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of staircase shape s = fn� 1; n� 2; : : : ; 1g. Evaluating fs with the hook-formula yieldsjRed(w0) j = �n2�!(2n� 3) � (2n� 5)2 � (2n� 7)3 � : : : � 5n�3 � 3n�2 :Originating from this conjecture some remarkable connections between standard Youngtableaux and reduced words have been discovered and explained. Stanley [15] proved theoriginal conjecture algebraically. Edelman and Greene [2] found a bijective proof. Furtherproofs are given by Lascoux and Sch�utzenberger [13] and Haiman [9].The basic correspondence has been generalized in di�erent directions. Based on con-jectures of Stanley [15] a related correspondence between shifted standard tableaux andreduced decompositions of the longest element in the hyperoctahedral group, i.e., theWeyl group of type Bn, was established by Kraskiewicz [12] and Haiman [9]. In recentwork Fomin and Kirillov [5] found an amazing generalization of Stanley's formula whichincludes a formula of Macdonald as a second special case.The main purpose of this paper is to give a planarized construction and proof forthe bijection of Edelman and Greene between reduced words and certain pairs of Youngtableaux. The construction is similar in spirit to the planarization of the Robinson-Schensted correspondence of Viennot [17, 18]. In particular we introduce a skeleton forreduced words. We agree with Viennot's statement [18, page 412]: \Unfortunately thesimplicity of the combinatorial constructions, together with the magic of this very beauti-ful correspondence, cannot be written down in a paper as easily as it can be described in anoral communication with a friend or using superposition of pictures with transparencies".In the next section we give a rather broad introduction to the background of ourconstruction. In Subsection 2.1 we indicate the relation between reduced words of per-mutations and partial arrangements. Subsection 2.2 is an exposition of the proof of theRobinson-Schensted correspondence using the geometric construction of skeletons as in-troduced by Viennot. In Subsection 2.3 we state the bijection of Edelman and Greenebetween reduced decompositions and certain pairs of Young tableaux. Along the lines ofViennot's proof we introduce the terminology required for our geometric version of thisbijection. At the end of this subsection we state our main theorem which is a generaliza-tion of the Edelman and Greene bijection. The proof of the theorem is given in Section 3.We conclude in Section 4 by indicating a possible extension of the present work.2 PreliminariesIn this section we introduce the set-up for the main bijection of this paper. We explainthe connection between reduced decompositions and arrangements. After that Viennot'splanarized version of the Robinson-Schensted correspondence is reviewed. Finally, wepresent the Edelman-Greene bijection. To prepare for the planarized proof we introduceswitch diagrams and their skeleton. The section concludes with the statement of theplanarized bijection. The proof of the theorem is given in the next section.the electronic journal of combinatorics 8 (2001), #R10 2



2.1 Reduced Words and ArrangementsThe weak Bruhat order of Sn, denoted WBn is the ordering of all permutations � of [n]by inclusion of their inversion sets Inv(�) = f(�i; �j) : i < j and �i > �jg, i.e,� �WB � () Inv(�) � Inv(�):The cover relation in WBn consists of the pairs (�; �) where � is obtained from � byexchanging two adjacent elements which are in increasing order, i.e., � �WB � and jInv(�)nInv(�)j = 1. The unique minimal element of the weak Bruhat order is the identitypermutation id = 1; 2; : : : ; n and the unique maximal element is the reverse of the identity,w0 = n; n � 1; : : : ; 1. The weak Bruhat order is a graded lattice with rank functionr(�) = jInv(�)j. A maximal chain in WBn is a sequence of �n2�+1 permutations beginningwith id and ending with w0. Figure 1 shows the Hasse diagram of WB4, this graph is alsoknown as the 1-dimensional skeleton of the permutahedron. Maximal chains in WBn areknown to have several interesting interpretations, below we describe two of these, anotherinterpretation as reection network is described by Knuth [11].
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Figure 1: The diagram of the weak Bruhat order WB4 of S4.Color the edges of the cover graph of WBn with the elements of N = f1; : : : ; n � 1gsuch that edge (�; �) is colored i exactly if the two permutations � and � di�er by atransposition exchanging positions i and i + 1. Note that every permutation is incidentto exactly one edge of every color. If we �x id as the start permutation we can associatethe electronic journal of combinatorics 8 (2001), #R10 3



