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Abstract

Contact and intersection representations of graphs and particularly of planar graphs have been
studied for decades. The by now best known result in the area may be the Koebe-Andreev-Thurston
circle packing theorem. A more recent highlight in the area is a result of Chalopin and Gonçalves:
every planar graph is an intersection graph of segments in the plane. This boosted the study of
intersection and contact graphs of restricted classes of curves. In this paper we study planar graphs
that are VCPG, i.e. graphs admitting a representation as Vertex Contact graph of Paths on a Grid.
In such a representation the vertices of G are represented by a family of interiorly disjoint grid-paths.
Adjacencies are represented by contacts between an endpoint of one grid-path and an interior point
of another grid-path. Defining u→ v if the path of u ends on path of v we obtain an orientation on
G from a VCPG representation. To get hand on the bends of the grid path the 2-orientation is not
enough. We therefore consider pairs (α,ψ): a 2-orientation α and a flow ψ in the angle graph. The
2-orientation describes the contacts of the ends of a grid-path and the flow describes the behavior of
a grid-path between its two ends. We give a necessary and sufficient condition for such a pair (α,ψ)
to be realizable as a VCPG.

Using realizable pairs we show that every planar (2,2)-tight graph can be represented with at most
2 bends per path and that this is tight (i.e. there exist (2,2)-tight graphs that cannot be represented
with at most one bend per path). Using the same methodology it is easy to show that loopless planar
(2,1)-sparse graphs have a 4-bend representation and loopless planar (2,0)-sparse graphs have 6-bend
representation. We do not believe that the latter two are tight, we conjecture that loopless planar
(2,0)-sparse graphs have a 3-bend representation.

1 Introduction

Outline of results. In this paper we consider the question whether a planar graph G admits a VCPG,
i.e. a representation as a Vertex Contact graph of Paths on a Grid. In such a representation the vertices
are represented by a family of interiorly disjoint grid-paths. An endpoint of one grid-path coincides with
an interior point of another grid-path if and only if the two represented vertices are adjacent.

A VCPG induces a unique orientation of the edges of G: Orienting the edge uv as u→ v if the grid-path
of u ends on grid-path of v we obtain an orientation of G. As each grid-path has two ends, in the induced
orientation each vertex has outdegree at most two. We denote such an orientation simply 2-orientation.

On the other hand, for a planar graph, every 2-orientation induces a VCPG (Section 1.1). However, a
2-orientation of G defines the representation of the edges in a VCPG but not how the grid-paths behave
(e.g. how many bends a grid-path has). To get a description of the behavior of the grid-paths between
its endpoints, we introduce a flow network in the angle graph (Section 2.1). A flow in this network
represents the bends of a grid-path, e.g. consider v, a degree two vertex separating two faces, each bend
of the grid-path pv is a convex corner on the boundary of one of the faces and a concave corner on
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the boundary of the other face. Such a relation can be represented as one unit of flow leaving one face
through a convex corner of a grid-path and entering the other face through the concave corner.

To obtain a full combinatorial description of a VCPG we consider a pair (α,ψ): a 2-orientation α in the
graph and a flow ψ in the angle graph. Our main contribution is a necessary and sufficient condition for
such a pair (α,ψ) to be realizable as a VCPG. We will then use such realizable pairs to give bounds on
the number of bends needed for certain graph classes.

When the number of bends of each path is at most k we denote the representation by Bk-VCPG and
when every path has precisely k bends we speak about strict Bk-VCPG.

Related results. In [KUV13] Kobourov, Ueckerdt and Verbeek show that all planar Laman graphs
admit an L-contact representation, i.e. a strict B1-VCPG. A graph G = (V,E) is Laman if |E| = 2|V |−3
and every subset of k vertices induces at most 2k − 3 edges. It is immediate that every subgraph of a
planar Laman graph also has a strict B1-VCPG. There are graphs that are not Laman that have a strict
B1-VCPG. In [KUV13] the question was posed which conditions are necessary and sufficient for a graph
to have such a representation.

Vertex intersection graphs of paths on a grid (VPG-graphs) have been investigated by Asinowski et
al. [ACG+12]. They showed that all planar graphs are B3-VPG, i.e., each vertex is represented by a
path with at most three bends and the edges are intersections of two grid-paths. They conjectured
that this bound was tight. Chaplick and Ueckerdt disproved this by showing that every planar graph is
B2-VPG [CU13].

In orthogonal graph drawing there have been many results on minimizing bend numbers, i.e. vertices are
points in the plane and edges are grid-paths between these points and the number of bends is minimized.
Note that in this setting vertices have at most degree four, or as a workaround, the vertices can be
represented as boxes. An early result of Tamassia gives an algorithm to obtain an orthogonal drawing
with minimal bend number which preserves the embedding [Tam87]. Optimizing the bend number locally
(for each path) has gotten much attention too, Schäffter gives an algorithm to draw 4-regular graphs in
a grid with at most two bends per edge (which is tight when not restricted to planar graphs) [Sch95].
For orthogonal drawings without degree restriction, Fößmeier, Kant and Kaufmann have shown that
every plane graph has an orthogonal drawing preserving the embedding with at most one bend per
edge [FKK96].

Outline of the paper. The remainder of this Section we will give the definitions and show some
necessary conditions based on 2-orientations. In Section 2 we will introduce the flow network. We then
give the necessary and sufficient condition for a pair, a 2-orientation and a flow, to be realizable as a
VCPG. In Section 3 and 4 we show how to use realizable pairs to give bounds on the number of bends
in a VCPG.

1.1 Preliminaries: on (2,l)-sparse graphs

A necessary condition for a planar graph to admit a VCPG follows from the 2-orientation. In an
orientation that is induced by a VCPG, all edges of a graph G = (V,E) are oriented and each vertex
has outdegree at most two, therefore the number of edges of G is at most twice the number of vertices:
|E| ≤ 2|V |. Moreover, this bound must hold for all induced subgraphs as well.

Definition 1.1 (Sparse and Tight Graphs). Graphs that satisfy ∀W ⊆ V : |EW | ≤ k|W |− l are denoted
(k, l)-sparse graphs. If also |E| = k|V | − l holds, the graph is called (k, l)-tight.

Graphs that admit a VCPG must be planar and (2,0)-sparse. In this paper we focus on (2,0)-tight graphs,
(2,1)-tight graphs and (2,2)-tight graphs which are simple and planar. Note that for every (2,l)-sparse
graph H there exists a (2,l)-tight graph G such that H is a subgraph of G.

First we show that every planar (2, l)-tight graph, l ≥ 0, has a VCPG.

