7t for all t
Xt is in distribution .

Pr (Xt # Y1 | Zo = (x0,Y0)) < €

Coupling Lemma =—> max, ||u! —nt]yp < ¢

definition of T = 71(e) < T



Example :
Linear Extensions of Width 2 Orders

4
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Linear extensions are paths.

The Markov chain and the coupling
e choose position k and s € {T, |}

e Flip the path at position k in direction s (if possible)



Linear Extensions of Width 2 Orders
the Analysis

e dist(X,Y) = Area between paths < n?

o E(dist(Xiy1,Yipr)) < dist(Xy, Vi)

The distance is a projection to a random walk on the line
— expected coupling time O(n*logn).

— 1(e) € O(n*lognloge™).



Coupling From the Past

M a Markov chain on Q
F a family of maps f: (O — Q) such that for random f € F:

Pr(f(x) =x") = M(x, x’)



Coupling From the Past

M a Markov chain on Q
F a family of maps f: (O — Q) such that for random f € F:

Pr(f(x) =x") = M(x, x’)

Coupling-FTP
F idQ
repeat
choose f € F at random
F«—Fof
until F Is a constant map
return F(x)



Coupling From the Past

FCe




Coupling From the Past

N

T

Theorem. The state returned by Coupling-FTP is

N
O

exactly(!) in the stationary distribution.



Monotone Coupling From the Past:
An Example

The problem with CFTP is the need of functions f on Q.



Monotone Coupling From the Past:
An Example

The problem with CFTP is the need of functions f on Q).

Order relation <p on ) with O0and T

e x<ox — f(x) <o f(x')
for all f € F

Example:

Objects:
Lattice path in a grid

F ={fks :apply position k and direction s to all paths }
This family is monotone!
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Distributive Lattices

Fact. L is a finite distributive lattice <+
there is a poset P such that that £ is isomorphic to the
inclusion order on downsets of P.



Markov Chains on Distributive
Lattices

A natural Markov chain on Lp (lattice walk):

Identity state with downset D

e choose x € P
choose s € {T, |}

e depending on s move to D +x or D — x
(if possible)

Fact. The chain is ergodic and symmetric,
i.e, 7t is uniform.



Monotone Coupling on Distributive
Lattices

The coupling family F:

fxs: Use element x and direction s for all D.
Is monotone!

—> uniform sampling from distributive lattices is easy.



Monotone Coupling on Distributive
Lattices

The coupling family F:

fxs: Use element x and direction s for all D.
Is monotone!

—> uniform sampling from distributive lattices is easy.
Q: Is it fast (rapidly mixing)?

A: In most cases not.



Slow Mixing

e On distributive lattices based on Kleitman-Rothschild
posets the mixing time of the lattice walk is
exponential.

e The mixing time of the lattice walk is exponential for
random bipartite graphs with degrees > 6.
(Dyer, Frieze and Jerrum)



Fast Mixing

e The mixing time of the lattice walk is polynomial for
random bipartite graphs with max-degree < 4. (Dyer

and Greenhill)

In several situations where planarity plays a role rapid
mixing could be proven:

e Monotone paths in the grid.
e Lozenge tilings of an a X b x ¢ hexagon.

e Domino tilings of a rectangle.
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alpha-Orientations

Definition. Given G = (V,E) and ««: V — IN.
An o-orientation of G is an orientation with

outdeg(v) = a(v) for all v.

Example.

O O

Two orientations for the same «.



Potentials and Lattice Structure

Definition. An «-potential for G is a mapping
v : Faces (G) — Z such that g(outer) = 0 and

o [p(C)—p(C)| <1,if C and C’ share an edge e.

o p(CU) < p(C™®) for all e
relative to some fixed x-orientation.

Lemma. There is a bijection between o-potentials and
x-orientations.



Potentials and Lattice Structure

Definition. An «-potential for G is a mapping
v : Faces (G) — Z such that g(outer) = 0 and

o [p(C)—p(C)| <1,if C and C’ share an edge e.

o p(CU) < p(C™®) for all e
relative to some fixed x-orientation.

Lemma. There is a bijection between o-potentials and
x-orientations.

Theorem. x-potentials are a distributive lattice with
(1V 92)(C) = max { 1(C), 92(C) } and
(91 A\ 92)(C) =min {p1(C), p2(C)}.



Counting and Sampling

Proposition. Counting «-orientations is #P-complete for
e planar maps with d(v) =4 and «(v) € {1,2,3} and
e planar maps with d(v) € {3,4,5} and «(v) = 2.
Problem.

e Is counting 3-orientations in triangulations
#P-complete?

e Is counting 2-orientations in quadrangulations
#P-complete?



Approximate Counting

Fact. The fully polynomial randomized approximation
scheme for counting perfect matchings of bipartite graphs
(Jerrum, Sinclair and Vigoda 2001) can be used for
approximate counting of x-orientations.



Approximate Counting

Fact. The fully polynomial randomized approximation
scheme for counting perfect matchings of bipartite graphs
(Jerrum, Sinclair and Vigoda 2001) can be used for
approximate counting of x-orientations.

e What about the lattice walk?



Lattice Walks for alpha-Orientations

Theorem | ].

e Sampling FEulerian orientations of simply connected
patches of the quadrangular grid using the LW Markov
chain is polynomial.

