Distributive Lattices from Graphs

VI Jornadas de Matemática Discreta y Algorítmica Universitat de Lleida 21-23 de julio de 2008

Stefan Felsner y Kolja Knauer

Technische Universität Berlin felsner@math.tu-berlin.de

The Talk

Lattices from Graphs

Proving Distributivity: ULD-Lattices

Embedded Lattices and D-Polytopes

Contents

Lattices from Graphs

Proving Distributivity: ULD-Lattices

Embedded Lattices and D-Polytopes

Lattices from Planar Graphs

Definition. Given G = (V, E) and $\alpha : V \to IN$. An α -orientation of G is an orientation with $outdeg(v) = \alpha(v)$ for all v.

Lattices from Planar Graphs

Definition. Given G = (V, E) and $\alpha : V \rightarrow IN$. An α -orientation of G is an orientation with $outdeg(v) = \alpha(v)$ for all v.

• Reverting directed cycles preserves α -orientations.

Lattices from Planar Graphs

Definition. Given G = (V, E) and $\alpha : V \rightarrow IN$. An α -orientation of G is an orientation with $outdeg(v) = \alpha(v)$ for all v.

• Reverting directed cycles preserves α -orientations.

Theorem. The set of α -orientations of a planar graph G has the structure of a distributive lattice.

• Diagram edge ~ revert a directed essential/facial cycle.

Example 1: Spanning Trees

Spanning trees are in bijection with α_T orientations of a rooted primal-dual completion \widetilde{G} of G

• $\alpha_{T}(\nu) = 1$ for a non-root vertex ν and $\alpha_{T}(\nu_{e}) = 3$ for an edge-vertex ν_{e} and $\alpha_{T}(\nu_{r}) = 0$ and $\alpha_{T}(\nu_{r}^{*}) = 0$.

Lattice of Spanning Trees

Gilmer and Litheland 1986, Propp 1993

Question. How does a change of roots affect the lattice?

Example2: Matchings and f-Factors

Let G be planar and bipartite with parts (U, W). There is bijection between f-factors of G and α_f orientations:

• Define α_f such that indeg(u) = f(u) for all $u \in U$ and outdeg(w) = f(w) for all $w \in W$.

Example. A matching and the corresponding orientation.

Example 3: Eulerian Orientations

• Orientations with outdeg(v) = indeg(v) for all v, i.e. $\alpha(v) = \frac{d(v)}{2}$

Example 4: Schnyder Woods

G a plane triangulation with outer triangle $F = \{a_1, a_2, a_3\}$.

A coloring and orientation of the interior edges of G with colors 1,2,3 is a Schnyder wood of G iff

• Inner vertex condition:

• Edges $\{v, a_i\}$ are oriented $v \rightarrow a_i$ in color i.

Digression: Schnyder's Theorem

The incidence order P_G of a graph G

Theorem [Schnyder 1989].

A Graph G is planar $\iff \dim(P_G) \leq 3$.

Schnyder Woods and 3-Orientations

Theorem. Schnyder wood and 3-orientation are in bijection.

Proof.

- All edges incident to a_i are oriented → a_i.
 Prf: G has 3n 9 interior edges and n 3 interior vertices.
- Define the path of an edge:

• The path is simple (Euler), hence, ends at some a_i .

The Lattice of Schnyder Woods

Theorem. The set of Schnyder woods of a plane triangulation **G** has the structure of a distributive lattice.

A Dual Construction: c-Orientations

 Reorientations of directed cuts preserve flow-difference (#forward arcs – #backward arcs) along cycles.

Theorem [Propp 1993]. The set of all orientations of a graph with prescribed flow-difference for all cycles has the structure of a distributive lattice.

• Diagram edge ~ push a vertex ($\neq v_{\dagger}$).

Circulations in Planar Graphs

Theorem [Khuller, Naor and Klein 1993].

The set of all integral flows respecting capacity constraints $(\ell(e) \le f(e) \le u(e))$ of a planar graph has the structure of a distributive lattice.

 Diagram edge ~ add or subtract a unit of flow in ccw oriented facial cycle.

${\boldsymbol{\Delta}}\text{-}{\boldsymbol{Bonds}}$

G = (V, E) a connected graph with a prescribed orientation.