Lemma 1.2. Every planar (2, l)-tight graph has a 2-orientation.
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Figure 1: A (2,0)-tight plane graph with a 2-orientation and a VCPG of this graph.

Proof. LetG = (V,E) a planar (2, l)-tight graph. Suppose there is a subsetW of the vertices ofG that has
less than 2|W | incident edges. Then G[V −W ] must induce at least 2|V |−l−(2|W |−1) = 2|V −W |−l+1
edges, which contradicts (2, l)-tightness. Hence every subset W of the vertices of G has at least 2|W |
incident edges. Now we construct a bipartite graph. The first vertex class, V1, consists of two copies
of all but l of the vertices of G, and the remaining l vertices are only added once. The second class,
V2, contains all edges. The edge set is defined by the incidences in G: two vertices are connected if
the corresponding vertex of G is an endpoint of the corresponding edge of G. By (2, l)-tightness of G
this bipartite graph satisfies Hall’s marriage condition and hence it has a perfect matching. A perfect
matching defines a 2-orientation of G.

When a planar graph has a 2-orientation it easily follows that it has a VCPG. An example is shown in
Figure 1.

Lemma 1.3. Let l ≥ 0. Every planar (2, l)-tight graph is VCPG.

Proof. Consider an embedding of a planar (2,l)-tight graph G and a 2-orientation α of G. Subdivide
each loop twice. Every pair of vertices is connected by at most two edges (since the graph is (2, l)-tight
and l ≥ 2) and if so one of the multiple edges is subdivided. The result is a simple plane graph, which
has a straight line drawing by Fàry’s theorem. Replace each straight line edge in such a drawing by
an axis-aligned grid-path leaving the start and endpoint intact and such that two grid-paths starting
in the same point only coincide in this point. The subdivided edges are merged without changing the
grid-paths. A vertex is identified with its outgoing edge(s). The last step is to perturb the last straight
part of a grid-path pv that ends on a grid-path pw in such a way that this point is not used by any
grid-path other than pv and pw. This procedure gives a VCPG of G that realizes the chosen embedding.

An obvious question is: how many bends are needed in a VCPG of a certain graph. As mentioned before,
Kobourov, Ueckerdt and Verbeek have shown that all planar (2,3)-tight graphs (Laman graphs) admit a
strict B1-VCPG [KUV13]. They also gave the following bound on the number of edges of a graph that
admits a (strict) B1-VCPG.

Proposition 1.4. If G = (V,E) admits a B1-VCPG then

∀W ⊆ V : |EW | ≤ 2|W | − 2 . (1)

Proof: cf. appendix.

Therefore the candidate graphs that have a B1-VCPG are planar (2,2)-sparse graphs. In this paper we
show that planar (2,2)-tight graphs are B2-VCPG and that this is tight. Thus condition 1.4 is necessary
but not sufficient. The proof is based on realizable pairs.
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Figure 2: Given a graph G, the figure shows (a) a VCPG of G, the arrows correspond to the orientation of
the edges; (b) the agreeing combinatorial VCPG, the orientation is given on the edges, the flow is given by the
red arrows between faces through vertices; (c) a flow ψ such that there is no 2-orientation α such that (α,ψ) is
realizable, as the orientation must orient 5 → 7 and 8 → 7 hence 7 can only have outdegree one.

2 Realizable Pairs

A VCPG is not completely described by a plane graph G and a 2-orientation. Therefore we introduce a
flow network. We will use a flow in such a network to obtain a full description of a VCPG. We denote the
2-orientation by α and the flow by ψ. In this section we identify a property of a pair (α,ψ) that comes
from a VCPG of a plane graph G, hence this property is necessary. On the other hand, not every pair
(α,ψ) on G induces a VCPG of G (an example is shown in Figure 2 (c)). We call a pair (α,ψ) realizable
when it does. We will prove that the necessary property is also sufficient, hence realizable pairs are in
bijection to VCPGs. Our proof method is algorithmic, it shows how one can construct a VCPG (the
geometric setting) from a realizable pair (the combinatorial setting).

2.1 The Flow Network

From here on, we consider the graph to be simple and 2-connected. Note that any (2, l)-tight graph can
easily be extended to a 2-connected (2, l)-tight graph by adding an appropriate number of degree two
vertices. The angle graph A(G) of a plane 2-connected graph G is a plane bipartite graph that arises
from G by setting the union of the vertices and faces of G as the vertices of A(G) and the edges of A(G)
are the pairs vf , v ∈ V (G), f ∈ F (G), such that v is a vertex on f in G. The angle graph is a plane
maximal bipartite graph.

Intuitively, a unit of flow in the angle graph from f1 to f2 through v is a bend of pv (the grid-path that
represents v) such that the convex angle of this bend lies in f1 and the concave angle lies in f2 (see
e.g. Figure 2 (a) and (b)). More precise, a flow ψ is a weighted directed graph, with as underlying graph
the angle graph A(G). The face-vertices of A(G) can be a source or a sink, depending on the degree.
The vertex-vertices of A(G) are neither sources nor sinks. The capacity of the edges is unbounded. The
number of bends prescribed by the flow ψ for a vertex v is denoted with ψ(v), which is the sum of
incoming flow, which in turn is equal to the sum of outgoing flow. We define c(f) to be the excess of an
interior face-vertex f of A(G). The excess prescribes the amount of outgoing flow minus the incoming
amount of incoming flow of this face.

Following the boundary of an interior region of a VCPG and adding the changes in direction one should
obtain 2π. Each edge is represented as a proper contact and therefore changes the direction with π/2.
A convex angle changes the direction with π/2 as well and a concave angle changes the direction with
−π/2. By the following equation: 2π = π/2 · |f | − π/2 · c(f) where |f | is the number of edges on the
boundary of f , the excess of each interior face is:

c(f) = 4− |f |.

For the outer face f∞ of a (2, l)-tight graph we set the excess c(f∞) = (2l − 4) − |f∞|. With |f∞| we
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denote the number of vertices on the outer face.

Let ψ be a flow in A(G) that satisfies the excess of each face, then the value of the flow ψ is

w(ψ) =
∑

v∈V (G)

ψ(v).

The sum of the excess over all faces cancels out and there is no capacity restraint on the edges, therefore
there exists a flow that satisfies the excess of every face. A vertex cannot absorb any flow, as having a
convex corner means having a concave corner on the other side. Therefore the minimum value of a flow
that satisfies the facial excesses is a lower bound on the number of bends needed for a VCPG1. As shown
by Figure 2 (c) not every flow that satisfies the facial excesses is related to a VCPG.