to every word ! over the alphabet N a unique walk in the cover graph of WBn. With aword ! associate the permutation �! which is the end vertex of the walk corresponding to!. E.g. the word 2; 3; 3; 1; 2 corresponds to the walk 1234, 1324, 1342, 1324, 3124, 3214 inWB4, i.e., �2;3;3;1;2 = 3214 (in Figure 1 the coloring is indicated by di�erent gray scales).Maximal chains from id to � in WBn are in bijection with the minimum length words !such that � = �!. Such a minimum length word is known as a reduced decomposition ora reduced word of �. The permutation 3214 has two reduced words 2; 1; 2 and 1; 2; 1.A pseudoline is a curve in the Euclidean plane whose removal leaves two unboundedregions. An arrangement of pseudolines is a family of pseudolines with the property thateach pair of pseudolines has a unique point of intersection where the two pseudolinescross. In a partial arrangement we do not require that every pair of pseudolines has acrossing, i.e., we allow parallel lines. In the case of pseudolines the relation `parallel' neednot be transitive. An arrangement is simple if no three pseudolines have a common pointof intersection. An arrangement partitions the plane into cells of dimensions 0, 1 or 2, thevertices, edges and faces of the arrangement. Let F be an unbounded face of arrangementA, call F the northface and let F o be F together with an orientation of the boundarypath of F . The pair (A; F o) is a marked arrangement. Two marked arrangements areisomorphic if there is an isomorphism of the induced cell decompositions of the planerespecting the oriented marking faces. We denote as arrangement an isomorphism classof simple marked arrangements of pseudolines. Similarly a partial arrangement is anisomorphism class of simple marked partial arrangements of pseudolines.Goodman and Pollack [8] described a one-to-many correspondence from arrangementsto reduced decompositions of w0 (in this context the name simple allowable sequenceis used for these objects). We sketch the connections which carry through to partialarrangements and general reduced decompositions.Let (A; F ) be a marked partial arrangement of n lines, specify points x 2 F and x inthe complementary face F of F . A sweep of A is a sequence c0; c1; : : : cr, of curves fromx to x which avoid vertices of the arrangement and such that between two consecutivecurves ci and ci+1 there is exactly one vertex of the arrangement and every vertex of A isbetween two curves. An example of a sweep is shown in Figure 2.Label the lines of A such that curve c0 oriented from x to x crosses them in the order1; 2; : : : ; n. Traversing curve ci from x to x we meet the lines of A in some order. Sinceeach line is met by ci exactly once, the order of the crossings corresponds to a permutation�i of [n]. If in the arrangement each pair of lines crosses exactly once, then r = �n2� and�r = w0. The sequence �0; : : : ; �r of permutations is a simple allowable sequence or in ourterminology a reduced word of w0. In the example of Figure 2 we obtain the reduced word1; 2; 3; 1; 2; 1. In general an arrangement (A; F ) has various sweeps leading to di�erentreduced words. In our example 1; 2; 1; 3; 2; 1 is another sweep.Conversely a reduced word corresponds to a unique (up to isomorphism) simple markedpartial arrangement. A nice construction of an arrangement corresponding to a reducedword is the wiring diagram of Goodman [7]. Let ! be a reduced word. Start drawingn horizontal lines called wires and vertical lines p0; : : : ; pr. Between pi and pi+1 drawa X shaped cross between wires !i and !i + 1 (wires are counted from bottom to top).the electronic journal of combinatorics 8 (2001), #R10 4
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Figure 2: A sweep for arrangement APseudoline li starts on wire i moves to the right and whenever it meets a cross it changesto the other wire incident to the cross. The construction is illustrated in Figure 3.