With $x \in \mathbb{Z}^{E}$ and C cycle we define the circular flow difference

$$\Delta_{\mathbf{x}}(\mathbf{C}) := \sum_{e \in \mathbf{C}^+} \mathbf{x}(e) - \sum_{e \in \mathbf{C}^-} \mathbf{x}(e).$$

With $\Delta \in \mathbb{Z}^{\mathcal{C}}$ and $\ell, u \in \mathbb{Z}^{E}$ let $\mathcal{B}_{G}(\Delta, \ell, u)$ be the set of $x \in \mathbb{Z}^{E}$ such that $\Delta_{x} = \Delta$ and $\ell \leq x \leq u$.

The Lattice of A-Bonds

Theorem [Felsner, Knauer 2007]. $\mathcal{B}_{G}(\Delta, \ell, u)$ is a distributive lattice. The cover relation is vertex pushing.

△-Bonds as Generalization

 $\mathcal{B}_{G}(\Delta, \ell, u)$ is the set of $x \in \mathbb{IR}^{E}$ such that

- $\Delta_x = \Delta$ (circular flow difference)
- $\ell \leq x \leq u$ (capacity constraints).

Special cases:

- c-orientations are $\mathcal{B}_{G}(\Delta, 0, 1)$ $(\Delta(C) = |C^+| - c(C)).$
- Circular flows on planar G are B_{G*}(0, l, u) (G* the dual of G).
- α -orientations.

Lattices from Graphs

Proving Distributivity: ULD-Lattices

Embedded Lattices and D-Polytopes

ULD Lattices

Definition. [Dilworth]

A lattice is an upper locally distributive lattice (ULD) if each element has a unique minimal representation as meet of meet-irreducibles, i.e., there is a unique mapping $x \rightarrow M_x$ such that

- $x = \bigwedge M_x$ (representation.) and
- $x \neq \bigwedge A$ for all $A \subsetneq M_x$ (minimal).

ULD vs. Distributive

Proposition.

A lattice it is ULD and LLD \iff it is distributive.

Diagrams of ULD lattices: A Characterization

A coloring of the edges of a digraph is a U-coloring iff

- arcs leaving a vertex have different colors.

Theorem.

A digraph D is acyclic, has a unique source and admits a U-coloring \iff D is the diagram of an ULD lattice.

 \hookrightarrow Unique **1**.

Examples of U-colorings

Examples of U-colorings

- Chip firing game with a fixed starting position (the source), colors are the names of fired vertices.
- Δ-bond lattices, colors are the names of pushed vertices. (Connected, unique 0).

More Examples

Some LLD lattices with respect to inclusion order:

- Subtrees of a tree (Boulaye '67).
- Convex subsets of posets (Birkhoff and Bennett '85).
- Convex subgraphs of acyclic digraphs (Pfaltz '71).
 (C is convex if with x, y all directed (x, y)-paths are in C).
- Convex sets of an abstract convex geometry, this is an universal family of examples (Edelman '80).

Contents

Lattices from Graphs

Proving Distributivity: ULD-Lattices

Embedded Lattices and D-Polytopes

Embedded Lattices

A U-coloring of a distributive lattice L yields a cover preserving embedding $\phi : L \to \mathbb{Z}^{\#colors}$.

Embedded Lattices

A U-coloring of a distributive lattice L yields a cover preserving embedding $\phi : L \to \mathbb{Z}^{\#colors}$.

In the case of Δ -bond lattices there is a polytope $P = conv(\phi(L) \text{ in } \mathbb{IR}^{n-1} \text{ such that}$

 $\phi(L) = P \cap \mathbb{Z}^{n-1}$

• This is a special property:

D-Polytopes

Definition. A polytope P is a D-polytope if with $x, y \in P$ also $\max(x, y), \min(x, y) \in P$.

- A D-polytope is a (infinite!) distributive lattice.
- Every subset of a D-polytope generates a distributive lattice in P. E.g. Integral points in a D-polytope are a distributive lattice.

D-Polytopes

Remark. Distributivity is preserved under

- scaling
- translation
- intersection

Theorem. A polytope P is a D-polytope iff every facet inducing hyperplane of P is a D-hyperplane, i.e., closed under max and min.

D-Hyperplanes

Theorem. An hyperplane is a D-hyperplane iff it has a normal $e_i - \lambda_{ij} e_j$ with $\lambda_{ij} \ge 0$.

 $(\Leftarrow) \lambda_{ij} e_i + e_j$ together with e_k with $k \neq i, j$ is a basis. The coefficient of max(x, y) is the max of the coefficients of x and y.