2.1.1 Necessary and Sufficient Condition

Given a simple, plane, 2-connected (2,l)-tight graph, a 2-orientation α and a flow ψ that satisfies the
facial excesses. We will give a necessary and sufficient condition on the pair (α,ψ). When this condition
is satisfied, there exists a VCPG that maintains the embedding such that:

(a) The grid-path of u ends on the grid-path of v if and only if the edge uv is oriented from u to v in
α, and,

(b) The grid-path of v has precisely ψ(v) bends.

We denote a pair that satisfies the condition realizable. Let A[NA(G)[v]] denote the angle graph induced
by the closed neighborhood of a vertex v, i.e. induced by v and all its neighbors in A(G).

Definition 2.1 (Realizability Condition). The pair (α,ψ) satisfies the realizability condition at vertex
v if and only if given A[NA(G)[v]] and the flow in this subgraph: (see Figure 4)

(a) each incoming unit of flow at v can be matched to an outgoing unit of flow at v, such that any two
units of flow proceed without crossing through v and,

(b) if the outdegree of the vertex is two in α, then every unit of flow is cut by the two outgoing edges
of v under α, or,

(b’) if the outdegree of the vertex is one, there is an incoming edge such that every unit of flow is cut
by this incoming edge together with the outgoing edge of v under α.

When the pair (α,ψ) satisfies the realizability condition at each vertex we say that the pair is realizable.

Theorem 2.2. The realizable pairs are in bijection with VCPGs.

The remainder of this section is dedicated to the proof of Theorem 2.2. First we will show that a VCPG
induces a realizable pair (α,ψ) and then the converse, i.e. we will construct a VCPG from a realizable
pair.

Lemma 2.3. A pair (α,ψ) that comes from a VCPG is realizable.

Proof. First note that a VCPG of G describes an embedding of G. If there is a grid-path with one
free end, then before proceeding we reduce all unnecessary bends, i.e. if a grid-path has bends between
its last neighbor and its free end, these bends are removed. A 2-orientation can be constructed from a
VCPG by orienting an edge u→ v if and only if the grid-path of u ends on the grid-path of v. Consider
the grid-path that represents a vertex v. If this path has no bends, the realizability condition is satisfied
at this vertex. Suppose the path has k bends. Draw an arrow from the face containing a convex corner
to the face in which the associated concave corner lies. Now the set of arrows represents the flow ψ(v).
This flow is non-crossing through v and every unit of flow is cut by the the grid-path of v. When these
arrows are introduced for all bends of all grid-paths, the flow given by these arrows satisfies the excess

1Note that there might be different bounds for different embeddings of the same graph.

5



of each face. Contract the strictly interior steps of the grid-path to a vertex and every unit of the non-
crossing flow through v is now cut by the outermost two segments of the grid-path, which correspond to
the outgoing edges of v, or to the outgoing edge and the location of the last incoming edge before the
free end of the grid-path. Hence the realizability condition is satisfied at each vertex, therefore the pair
obtained from the VCPG is realizable.

To prove the converse we will show how to construct a VCPG given an realizable pair. Note that an
embedding follows from the map A(G) (in which the flow ψ is defined). Consider a realizable pair (α,ψ)
(see Figure 3 (a)). The proof consists of four steps, which we first outline here:

Step 1: First we expand the vertices that have k units of flow going through them, to a path of length k.
We obtain a bipartite graph.

Step 2: We introduce help edges and vertices in the bipartite graph to construct a quadrangulation (see
Figure 3 (b)).

Step 3: We then find a segment contact representation of the quadrangulation. It has been shown that
the 2-orientations of maximal bipartite planar graphs are in bijection with separating decompositions of
this graph (e.g. [dFdM01]). In turn a separating decomposition induces a segment contact representa-
tion (cf. [HNZ91, dFdMP95, Fel13]). Hence we can construct a segment contact representation where
the representation of the edges is in bijection with the given 2-orientation. An example is shown in
Figure 3 (c).

Step 4: Last we will show that the extra edges that have been introduced to make a quadrangulation
of the bipartite graph can be deleted in order to obtain a VCPG of G (see Figure 3 (d)).

Step 1. Given a realizable pair (α,ψ) for G. We expand all vertices with non-zero flow. The plane
graph we obtain is denoted G̃. For every vertex v for which ψ(v) 6= 0, expanding v denotes the following
steps (see Figure 4):

1. Expand v to a circle, we will denote this the bag of v.

2. Between the two outgoing edges of v, or the special incoming and the outgoing edge of v if v has
outdegree one, inside the circle, add a path with ψ(v) + 1 vertices.

3. Connect the edges that end on the circle to the path vertex in such a way that the flow between
two faces only crosses an edge of the path.

Step 2. After all the expansions have been done we obtain a graph where all faces have even length.
Each face gets |4 − |f || + 2k extra vertices due to the expanding step, where k is the amount of flow
proceeding through the face. The resulting faces in G̃ have size |f |+ |4− |f ||+ 2k, for |f | = 3 this gives
4 + 2k and for |f | > 3 this gives 2|f | − 4 + 2k, both are even. So in G̃ all faces have even length and
therefore G̃ is a bipartite graph. Now we add help edges to extend G̃ to a quadrangulation. We denote
the quadrangulation GQ. We will also orient the new edges to obtain a 2-orientation of GQ. In order to
explain how the help edges are added, we need the following lemma.

Lemma 2.4. Every interior face f̃ of G̃ has (|f̃ | − 4)/2 units of incoming flow.

Proof. Let ψ+(f) (resp. ψ−(f)) denote the incoming (resp. outgoing) flow in face f . Let f be the
equivalent face of f̃ in the original graph G.

The excess c(f) of f is the difference between incoming and outgoing flow:

ψ+(f)− ψ−(f) = c(f) = |f |+ 4 .

Now we use that the size of the extended face f̃ is the size of f plus the incoming and the outgoing flow.

|f̃ | = |f |+ ψ+(f) + ψ−(f) = |f |+ ψ+(f) + ψ+(f)− |f |+ 4 = 2ψ+(f) + 4

Hence we find

ψ+(f) =
|f̃ | − 4

2
. (2)
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Figure 3: From a combinatorial VCPG to a geometric VCPG: (a) a plane (2,0)-tight graph with a realizable
pair (ψ in red); (b) expanding the vertices according to the flow (in blue) and extending the bipartite graph to a
quadrangulation (in green); (c) a segment contact representation of the quadrangulation with the segments that
belong to the orignal graph highlighted; (d) a geometric VCPG.

