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Lattices from Planar Graphs

Definition. Given G = (V, E) and α : V → IN.

An α-orientation of G is an orientation with

outdeg(v) = α(v) for all v.

• Reverting directed cycles preserves α-orientations.

Theorem. The set of α-orientations of a planar graph G has

the structure of a distributive lattice.

• Diagram edge ∼ revert a directed essential/facial cycle.



Example 1: Spanning Trees

Spanning trees are in bijection with αT orientations of a rooted

primal-dual completion G̃ of G

• αT(v) = 1 for a non-root vertex v and αT(ve) = 3 for an

edge-vertex ve and αT(vr) = 0 and αT(v
∗
r ) = 0.

v∗r

vr



Lattice of Spanning Trees
Gilmer and Litheland 1986, Propp 1993
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Question. How does a change of roots affect the lattice?



Example2: Matchings and f-Factors

Let G be planar and bipartite with parts (U, W). There is

bijection between f-factors of G and αf orientations:

• Define αf such that indeg(u) = f(u) for all u ∈ U and

outdeg(w) = f(w) for all w ∈ W.

Example. A matching and the corresponding orientation.



Example 3: Eulerian Orientations

• Orientations with outdeg(v) = indeg(v) for all v,

i.e. α(v) =
d(v)
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Example 4: Schnyder Woods

G a plane triangulation with outer triangle F = {a1,a2,a3}.

A coloring and orientation of the interior edges of G with

colors 1,2,3 is a Schnyder wood of G iff

• Inner vertex condition:

• Edges {v, ai} are oriented v → ai in color i.



Digression: Schnyder’s Theorem

The incidence order PG of a graph G

PG

G

Theorem [Schnyder 1989 ].

A Graph G is planar ⇐⇒ dim(PG) ≤ 3.



Schnyder Woods and 3-Orientations

Theorem. Schnyder wood and 3-orientation are in bijection.

Proof.
• All edges incident to ai are oriented → ai.

Prf: G has 3n − 9 interior edges and n − 3 interior

vertices.

• Define the path of an edge:

• The path is simple (Euler), hence, ends at some ai.



The Lattice of Schnyder Woods

Theorem. The set of Schnyder woods of a plane triangulation

G has the structure of a distributive lattice.



A Dual Construction:
c-Orientations

• Reorientations of directed cuts preserve flow-difference

(#forward arcs − #backward arcs) along cycles.

Theorem [Propp 1993 ]. The set of all orientations of a

graph with prescribed flow-difference for all cycles has the

structure of a distributive lattice.

• Diagram edge ∼ push a vertex ( 6= v†).



Circulations in Planar Graphs

Theorem [Khuller, Naor and Klein 1993 ].
The set of all integral flows respecting capacity constraints

(`(e) ≤ f(e) ≤ u(e)) of a planar graph has the structure of a

distributive lattice.

0 ≤ f(e) ≤ 1

• Diagram edge ∼ add or subtract a unit of flow in ccw

oriented facial cycle.



∆-Bonds

G = (V, E) a connected graph with a prescribed orientation.

With x ∈ ZZE and C cycle we define the circular flow difference

∆x(C) :=
∑
e∈C+

x(e) −
∑
e∈C−

x(e).

With ∆ ∈ ZZC and `, u ∈ ZZE let BG(∆, `, u) be the set of

x ∈ ZZE such that ∆x = ∆ and ` ≤ x ≤ u.



The Lattice of ∆-Bonds

Theorem [Felsner, Knauer 2007 ].
BG(∆, `, u) is a distributive lattice.

The cover relation is vertex pushing.

u
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∆-Bonds as Generalization

BG(∆, `, u) is the set of x ∈ IRE such that

• ∆x = ∆ (circular flow difference)

• ` ≤ x ≤ u (capacity constraints).

Special cases:

• c-orientations are BG(∆, 0, 1)

(∆(C) = |C+| − c(C)).

• Circular flows on planar G are BG∗(0, `, u)

(G∗ the dual of G).

• α-orientations.
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ULD Lattices

Definition. [Dilworth ]
A lattice is an upper locally distributive lattice (ULD) if each

element has a unique minimal representation as meet of meet-

irreducibles, i.e., there is a unique mapping x → Mx such that

• x =
∧

Mx (representation.) and

• x 6=
∧

A for all A $ Mx (minimal).
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ULD vs. Distributive

Proposition.
A lattice it is ULD and LLD ⇐⇒ it is distributive.