 (\Rightarrow) Let $n = \sum_{i} a_{i}e_{i}$ be the normal vector. If $a_{i} > 0$ and $a_{j} > 0$, then $x = a_{j}e_{i} - a_{i}e_{j}$ and y = -x are in n^{\perp} but $\max(x, y)$ is not.

A First Graph Model for D-Polytopes

Consider $\ell, u \in \mathbb{Z}^m$ and a Λ -weighted network matrix N_{Λ} of a connected graph. (Rows of N_{Λ} are of type $\mathbf{e}_i - \lambda_{ij}\mathbf{e}_j$ with $\lambda_{ij} \geq 0$.)

- [Strong case, $\operatorname{rank}(N_{\Lambda}) = n$] The set of $p \in \mathbb{Z}^n$ with $\ell \leq N_{\Lambda}^{\top}p \leq u$ is a distributive lattice.
- [Weak case, $\operatorname{rank}(N_{\Lambda}) = n 1$] The set of $p \in \mathbb{Z}^{n-1}$ with $\ell \leq N_{\Lambda}^{\top}(0,p) \leq u$ is a distributive lattice.

A Second Graph Model for D-Polytopes

(Rows of N_{Λ} are of type $\mathbf{e}_i - \lambda_{ij}\mathbf{e}_j$ with $\lambda_{ij} \ge 0$.)

Theorem [Felsner, Knauer 2008]. Let $Z = \ker(N_{\Lambda})$ be the space of Λ -circulations. The set of $x \in \mathbb{Z}^m$ with

- $l \leq x \leq u$ (capacity constraints)
- $\langle x, z \rangle = 0$ for all $z \in Z$ (weighted circular flow difference).

is a distributive lattice $\mathcal{D}_{G}(\Lambda, \ell, u)$.

• Lattices of Δ -bonds are covered by the case $\lambda_{ij} = 1$.

The Strong Case

For a cycle C let

$$\gamma(\mathbf{C}) := \prod_{e \in \mathbf{C}^+} \lambda_e \prod_{e \in \mathbf{C}^-} \lambda_e^{-1}.$$

A cycle with $\gamma(C) \neq 1$ is strong.

Proposition. $rank(N_{\Lambda}) = n$ iff it contains a strong cycle.

Remark.

C strong \implies there is no circulation with support C.

A fundamental basis for the space of Λ -circulations:

 Fix a 1-tree T, i.e, a unicyclic set of n edges. With e ∉ T there is a circulation in T + e

A fundamental basis for the space of Λ -circulations:

 Fix a 1-tree T, i.e, a unicyclic set of n edges. With e ∉ T there is a circulation in T + e

In the theory of generalized flows ,i,e, flows with multiplicative losses and gains, these objects are known as bicycles.

In the theory of generalized flows ,i,e, flows with multiplicative losses and gains, these objects are known as bicycles.

Further topic: D-polytopes and optimization.

 Δ-bond lattices generalize previously known distributive lattices from graphs.

- Δ-bond lattices generalize previously known distributive lattices from graphs.
- U-colorings yield pretty proves for UL-distributivity and distributivity.

- Δ-bond lattices generalize previously known distributive lattices from graphs.
- U-colorings yield pretty proves for UL-distributivity and distributivity.
- D-polytopes are related to generalized network matrices.

- Δ-bond lattices generalize previously known distributive lattices from graphs.
- U-colorings yield pretty proves for UL-distributivity and distributivity.
- D-polytopes are related to generalized network matrices.

Finally:

- Δ-bond lattices generalize previously known distributive lattices from graphs.
- U-colorings yield pretty proves for UL-distributivity and distributivity.
- D-polytopes are related to generalized network matrices.

Finally: Don't forget Schnyder's Theorem.

 Δ-bond lattices generalize previously known distributive lattices from graphs.

- Δ-bond lattices generalize previously known distributive lattices from graphs.
- U-colorings yield pretty proves for UL-distributivity and distributivity.

- Δ-bond lattices generalize previously known distributive lattices from graphs.
- U-colorings yield pretty proves for UL-distributivity and distributivity.
- D-polytopes are related to generalized network matrices.

- Δ-bond lattices generalize previously known distributive lattices from graphs.
- U-colorings yield pretty proves for UL-distributivity and distributivity.
- D-polytopes are related to generalized network matrices.

Finally:

- Δ-bond lattices generalize previously known distributive lattices from graphs.
- U-colorings yield pretty proves for UL-distributivity and distributivity.
- D-polytopes are related to generalized network matrices.

Finally: Don't forget Schnyder's Theorem.

The End