Using (|f̃ | − 4)/2 edges one can quadrangulate f̃ . The help edges should be added in such a way that
every bag (vertex expansion) gets as many help edges as it has flow going into f̃ in the flow ψ. Informally,
a concave corner is arises from two segments that both end in one point. The theory of segment contact
representations that we will use, there are only proper contacts or free ends. Each help edge represents
a segment of a concave corner that proceeds into the face, this part will then later be removed. Such a
help edge will be oriented outgoing from the bag.

Figure 4: Expanding a vertex. The flow ψ is de-
picted by blue arcs, the red arcs represent the out-
going edges of the vertex in α, the black lines are
the incoming edges.

Figure 5: Adding help edges in a face. The flow
ψ is depicted by blue arcs. The red half-arcs to-
gether with the dashed extensions represent the
help edges.
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Later the segment contact representation is constructed and for this it is necessary that every interior
vertex has outdegree two. Therefore the help-edges must be added in such a way that this is possible
for all vertices. Each interior bag vertex should precisely two outgoing arcs (which are not edges in the
original graph) and the vertices on the boundary of the bag get precisely one outgoing arc that is not
in the original graph. The help edges are added along flow from a vertex into a face, this will give the
correct amount of new edges for every bag.

Lemma 2.5. Each inner face f̃ of G̃ can be quadrangulated in such a way that each bag through which
k units of flow enter f̃ gets k new outgoing arcs. The outer face of G̃ can be quadrangulated using four
help-vertices (vt, vr, vb, vl), in such a way that each bag through which k units of flow enter the outer
face gets k new outgoing arcs.

An example of quadrangulating an interior face is depicted in Figure 5. The flow ψ is given by the blue
arrows. First half-arcs are added, the red solid arcs. Then these half-arcs are subsequently connected in
such a way that they close one 4-face (red dashed lines). The quadrangulation of the outer face is based
on the same idea.

Proof. Assign a half-arc into f̃ from each vertex clockwise after a unit of incoming flow, see Figure 5.
There are (|f̃ | − 4)/2 vertices who get a half-arc thus (|f̃ |+ 4)/2 without a half-arc. Hence there exists a
vertex with a half arc which is followed by two consecutive vertices u, v without a half-arc. Consider the
half-arc clockwise before u, v and connect it to the vertex after u, v. Now we have constructed a 4-face
and completed one half-arc. This step can be repeated considering the resulting face and its half-arcs.
By counting it follows that all half-arcs can be extended into arcs with this method and that the result
is a quadrangulation of f̃ in such a way that each bag through which k units of flow enter f̃ gets k new
outgoing arcs.

To take care of the outer face we add a quadrilateral around our graph and quadrangulate the new inner
face between the graph and the quadrangle.

We distinguish the four cases, (1) there exists a vertex s in the original graph G which has no outgoing
arcs under α, (2) there exist two vertices s, t in the original graph G which both have precisely one
outgoing arc under α, (3) there exists precisely one vertex s which has precisely one outgoing arc under
α, (4) all vertices have outdegree 2 under α. We add a quadrilateral around our graph and construct an
inner face where the units of incoming flow is k and its size is 2k+ 4. Then we can use the same method
as for the interior faces.

(1) Note that l = 2. First add a quadrangle around the graph with vertices vl, vt, vr, vb in clockwise
order. Now s is expanded2, we label the expansion in counterclockwise order following the boundary of
˜f∞ into s1, . . . , sk. Add arcs (s1, vt) and (s1, vb). Now the bounded face f∗ containing s1, vt, vr, vb on

its boundary has the following properties: |f∗| = | ˜f∞|+ 4, it has 1
2 | ˜f∞| incoming flow. We consider the

same method as for an inner face, add half-arcs and consecutively make 4-faces.

(2) Note that l = 2. First add a quadrangle around the graph with vertices vl, vt, vr, vb in clockwise
order. If s and t are expanded, we label the expansion vertices in the respective bags such that s1 and
t1 have no outgoing arc under α and they are end vertices of the extension path. If s resp. t is not
expanded, we label s = s1 resp. t = t1. Add arc (s1, vt) and let f∗ be the face between the quadrangle
and ˜f∞. Let ψt1,s1 denote the incoming flow to f∗ between t1 and s1 clockwise around ˜f∞. Assign the
label q to the vertex at distance 2ψt1,s1 + 3 from t1 walking counterclockwise around f∗. Add the arc
(t1, q). Now we have obtained two faces fu, fd, for which the incoming flow ψ+(fu), ψ+(fd) is equal to
|fu|/2− 2, |fd|/2− 2. We consider the same method as for an inner face, add half-arcs and consecutively
make 4-faces.

(3) Note that l = 1. Add a quadrangle around the graph with vertices vl, vt, vr, vb in clockwise order.
The vertex s has outdegree precisely one under α. Label the vertex in the bag of s that has no outgoing
edge and is an end vertex of the extension path s1 or if s is not expanded we label s = s1. Add arc
(s1, vt). We obtain a face f∗ between the quadrangle and ˜f∞ for which the incoming flow is of size
1
2 | ˜f∞| + 1 and |f∗| = | ˜f∞| + 6. We consider the same method as for an inner face, add half-arcs and
consecutively make 4-faces.

2If s is not expanded then we label s = s1.
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(4) Note that l = 0. Add a quadrangle around the graph with vertices vl, vt, vr, vb in clockwise order and
let f∗ be the face between the quadrangle and ˜f∞. We will use one unit of flow to connect ˜f∞ to the
quadrangle. First add a half-arc into f∗ from each vertex clockwise after a unit of incoming flow. Choose
any half-arc and connect it to vt. We obtain a face f with 1

2 | ˜f∞| + 1 incoming flow and |f | = ˜f∞ + 6.
We consider the same method as for an inner face, add half-arcs and consecutively make 4-faces.

To obtain a quadrangulation GQ with a 2-orientation, we still need to orient the edges that are strictly
inside the bags and the four boundary edges. The orientation of all other edges comes from α. Each bag
bv contains |bv| − 1 = ψ(v) edges which are not yet oriented, all others are oriented and such that bv has
outdegree |bv|+ 1.

Lemma 2.6. Each bag bv in GQ has precisely outdegree |bv|+ 1 and each vertex (∈ bv) has outdegree
at most two.

Proof. If a bag bv comes from a vertex v which has outdegree 2 in α, then the expansion results in a
bag of size ψ(v) + 1. According to the flow, ψ(v) outgoing arcs are added, so in total we find outdegree
|bv|+ 1.