p62134 p5p4p3p2p1p0Figure 3: A wiring diagram for the word 1; 2; 3; 1; 2; 1Let ! = !1; !2; : : : ; !r be a reduced word. If j!i � !i+1j � 2, in other words, if thecrossings corresponding to !i and !i+1 in the wiring diagram of ! do not share a line, thenthe word !0 obtained from ! by exchange of !i and !i+1 is a reduced word correspondingto the same arrangement. Words ! and !0 over N are called elementary equivalent if !0is obtained from ! by a sequence of transpositions of adjacent letters !i and !i+1 withj!i�!i+1j � 2. This results in the following proposition which is a restatement of classicalresults of Tits and Ringel, see [1, pp 262-269] for exact references.Proposition 1. Two reduced words are elementary equivalent i� they correspond to thesame isomorphism class of simple marked partial arrangements.We now come back to the mapping from words ! over N to permutations �! in Sn. Itis natural to ask for conditions on ! and !0 such that they represent the same permutation�! = �!0 . The full answer to this question is provided by the Coxeter relations. ! and!0 represent the same permutation if ! can be transformed into !0 by a sequence ofthe electronic journal of combinatorics 8 (2001), #R10 5



transformations (moves) of the formi; i ! ; (COX 0)i; j  ! j; i ji� jj � 2 (COX 1)i; i+ 1; i ! i+ 1; i; i+ 1 (COX 2)We call two words equivalent i� they are related by a sequence of moves of type COX 1and COX 2. Equivalence between ! and !0 is denoted by ! � !0. With this de�nitionthe equivalence class of a reduced word ! is the set of all reduced words representing thesame permutation �!.2.2 Young Tableaux, Point Sets and SkeletonsLet � be a partition of n = j�j with parts �1 � �2 � : : : � �m. With � we associate aFerrer's diagram with �i cells in the ith row, see Fig. 4. We refer to the cells of a diagram
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Figure 4: Two standard Young tableaux P and Q of shape � = (5; 3; 2; 1) .in matrix notation, rows are numbered from top to bottom, columns from left to rightand cell (i; j) is the cell in row i and column j. A tableau T of shape � is an assignment ofnumbers to the cells of the diagram of �. The shape of a tableau T is denoted �(T). Thecontent cont(T) of tableau T is the set of entries of cells of T. A tableau T is a Youngtableau if the entries strictly increase in rows and columns. A Young tableau of shape �and content f1; : : : ; j�jg is a standard Young tableau, see Fig. 4.The bijection of the following Proposition is known as the Robinson-Schensted cor-respondence. This correspondence is the starting point of much combinatorial work onYoung tableaux. We refer to [6, 16, 18] for more comprehensive treatments of this topic.Proposition 2. There is a bijection between the permutations of f1; : : : ; ng and pairs(P;Q) of standard Young tableaux of the same shape and j�(P)j = n.A set X of points in R2 is said to be in `general position' if no two points have thesame x- or y-coordinate. There is a natural mapping from permutations f1; : : : ; ng topoint sets, with � associate X� = f(i; �i) : i = 1; : : : ; ng. Via this mapping the followingProposition specializes to the Robinson-Schensted correspondence.Theorem 1. There is a bijection between n element point sets X in R2 which are ingeneral position and pairs (P;Q) of Young tableaux of the same shape, with j�(P)j = n,cont(P(X)) = fy : (x; y) 2 Xg and cont(Q(X)) = fx : (x; y) 2 Xg.the electronic journal of combinatorics 8 (2001), #R10 6