Theorem | ].

e Sampling FEulerian orientations of simply connected
patches of the triangular grid using the LW Markov chain
is polynomial.

e¢ Sampling FEulerian orientations of patches of the
triangular grid with holes using the LW Markov chain can
be exponential.



alpha-Orientations and Heights

G planar

Definition. An «-potential for G is a mapping
. Faces (G) — Z such that p(outer) = 0 and

o [p(C)—p(C’)| <1,if C and C’ share an edge e.

o p(CUe) < p(C™e)) for all e
relative to some fixed x-orientation.

Definition. A k-height for G is a mapping
H: Faces (G) — {0, ..., k} such that

e H(C)—H(C")| <1, if C and C’ share an edge e.
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Height Lattices

Definition. A k-height for G is a mapping
H: Faces (G) — {0, ...,k} such that

e H(C)—H(C"| <1, if C and C’ share an edge e.
Proposition. k-heights are a distributive lattice with

(H] V Hz)(C) — Inax {H](C),Hz(C)} and
(Hi AH,)(C) = min {H;(C),Hy(C)}.



Sampling from Height Lattices

We can use monotone CFTP to sample uniformly from
height lattices.



Sampling from Height Lattices

We can use monotone CFTP to sample uniformly from
height lattices.

A random 2-height on the 400 x 400 square-grid.
(38240593 steps)




Block Dynamics
e Lixperiments strongly suggest rapid mixing
Our guess cxN*log(N).

e A rigorous proof of rapid mixing for 2-heights on torus
grids. We use block dynamics.



Block Dynamics

e Lixperiments strongly suggest rapid mixing
Our guess cxN*log(N).

e A rigorous proof of rapid mixing for 2-heights on torus
grids. We use block dynamics.

Block dynamics:
e choose a block B € B such that Pr(f € B) = Pr(g € B).

e choose heights for all faces in B respecting the heights
on the border 0B (uniform distribution).



Example

e choose heights for all faces in B respecting the heights
on the border 0B (uniform distribution).




Using Block Dynamics

Fact. The comparison technique yields:
If block dynamics is rapidly mixing then this also holds for
the single step lattice walk.

Bound the mixing time via coupling

e Given instances H and H’ choose the same block B for
replacement in both.

o dist(H,H'):= 5 . [H(f) — H'()|



Path Coupling

e With H and H’ define H = Hy,Hy,...,Hq = H’ such
that diSt(Hi, Hi—H) — 1.

e Do the coupled block move on each H;.

Goal: E(dist(H, H ;) <1

e Consider f with H;i(f) # Hi(f)

feB = dist(H, Hf,,) =0

f¢BUOB —> dist(Hf Hf ) =1

f € 0B. (The hard case)
We sample from different distributions.



The Hard Case

Set up a monotone coupling

Hi > Hipyy — H;r > Hi++1

(more about the existence later).

E(dist(H{, H ) = E(Z HF(f) — H



Combining the Cases

6 := max(E(Hy) — E(Hy/) : h,h' heights on 0B
with dist(h, h/) = 1)

For H;, Hi.; with dist(H;,Hi.1) = 1 and a random block
move on B with |B| = k* we get

4kd — k2

E(dist(H;, H,,)) < 1+ B

Hence we need: 4kd — k% < 0



A Computer Proof

Blocks of size 6 x 6 suffice
e There are 3,3 - 107 possible h for the boundary.

e For a given h there are up to 3,7 - 10'? compatible H
for the block.

(work done by Daniel Heldt)



Stochastic Dominance and Strassen’s

Definition. Stochastic dominance for distributions p; and
p2 on an ordered set (A, <)

P1 Sstoch P2 = ZP1((1) < sz(a) for all filter F C A
ack ack

Theorem | . If p1 <stoch P2 On (A, <) then there
is a distribution q on A X A with
e q(x,y) >0 = x<y

e > ,d(xy)=mpi(x)and 3, q(x,y) = pa(y)
(p1 and p; are the marginals of q).



Existence of a Monotone Coupling

Strassen’s Theorem implies the existence of the monotone
block coupling if we can show that for hy < h; distributions
on 0B the induced distributions on B are in stochastic
dominance.

Consider the intervals A = D; and B = D, of the height
lattice over blocks.

We need that for every filter F of D:

ANF _[BNF
A~ [B]



Existence of a Monotone Coupling

Goal: |ANF|B| < |BNEF|A]

Restrict attention to the lattice L spanned by min A and
max B. L is distributive, A is an ideal, B a filter of L.

Define f1 = xanr, T2 = X8, 13 = Xanr and T4 = Xa.
Lemma. f] (u)fz(\)) < fg(u\/\))f4(1L/\\))

Ahlswede Daykin 4-Functions Theorem:
f1 (U2 (V) < f3(UV V)fa(UAV)

We only need this for U=V = L.



Summary for Height Sampling

Theorem. The lattice walk for 2-heights on the square
torus grid is rapidly mixing.

e DBlock dynamics and comparison method
e Monotone coupling from Strassen’s via 4-FT.
e Valid blocks (6 x 6) from massive computations.



Summary for Height Sampling

Theorem. The lattice walk for 2-heights on the square
torus grid is rapidly mixing.

e DBlock dynamics and comparison method
e Monotone coupling from Strassen’s via 4-FT.
e Valid blocks (6 x 6) from massive computations.

Extension. The lattice walk for 2-heights on the planar
traingulations is rapidly mixing.

Problems.
o k> 2.
e Other planar graphs.
e (o-orientations.



THE END



THE END

Thank you.