If a bag bv comes from a vertex v which has outdegree 1 in α, then the expansion results in a bag of size
ψ(v) + 1 and the quadrangulation step has assigned another outgoing arc to this bag, hence again we
find we find outdegree |bv|+ 1.

If a bag bv comes from a vertex v which has outdegree 0 in α, then the expansion results in a bag of size
ψ(v) + 1 and the quadrangulation step has assigned two outgoing arcs to this bag, hence again we find
we find outdegree |bv|+ 1.

Suppose one of the bag-vertices has outdegree three or more. At most one of the arcs can be an edge
of the original graph. When a vertex gets an outgoing arc from the flow, this means that it must be
clockwise after a flow into an adjacent face. If a vertex is twice clockwise after a flow, it must be incident
to two faces on each side of the path, hence this vertex is not an end vertex of the path and it can not
have an outgoing arc that is an edge of the original face.

Orient (vl, vt), (vr, vt), (vl, vb) and (vr, vb) towards vt respectively vb, the two poles of the 2-orientation.
The orientation of the path edges is now trivial.

Lemma 2.7. The path edges can be oriented (greedily) such that the resulting orientation is a 2-
orientation of GQ.

Proof. We subsequently orient the edges of a path towards a vertex which has outdegree two and show
that in each step, all neighbors of a vertex with outdegree two, have outdegree at most one. Hence we
can continue orienting edges until all edges are oriented.

First we note that a neighbor of a path vertex with outdegree two can not also have outdegree two, as
through every path edge at most one unit of flow proceeds and hence a neighboring pair in the path has
together outdegree at most three. Consider a vertex of a path v which has outdegree two. Let u be a
neighbor of v on the path, v has at most outdegree one. We need to show that if it has outdegree one,
its next neighbor has at most outdegree one or it is an end vertex of the path. Suppose u has outdegree
one and is not an end vertex of the path, let w be the next vertex on the path. Vertex v is the clockwise
subsequent vertex for the flow through (u, v), so the outgoing arc of u must come from the flow through
(u,w). Hence for w the only possibility is an arc that comes from flow through the next edge of the path
or w is an end vertex. Either way, w has outdegree at most one. Hence we orient the path edge from u
to v and again consider a vertex with outdegree two.

As the number of path edges is precisely the number of outarcs needed for every bag, this process will
end and each bag vertex has outdegree precisely two (except for the two poles: vt and vb. All vertices
that are not in a bag, already had outdegree two in α and did not get new outgoing arcs. Hence we have
a 2-orientation α̂ of GQ.
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Step 3. From G and the realizable pair (α,ψ) we constructed the quadrangulation GQ with a 2-
orientation α̂ (vt and vb are the only two vertices with outdegree zero instead of outdegree two). We
construct a segment contact representation, i.e. the vertices of the two color classes become horizon-
tal respectively vertical segments and the edges are proper contacts between the segments satisfying
α̂ (cf. [HNZ91, dFdMP95, Fel13]).

Step 4. Last to show is that this segment representation of GQ is equivalent to a VCPG of G where the
path of a vertex v is given by its outgoing arcs in α and ψ(v) denotes the number of bends of the path
of v. For this we need the following lemma, which shows that the sets of segments ending on different
sides of a segment s can be moved indepently.

Lemma 2.8. Given a horizontal segment in a segment contact representation, then its (vertical) bottom
neighbors can be shifted independently from its (vertical) top neighbors. The same holds for a vertical
segment and its left resp. right incoming neighbors.

Proof. Suppose the vertical segment v1 ends on the bottom and v2 ends on the top of the horizontal
segment h. The segment v1 is left of the segment v2 and we want it to be right of v2. Consider a cutline
as follows: from h just left of v1 to the top of the drawing such that it intersects only horizontal segments;
from h just to the right of v2 to the bottom, such that it only intersects horizontal segments; and the
part on h between the these two vertical cutlines. We cut the graph along the cutline. We move the half
containing v1 to the right such that v1 now is right of v2. Extend all the horizontal lines that are cut.
We have obtained a new, equivalent, segment contact representation where v1 is right of v2. Figure 6
depicts such a move.
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Figure 6: Cutting open and shifting shows that neighbors on each side can be moved independently: (a) the
graph of Figure 1 (c) where highlighted part of 1 does not end on the highlighted part of 10, and a cutting line
(dashed); (b) the graph is cut and the top is pulled upwards extending the vertical segments that are cut.

Theorem 2.9. The segment representation of GQ obtained from an realizable pair (α,ψ) induces a
VCPG of G.

Proof. We apply identification, shifting and deletion to the segment representation of GQ and will then
show that the result is a VCPG of G.

Identification. For each vertex v that is not expanded we color the segment with color v. For each bag
bv, select the segments representing the bag vertices v1, . . . , vk. For each bag vertex vi color the part of
the segment between vi−1 and vi+1 with color v. For the end vertices of the bag, v1 (resp. vk) color the
part of the segment between v2 (resp. vk−1) and the outgoing neighbor of v1 (resp. vk) that is not in
the bag. Now the grid-path of vertex v is highlighted among the selected segments. When l = 1, 2 we
have added arcs while quadrangulating the outer face, that do not correspond to the flow nor to original
edges. These edges represent the free ends of grid-paths. Hence we prolongue these to be just further
than the last neighbor ending on this segment.
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Shifting. It may occur that for an arc of G, say (u, v), the endpoint from u on v appears on a non-
highlighted part of v, in this case we need to shift. We let vi be the vertex represented by the segment
on which u ends, and vi−1, vi+1 the neighbors of vi in the bag. We need that around vi, there are
consecutively one outgoing edge, at most one incoming edge from a bag neighbor, say vi−1, incoming
other edges, one outgoing edge, at most one incoming edge from a bag-neighbor, say vi+1, incoming other
edges. In other words, in either clockwise or counter clockwise order, there is no incoming edge of the
original graph between the outgoing edge and the incoming bag edge. This ensures (by Lemma 2.8) that
there is a segment representation in which the contacts of edges of the original graph to vi lie between the
contacts of vi−1 and vi+1 with vi. The statement follows from the construction of GQ. If the outgoing
edges of vi are to vi+1 and vi−1 it is trivial. Suppose not, w.l.o.g. the outgoing edge north of vi can only
be induced by flow through (vi+1, vi) and south of vi by (vi−1, vi). If both appear, then these outgoing
edges are just before the incoming bag edges in cw or ccw order, hence we are done. If at most one
appears, say vi has one outgoing edge to vi+1, then the other outgoing edge is just before the incoming
edge from vi−1, i.e. it comes from the flow going through the edge (vi, vi−1).