It is possible to remove the `general position assumption' and even extend Theorem 1to the case of a multiset X, in that case the tableaux corresponding to X have multipleentries and only remain weakly increasing. Basically, this is the extension of the Robinson-Schensted correspondence to two line arrays due to Knuth [10]. The proof given belowfollows the ideas developed by Viennot in [17, 18]. Algorithmic consequences of theplanarization have been obtained in [4], a comprehensive exposition of Viennot's approachis given by Wernisch [19].De�ne the shadow of a point p = (x; y) as the set of all points (u; v) dominating p, i.e.,points with u > x and v > y. For a set E � X of points, the shadow of E is the union ofthe shadows of the points of E, i.e., the set of all points dominating at least one point ofE (see the shaded region in Fig. 5).The jump line, L(E), of a point set E is the topological boundary of the shadow ofE. The unbounded half lines of jump lines are the outgoing lines, they are speci�ed asright and top. The jump line L(E) of a set E of points is a downward staircase with somepoints of E in its lower corners.The dominance relation induces a partial ordering on E, in the terminology of partialorders the points of A = E\L(E) are the antichain of minimal elements of E. The pointsin the upper-right corners of the jump-line are the skeleton points or skeleton S(A) of theantichain A. Formally, if (x1; y1); : : : ; (xk; yk) are the points of A ordered by increasingx-coordinate then S(A) contains the points (x2; y1); : : : ; (xk; yk�1). Hence, A has exactlyjAj � 1 skeleton points (see Fig. 5).The minimal elements of a point set X form an antichain A such that the rest X n Alies completely in the shadow of A. Hence, by removing A and treating X n A in thesame way, we recursively obtain the canonical antichain partition A = A0; : : : ; A��1 withnon-intersecting jump lines L(Ai), 0 � i < �, which will be called the layers Li(X) ofX. The skeleton of X, denoted by S(X), is de�ned as the union of the skeletons S(Ai),0 � i < �. Since, as noted above, layer Li(X) has jAij�1 skeleton points the size of S(X)is jXj � �. A picture of a point set X, its skeleton S(X), its antichain layer partition,and the shadow of antichain A2 is shown in Fig. 5.One of the properties that seem to lie behind the usefulness of skeletons is the fact thatit is possible to reconstruct X from S(X) with a small amount of additional information.Let xmax be the maximal x-coordinate of points in X, and let ymax be de�ned analogously.Then the right marginal pointsMR(X) ofX are the points (xmax+1; y1); : : : ; (xmax+�; y�),where � is the number of layers of X and y1; : : : ; y� are the y-coordinates of the rightoutgoing lines of the layers ordered increasingly (see Fig. 6). Assuming x1; : : : ; x� tobe the x-coordinates of the top outgoing lines of the layers in increasing order the topmarginal points MT (X) of X are (x1; ymax + 1), : : : ; (x�; ymax + �) (see Fig. 6). WithM(X) we denote the marginal points of X, i.e., M(X) = MR(X) [MT (X).For a point set X let �X be the set containing (�x;�y) i� X contains (x; y). De�nethe left-down skeleton S.(X) as �S(�X). The same result is obtained by de�ning theleft-down shadow of a point p as the set of points dominated by p and de�ning the left-down versions of jump-lines, layers and the skeleton in analogy to the de�nition based onthe shadow of a point.the electronic journal of combinatorics 8 (2001), #R10 7



points of Xpoints of S(X)

Figure 5: Point set X, its skeleton, and the shadow of layer L2(X).Lemma 1. A point set X is the left-down skeleton of the skeleton S(X) enhanced by themarginal points of X, i.e., X = S.(S(X) [M(X)).Let Sk(X) = S(Sk�1(X)) denote the k fold application of S to a point set X. SincejS(X)j < jXj there is a m such that Sm(X) = ;, let �(X) be the minimum such m. Alsolet �i(X), 0 � i < �(X), denote the number of layers of Si(X).Lemma 2. Let X be a planar point set and �i = �i(X) then �0 � �1 � � � � � ���1 > 0,and jSk(X)j =Pk�i<� �i. In particular � = (�0; �1; : : : ; ��(X)�1) is a partition of n.Proof. We show that (�i) is a decreasing sequence: By Lemma 1, the number of antichainsin a minimal antichain partition of S(X)[M(X) is the same as �0, the size of the canonicalantichain partition of X. Hence, �1(X), the size of a minimal antichain partition of S(X)is at most �0. The same argument shows the other inequalities. The claim on the size ofSk(X) follows by induction from jS(X)j = jXj � �0(X) and its immediate consequencejSk+1(X)j = jSk(X)j � �k(X).We are ready now to describe the bijection of Theorem 1. With a planar set X of npoints we associate two tableaux P(X) and Q(X) (the P- and Q-symbol of X) in thefollowing way. The k-th row of P(X), k � 0, are the y-coordinates of the right outgoinglines of Sk(X) in increasing order. The k-th row of Q(X), k � 0, are the x-coordinates ofthe top outgoing lines of Sk(X) in increasing order. As an example compare the outgoinglines of the �rst two layers of Fig. 7 with the �rst two rows of the Young tableaux inFig. 4. According to Lemma 2, P(X) and Q(X) have �i(X) cells in their i-th row andjXj cells altogether. Hence, the shape of P(X) and Q(X) is the diagram of a partition,moreover, the shapes of P(X) and Q(X) are equal and cont(P(X)) = fy : (x; y) 2 Xgand cont(Q(X)) = fx : (x; y) 2 Xg.It remains to show that the entries in the cells of the symbols increase along rows andcolumns. For the rows this is true by construction. For the increase in the columns of Pthe electronic journal of combinatorics 8 (2001), #R10 8