Diagrams of ULD lattices:
A Characterization

A coloring of the edges of a digraph is a U-coloring iff

• arcs leaving a vertex have different colors.

• completion property:

Theorem.
A digraph D is acyclic, has a unique source and admits a

U-coloring ⇐⇒ D is the diagram of an ULD lattice.

↪→ Unique 1.



Examples of U-colorings



Examples of U-colorings

• Chip firing game with a fixed starting position (the

source), colors are the names of fired vertices.

• ∆-bond lattices, colors are the names of pushed vertices.

(Connected, unique 0).



More Examples

Some LLD lattices with respect to inclusion order:

• Subtrees of a tree (Boulaye ’67).

• Convex subsets of posets (Birkhoff and Bennett ’85).

• Convex subgraphs of acyclic digraphs (Pfaltz ’71).

(C is convex if with x, y all directed (x, y)-paths are in C).

• Convex sets of an abstract convex geometry, this is an

universal family of examples (Edelman ’80).
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Embedded Lattices

A U-coloring of a distributive lattice L yields a cover preserving

embedding φ : L → ZZ#colors.

In the case of ∆-bond lattices there is a

polytope P = conv(φ(L) in IRn−1 such that

φ(L) = P ∩ ZZn−1

• This is a special property:



D-Polytopes

Definition. A polytope P is a D-polytope if with x, y ∈ P

also max(x, y),min(x, y) ∈ P.

• A D-polytope is a (infinite!) distributive lattice.

• Every subset of a D-polytope generates a distributive

lattice in P. E.g. Integral points in a D-polytope are a

distributive lattice.



D-Polytopes

Remark. Distributivity is preserved under

• scaling

• translation

• intersection

Theorem. A polytope P is a D-polytope iff every facet

inducing hyperplane of P is a D-hyperplane, i.e., closed under

max and min.



D-Hyperplanes

Theorem. An hyperplane is a D-hyperplane iff it has a normal

ei − λijej with λij ≥ 0.

( ⇐)λijei + ej together with ek with k 6= i, j is a basis. The

coefficient of max(x, y) is the max of the coefficients

of x and y.

( ⇒) Let n =
∑

i aiei be the normal vector. If ai > 0 and

aj > 0, then x = ajei − aiej and y = −x are in n⊥ but

max(x, y) is not.



A First Graph Model for D-Polytopes

Consider `, u ∈ ZZm and a Λ-weighted network matrix NΛ of

a connected graph. (Rows of NΛ are of type ei − λijej with λij ≥ 0.)

• [Strong case, rank(NΛ) = n]

The set of p ∈ ZZn with ` ≤ N>
Λp ≤ u is a distributive

lattice.

• [Weak case, rank(NΛ) = n − 1]

The set of p ∈ ZZn−1 with ` ≤ N>
Λ(0, p) ≤ u is a

distributive lattice.



A Second Graph Model for
D-Polytopes

(Rows of NΛ are of type ei − λijej with λij ≥ 0.)

Theorem [Felsner, Knauer 2008 ].
Let Z = ker(NΛ) be the space of Λ-circulations. The set of

x ∈ ZZm with

• ` ≤ x ≤ u (capacity constraints)

• 〈x, z〉 = 0 for all z ∈ Z

(weighted circular flow difference).

is a distributive lattice DG(Λ, `, u).

• Lattices of ∆-bonds are covered by the case λij = 1.



The Strong Case

For a cycle C let

γ(C) :=
∏
e∈C+

λe

∏
e∈C−

λ−1
e .

A cycle with γ(C) 6= 1 is strong.

Proposition. rank(NΛ) = n iff it contains a strong cycle.

Remark.
C strong =⇒ there is no circulation with support C.



Fundamental Basis

A fundamental basis for the space of Λ-circulations:

• Fix a 1-tree T , i.e, a unicyclic set of n edges. With e 6∈ T

there is a circulation in T + e
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losses and gains, these objects are known as bicycles.



Fundamental Basis

In the theory of generalized flows ,i,e, flows with multiplicative

losses and gains, these objects are known as bicycles.

=⇒ Further topic: D-polytopes and optimization.
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