Hence we find that there exists a segment representation in which the contacts of edges of the original
graph to vi lie between the contacts of vi−1 and vi+1 with vi. Moreover in the representation we have,
we can shift vi−1 and vi+1 such that all other contacts to vi lie between them. The coloring extends
trivially along the shifting.

Deletion. After the shifting, all endpoints representing edges of G occur between highlighted segments.
Therefore we can delete all non-highlighted parts of the segments without losing edges of the original
graph.

Conclusion. It follows from the three steps that each edge (u, v) of G is represented by a non-degenerate
contact. If this edge is oriented from u to v then the path of u ends on v. Moreover each vertex v is
represented by ψ(v) + 1 segments, hence it is a grid-path with ψ(v) bends. Hence the result is a VCPG
of G that agrees with α and ψ.

With the four steps we have obtained a VCPG from an realizable pair. This completes the proof of
Theorem 2.2. In the remainder of this paper we will use realizable pairs to give bounds on the number
of bends for certain graph classes.

3 Not all (2,2)-tight graphs are B1-VCPG

In a B1-VCPG each vertex is represented by a grid-path with at most one bend. Strict B1-VCPG is
a proper subclass of B1-VCPG (this is shown in the full version of this paper [AF]). Suppose a graph
has a B1-VCPG, then there must be an realizable pair (α,ψ) such that 0 ≤ ψ(v) ≤ 1 for all vertices v.
Consider the plane graph on the right of Figure 7. Suppose it has a flow ψ which satisfies 0 ≤ ψ(v) ≤ 1
for all vertices v. The two grey-colored K4 subgraphs both have excess c(K4) = 3. So there must be 6
units of flow going out of the two K4 subgraphs, however there are only 5 different vertices bounding
the two K4 subgraphs. We conclude that there is no flow that satisfies all excesses such that there is at
most one unit of flow going through each vertex.

Figure 7: Two embeddings of a planar (2,2)-tight graph that is not B1-VCPG.

On the other hand, graphs that do not have a vertex that is incident to many (almost-disjoint) critical
sets, might be B1-VCPG. In particular, it follows easily from the construction of strict B1-VCPGs of
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planar Laman graphs that planar Laman-plus-one graphs have a strict B1-VCPG. For the proof we need
the following lemma. In a monotone VCPG each grid-path may have many bends, but it is monotone,
i.e. there is no t-shape.

Proposition 3.1. Let G be a (2,2)-tight graph, and EG a monotone VCPG of G. If two vertices u, v
contribute a straight line segment to the boundary of an interior face f in EG, then u and v do not bound
f on the same side.

Proof. Consider two vertices u and v, to contribute a straight line segment to the boundary of an interior
face f in such a way that both bound f on the north side. Since there is no free end inside f , u and
v cannot be neighbors (as in this case there would not be a proper contact between them). Suppose
there is a path on the boundary of f between u and v and let w be the neighbor of u in this sequence.
Then, w induces either no change in direction (c) or a change of 1

2π (e) or a change of π (a). However
to introduce v at some point, we need to be at angle − 1

2π or −π w.r.t. to the angle at u. It is clear that
in a plane represention this can only be achieved using free ends.

A Laman-plus-one graph G is a (2,2)-tight graph, such that there exists an edge e in G for which G− e
is (2,3)-tight, i.e. a Laman graph. Note that (2,2)-tight graphs that are not Laman-plus-one but also do
not have a vertex that is incident to many (almost-disjoint) critical sets might be B1-VCPG but they
are not necessarily strict B1-VCPG, as shown by the example in Figure 8.

Figure 8: A graph that has a B1 representation such that the red vertices must be represented by
segments (i.e. a grid path without bends).

Theorem 3.2. Every planar Laman-plus-one graph has a strict B1-VCPG. In this representation pre-
cisely one face has two convex corners, the outer face has no convex corner, all other faces have one
convex corner3.
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Figure 9: Extension of G− e and adding e.

3In the construction of Kobourov et al. each face has precisely one convex corner, they denote this proper L-contact
graph.

12



Proof. Let G a planar Laman-plus-one graph and e = ab an edge such that G − e is a Laman graph.
Consider an embedding of G such that e is incident to the outer face. We construct an extended graph
which has a triangular outer face (see Figure 9). First add a′ and connect it to a and b, then add b′,
connect it to a and b in such a way that the outer face now consists of a, a′, b and b′. Subdivide the
edge bb′, call the new vertex c′ and connect it to a′ such that the outer face now consits of a′, b and c′.
Note that the addition of a′, b′ and c′ are Henneberg construction steps and the graph G − e with the
extension, denoted G′ − e is a Laman graph. We construct a strict B1-VCPG of G′ − e according to
the method of Kobourov, Ueckerdt and Verbeek [KUV13], in such a way that a′ and c′ are the special
vertices. Consider the face a′ac′b′. Suppose that a is the unique convex corner for this face in the strict
B1-VCPG. Then b′ must admit a concave corner to this face and has its convex corner in the other
incident face, i.e. the face with b, c′, b′, a and a path from a to b on its boundary. It follows that a and
b both admit a straight line segment to this face, in such a way that the face is on the same side of a
and b, this is a contradiction of Proposition 3.1. Therefore b′ is the unique convex corner for this face.
Removing a′, b′ and c′ from the representation leaves a strict B1-VCPG in which one leg of a has no
other vertices ending on it. Moreover, no vertex but one of the free ends of b is to the right of this leg
of a. Hence we move this leg in such a way that it ends on b, the result is a strict B1-VCPG of G. It
follows from the construction of Kobourov, Ueckerdt and Verbeek that all faces except the two incident
to the bend of a have precisely one convex corner, the face incident to the convex corner of a has also a
convex corner from b and the outer face has no convex corners.

Note that a Laman-plus-one graph has precisely one critical set, namely the whole graph. When all
minimal critical sets are disjoint it may be possible to use a structure as we used above to obtain a
1-bend VCPG of all minimal critical sets and glue them together (using 1-bend or 0-bend vertices).
However when the critical sets intersect this is no longer possible.

4 Locally Minimizing Bends

For simple (2,2)-tight graphs we show that for every 2-orientation with one sink α, there exists a flow ψ
such that ψ(v) ≤ 2 for all vertices v and the pair (α,ψ) is realizable.

Theorem 4.1. Every planar (2,2)-tight graph is B2-VCPG.

Proof. Let G a planar (2,2)-tight graph and E a planar embedding of G. Hence we have a dual graph
G∗. The excess of the face-vertices in the dual is given by c(f) = 4 − |f | and for the outer face it is
c(f∞) = −|f∞|.
For every subset of face-vertices H there are at least |

∑
f∈H c(f)| edges leaving H in the dual graph.