points of Xpoints of S(X)marginal points M
Figure 6: X is the left-down skeleton of S(X) [M(X).we claim that the right outgoing line of layer Lj(X) lies below that of the correspondinglayer Lj(S(X)) in the skeleton, i.e., that P(0; j) � P(1; j). Consider a skeleton point s ofheight j in the dominance order of S(X). Since a layer of X can only contain one pointfrom a chain in S(X) we conclude that s belongs to some layer Li(X) with i � j. Hence,Lj(S(X)) lies in the shadow of Lj(X) and its right outgoing line must lie above that ofLj(X). Induction implies that P(X) is a Young tableaux.The same property for the Q-symbol follows from an important symmetry in the twosymbols of a point set. Let the inverse X�1 of X be the point set obtained from X by thetransposition (x; y)! (y; x), i.e., by reection on the diagonal line x = y. The followingproposition (Sch�utzenberger) is immediate from the construction.Proposition 3. The two symbols of the inverse X�1 of a point set X are P(X�1) =Q(X) and Q(X�1) = P(X).We conclude this subsection with the proof that X $ (P;Q) is a bijection. ByLemma 1 X is determined by S(X) and the sets of right and top marginal points, MR(X)and MT (X). The right marginal points are obtained from the �rst row of P(X) and thetop marginal points from the �rst row of Q(X). If we delete the �st row from P(X) andQ(X) we are left with the P and Q symbols of S(X). With induction this shows thatX can be reconstructed from (P(X);Q(X)). The same construction allows to associatea point set with any pair (P;Q) of Young tableaux of the same shape.For more complete exposition of this planarized correspondence and its consequencesthe reader is referred to Viennot [18] and Wernisch [19].
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Figure 7: The �rst two skeletons S(X) and S2(X) of X.2.3 The Correspondence of Edelman and GreeneThe statement of the correspondence of Edelman and Greene, Proposition 4 is surprisinglysimilar to the Robinson-Schensted correspondence, Theorem 1.To state the proposition we need to de�ne the reading(T), of a Young tableau T asthe word obtained by concatenating the rows of T from bottom to top. For example thereading of the tableau P of Fig. 4 is the concatenation of (11)(6; 10)(2; 5; 9)(1; 3; 4; 7; 8),i.e., reading(P) = 11; 6; 10; 2; 5; 9; 1; 3; 4; 7; 8.Proposition 4 (Edelman and Greene). There is a bijection between reduced words !of permutations in Sn and pairs (P;Q) of Young tableaux of the same shape such thatQ is standard, j�(Q)j = length(!), cont(P) � f1; : : : ; n � 1g and the reading of P is areduced word equivalent to !.To prepare for our planarized proof of the theorem we extend the notions of words andreduced words. Let i1 < i2 : : : < im be positive integers, a sequence ! = !i1; !i2; : : : ; !imwith letters !ij in the alphabet N = f1; : : : ; n�1g will be called a quasi-word. Sometimesit is appropriate to code a quasi-word in two lines, where the top line carries the indicesand the bottom line the letters, e.g., �1;2; 3;3; 6;2; 7;1; 83�. The word obtained from the quasi-word! by reindexing ij ! j is called the normalized word corresponding to !. If the normalizedword of ! is a reduced word we call ! a reduced quasi-word.With a quasi-word ! we associate a switch diagram as shown in Fig. 8. Begin withn horizontal lines at unit distance, with wire i we denote the i-th of these lines countedfrom bottom to top. With the letter !ij of ! we associate a switch [ij; !ij ] at x-coordinateij connecting wires !ij and !ij + 1. Note the similarity of this construction to the wiringdiagram of Subsection 2.1. Occasionally we use the notation !X and X! to go from athe electronic journal of combinatorics 8 (2001), #R10 10



quasi-word ! to the associated set X of switches and back. In order to have this naturalbijection !X $ X! we make the following general position assumption: A set of switchesnever contains two switches above each other, i.e., with the same �rst coordinate. Aswitch diagram X is normalized i� !X is a normalized word, i.e., if the indices of switchesare 1; 2; : : : ; jXj.
1234
56