Let b the number of edges leaving H, i.e. the number of boundary edges in the primal w.r.t. H. Note
that we only count interior faces (when we use Euler’s formula).∣∣∣∣∣∣

∑
f∈H

c(f)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
f∈H

4− |f |

∣∣∣∣∣∣ = |4|H| − 2eH + b| ≤ |4|H| − 4|H|+ b| = b

Hence we can satisify all excess in the dual graph by using every edge at most once. Given an edge-
disjoint flow in the dual graph, such that the excess of all faces is satisfied and the capacity of each edge
is one. Consider any orientation α of G such that every vertex has outdegree at most 2. In such a way
that there is either one vertex with outdegree 0 incident to the outer face, or two vertices with outdegree
1 incident to the outer face. We construct the flow ψ in the angle graph as follows: If there is a flow
from f1 to f2 crossing edge uv, then if u→ v we add f1 → u and u→ f2 to ψ. If v → u we add f1 → v
and v → f2 to ψ.

Since the flow in the dual graph is edge-disjoint and each vertex has at most two outgoing edges we have
ψ(v) ≤ 2 for all vertices v. At each vertex the flow cuts off the outgoing edge, hence the expanding
condition is satisfied at each vertex.

We conclude that the pair (α,ψ) is realizable.
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Theorem 4.2. Every loopless planar (2,1)-tight graph is B4-VCPG.

Proof. We claim that there is a flow in the dual such that each edge has capacity two. Similarly to the
proof of Theorem 4.1 we obtain that a loopless planar (2,1)-tight graph is B4-VCPG.

For every subset of face-vertices H there are at least |
∑

f∈H c(f)| edges leaving H in the dual graph.
Let b the number of edges leaving H, i.e. the number of boundary edges in the primal w.r.t. H. Note
that we only count interior faces (when we use Euler’s formula).∣∣∣∣∣∣

∑
f∈H

c(f)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
f∈H

4− |f |

∣∣∣∣∣∣ = |4|H| − 2eH + b| ≤ |4|H| − 4|H|+ 2 + b| = 2 + b

As b > 1 we can satisfy the flow using b edges with capacity 2.

We have only been able to show that the lower bound is three (e.g. the octahedron deleted an interior
edge), hence we conjecture that loopless planar (2,1)-tight graphs are B3-VCPG.

Theorem 4.3. Every loopless planar (2,0)-tight graph is B6-VCPG.

Proof. We claim that there is a flow in the dual such that each edge has capacity three. Similarly to the
proof of Theorem 4.1 we obtain that a loopless planar (2,0)-tight graph is B6-VCPG.

For every subset of face-vertices H there are at least |
∑

f∈H c(f)| edges leaving H in the dual graph.
Let b the number of edges leaving H, i.e. the number of boundary edges in the primal w.r.t. H. Note
that we only count interior faces (when we use Euler’s formula).∣∣∣∣∣∣

∑
f∈H

c(f)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
f∈H

4− |f |

∣∣∣∣∣∣ = |4|H| − 2eH + b| ≤ |4|H| − 4|H|+ 4 + b| = 4 + b

As b > 1 we can satisfy the flow using b edges with capacity 3.

Again, the only lower bound we have been able to show is three (e.g. the octahedron), hence we conjecture
that loopless planar (2,0)-sparse graphs are B3-VCPG.

4.1 A Laman-Plus-One Variant of (k, l)-tight

In the case of planar (2,2)-tight graphs we have obtained a result on a subclass, namely Laman-plus-one
graphs. This subclass is denoted Laman-plus-one by Haas et al. in [HOR+05] and it is such that there
exists an edge such that the graph deleted this edge is a Laman graph. We have shown that Laman-
plus-one graphs are B1-VCPG (actually we have shown that they are strict B1-VCPG). In this section
we consider similar subclasses of (2, l)-tight graphs.

Planar (2, 2)-tight-plus-one graphs are (2,1)-tight graphs such that there exists an edge e such that the
graph deleted e is a (2,2)-tight graph.

Theorem 4.4. Loopless planar (2, 2)-tight-plus-one graphs are B3-VCPG such that precisely one grid-
path has three bends.

Proof. Let G be a loopless planar (2,2)-tight-plus-one graph. Consider an edge e such that G − e is
(2, 2)-tight. Let Ee an embedding of G such that e lies in the outer face. Now Ee− e has a B2-VCPG for
every 2-orientation. Let x a vertex of e and α a 2-orientation of G− e such that x has outdegree 0. Now
there is a B2 representation of G− e such that x is represented by a segment with two free ends in the
outer face. The other end of e, say y, also lies in the outer face. Now the edge e can be added by taking
a free end of x and let it end on y using at most three bends. Hence we find a B3-VCPG such that all
vertices but x have at most two bends and x has at most three.
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Planar (2, 1)-tight-plus-one graphs are (2,0)-tight graphs such that there exists an edge e such that the
graph deleted e is a (2,1)-tight graph.

Theorem 4.5. Loopless planar (2, 1)-tight-plus-one graphs are B5-VCPG such that precisely one grid-
path has five bends.

Proof. Let G be a loopless planar (2,1)-tight-plus-one graph. Consider an edge e such that G − e is
(2, 1)-tight. Let Ee an embedding of G such that e lies in the outer face. Now Ee− e has a B4-VCPG for
every 2-orientation. Let x a vertex of e and α a 2-orientation of G− e such that x has outdegree 1. Now
there is a B4 representation of G− e such that x is represented by grid-path with at most two bends and
with one free end in the outer face. The other end of e, say y, also lies in the outer face. Now the edge
e can be added by taking the free end of x and let it end on y using at most three bends. Hence we find
a B5-VCPG such that all vertices but x have at most four bends and x has at most five.

4.2 Constructive Argument for (2,2)-tight graphs

A constructive argument can be build upon the construction of simple (2,2)-tight graphs given by
Nixon [Nix11] based on earlier work e.g. [NOP12].

Figure 10: The four steps: Henneberg type 1, Henneberg type 2, edge-to-K3 and vertex-to-K4. In the
latter two the sets of neighbors are given by the grey colored triangles.

4.2.1 Construction of a B2-VCPG for (2,2)-tight planar graphs.

We will build an edge-disjoint flow in the dual graph. Then given any orientation, the flow of the dual
graph can be mapped to a flow in the angle graph such that this flow together with the orientation is
realizable.

Nixon has shown that every simple (2,2)-tight graph G is derivable from K4 by the Henneberg type 1,
Henneberg type 2, vertex-to-K4 and edge-to-K3 moves. Moreover a planar (2,2)-tight graph has such a
construction in which all intermediate graphs are planar. We will build a flow in the dual graph along
the plane construction of G.

We start with K4 and the flow in the dual graph that leaves the three inner faces through the edges
that are incident to the outer face (as given in Figure 11). Throughout the construction we maintain an
edge-disjoint flow in the dual graph.

Extension along Henneberg type 1. Vertex x is added in face f and connected to two vertices of
f say u and v. The face f is now splitted into two faces f1, f2 and the discrepency is at most two, i.e. in
the worst case f1 now has excess 2 and f2 has excess -2. To prove this we consider the dual graph, and
in particular the vertex f and its neighbors. The excess of f is 0 before the Henneberg type 1 step. The
degrees of f , f1 and f2 in the dual graph satisfy deg(f) = deg(f1) + deg(f2)− 4, moreover the excess of
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Figure 11: K4 an a flow in the dual graph.

f is equal to the sum of the excesses of f1 and f2, so at most for one of the faces the excess is positive,
say f1. We also know that the current flow is edge-disjoint. Suppose the excess of f1 is larger than 2,
hence it has more than deg(f1) − 2 incoming edges, but the two edges to f2 have not been used in the
current flow. Therefore f1 has at most deg(f1)− 2 incoming edges and thus at most excess 2. Therefore
at most two edges need to be directed from f1 to f2. As there are two edges not in yet used in the flow,
that connect f1 with f2, we can extend the flow in an edge-disjoint way.

Extension along Henneberg type 2. Edge uv is subdivided and the new vertex x is connected to
w. The face f is splitted in fu and fv, the face fx on the other side of the edge uv has gotten one more
vertex, x. Consider the faces in the dual graph and the flow, deleted the flow that uses the edge (f, fx).
Now the excess of fx is at least 0 and at most 2 and the sum of the excesses c(fx) + c(fu) + c(fv) is zero.

Suppose c(fx) = 0, then in the worst case c(f1) = −c(f2) = 2 and we add flow f1 → fx, f2 and fx → f2.

Suppose c(fx) = 1, then in the worst case c(f1) = 1, c(f2) = −2 and we add flow f1 → f2 and fx → f2.

Suppose c(fx) = 2, then c(f1) = c(f2) = −1 and we add flow fx → f1, f2.

Extension along vertex-to-K4. The neighbors of a vertex x are splitted into three (possibly empty)
sets, maintaining the rotation system at x. Remove x, add a K4 such that the graph stays plane, and the
three outermost vertices of the K4 are connected with the respective neighborsets of x. The extension
of the flow is trivial, the negative excess of the faces between the splitted neighbor sets of x is satisfied
with flow coming from the three new faces of the K4.

Extension along edge-to-K3. The neighbors of a vertex x are splitted into three (possibly empty)
sets N1, N2, N3, one of the three sets contains only one neighbor, say N3 = {u}. The rotation system
at x is maintained. Remove x and u, add a K3. Two vertices of the K3 are connected with N1 and N2

respectively. The third vertex of the K3 gets the neighbors of u. The extension of the flow is trivial, the
negative excess of the face between the splitted neighbor sets N1 and N2 is satisfied with flow coming
from the new face of the K3.

Now we have obtained an edge-disjoint flow in the dual graph, such that the excess of all faces is satisfied.
Similarly as before, given any 2-orientation α, this flow can transfered to a flow ψ in the angle graph
such that there is at most two units of flow going through a vertex. The pair (α,ψ) is realizable, this
gives a B2-VCPG.

5 Conclusion

We have shown that the class of planar (2,2)-tight graphs is not equal to the class of B1-VCPG graphs.
However the only type of (2,2)-tight, planar graph that we found not to be B1-VCPG has at least one
vertex which is the intersection of “many” proper critical subsets. Are all planar (2,2)-tight graphs that
have no such vertex B1-VCPG?
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We have also obtained bounds for loopless (2,1)-tight and (2,0)-tight planar graphs, however we believe
that these bounds are not tight. Lower bounds of three bends are given by the octahedron minus one
edge and the octahedron.

Conjecture 5.1. Loopless planar (2,0)-tight graphs are B3-VCPG.

The bounds that we have shown do not depend on a chosen 2-orientation (i.e. the bounds hold for every
2-orientation). There are easy examples of a (2,0)-tight graph with a particular 2-orientation such that
there is a vertex represented by a 4-bend path for every flow. Hence it would be interesting to find a
sufficient condition on a flow such that, when satisfied, there exists a 2-orientation such that the pair
is realizable. Is there a way to construct an realizable pair simultaneously? Is there a way to find that
minimal flow that belongs to an realizable pair?

Local Flow Decreasing Steps There exist some (trivial) flow decreasing steps. Given a graph G,
an realizable pair (α,ψ), if one of the steps is possible, we construct an realizable pair (α,ψ′) such that
w(ψ′) < w(ψ). We will also describe cases where none of the steps is possible, yet the flow is not the
least possible for this graph. It is obvious that given an edge (u, v), two adjacent faces f1, f2, if there is
flow from f1 to f2 as well as from f2 to f1 that this cancels out (no matter which vertex it goes through).
This is a trivial flow decreasing step which leaves an realizable pair. The same holds for cyclic flow that
consists of more than two units of flow.

Detour removal. Given a graph G and an realizable pair (α,ψ). Given an edge (u, v), the two faces
adjacent to this edges, f1 and f2, and a face fu adjacent to u. If the following flow is in ψ: f1 → v → f2
and f2 → u→ fu, then it can be replaced by f1 → u→ fu. The orientation does not change, and since
f1 → v → f2 ∈ ψ, the edge is oriented from v to u in α. Hence the expansion condition is not violated
by this change. Moreover, if the following flow is in ψ: f2 → v → f1 and fu → u → f2, similarly this
flow can be replaced by fu → u→ f1.

In general flow decreasing steps might not give an realizable pair. There are examples such that given
a minimum flow ψ in the angle graph that satisfies the facial demands, there is no 2-orientation which
together with ψ is an realizable pair. And given an realizable pair, there are examples for which the
cycle and detour removals do not give the minimum flow.

a
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b b
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cc

d
e

f

f
f

d

e

d

e

(a) (b) (c)

Figure 12: A graph G given a flow that cannot be reduced by the given steps (a) and the VCPG induced
by this flow and the given 2-orientation (b); a VCPG of G with the minimal number of bends (c).
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