1 2 1514131211109876543Figure 8: A switch-diagram for the quasi-word ! = �2;4; 3;3; 5;4; 7;1; 8;2; 9;3; 10;5; 11;4; 13;1; 14;5; 152 �In analogy to the terminology introduced for point sets we de�ne shadows, jump-lines,layers and skeletons for switch diagrams.The base point of a switch s = [i; w] the lower end point (i; w) of s and the shadowof s is the region of all points (u; v) which dominate the base point of s, i.e., the set ofall point which are right and up of the base point. The shadow of a set of switches is theunion of the shadows of switches in the set.The jump line, L(E), of a set E of switches is the topological boundary of the shadowof E. The unbounded half lines of jump lines are the outgoing lines, they are speci�ed asright and top.The jump line L(E) of a set E � X of switches is a downward staircase. Someswitches of E de�ne corners of L(E), they are said to be taken by the jump line, someother switches only have their base point on L(E), they are said to be touched by the jumpline. Let T (E) be the set of switches in E which are taken or touched by the jump line ofE. Note that T (E) corresponds to an decreasing subword of the quasi-word !E. In theexample of Fig. 8 and 9 the decreasing quasi-word corresponding to T (E!) is �2;4; 3;3; 7;1; 131 �.On switches we de�ne an order relation, for s = [i; w] and s0 = [i0; w0] we say s0 dominatess if i < i0 and w < w0. This allows us to speak of chains and antichains of switches. Notethat T (E) is just the antichain of minimal switches in the dominance order induced byE. Let A be an antichain of switches, i.e., A = T (A). The jump line L(A) has a cornerabove each but the �rst of the switches taken by the jump-line, let C(A) be the set ofthese corners and let D(A) be the set of upper ends of the switches touched by L(A).The set of skeleton switches of the jump line L(A) is the set of switches with base pointin C(A) [ D(A) (see Fig. 9). The set of skeleton switches of A is denoted as S(A). Weemphasize two important properties of the skeleton of an antichain:� If A is antichain of switches then jS(A)j = jAj � 1.the electronic journal of combinatorics 8 (2001), #R10 11



� The skeleton switches S(A) of an antichain A are again an antichain.
Skeleton switchesSwitches of EFigure 9: A set E of switches, its jump line and the skeleton switches of T (E)For a set X of switches every switch s 2 X nT (X) lies completely in the shadow of T (X).Hence, by removing A0 = T (X) and treating X n T (X) in the same way, we recursivelyobtain a partition A0; A1; : : : ; A��1 of X into antichains. As in the case of points this isthe partition by height of the dominance order, we call it the canonical partition of X.The canonical partition is a minimal partition into antichains.The jump lines L(Ai), 0 � i < �, are pairwise non-intersecting, they will be calledthe layers Li(X) of X. The skeleton of X, denoted by S(X), is de�ned as the union ofthe skeletons S(Ai), 0 � i < �. Since, as noted above, layer Li(X) has jAij � 1 skeletonpoints the size of S(X) is jXj � �. An example for a set of switches, its layers and theskeleton is given in Fig. 10.

Figure 10: Layers and skeleton of the set X of Fig. 9.Let Sk(X) = S(Sk�1(X)) denote the k fold application of S to a set X of switches.Since jS(X)j < jXj there is an m such that Sm(X) = ;, let �(X) be the minimum suchm. Also let �i(X), 0 � i < �(X), denote the number of layers of Si(P ).Lemma 3. Let X be set of switches and �i = �i(X) then �0 � �1 � � � � � ��(X)�1 > 0,and jSk(X)j =Pk�i<�(X) �i. In particular � = (�0; �1; : : : ; ��(X)�1) is a partition of jXj.Proof. We show that (�i) is a decreasing sequence: Let A0; : : : ; A�0�1 be the layers ofX. Recall that S(Aj) is an antichain and Sj S(Aj) = S(X), hence, S(A0); : : : ; S(A�0�1)is a partition into antichains. Since �1 is the size of a minimal partition of S(X) intoantichains we have �0 � �1. The same argument shows the other inequalities. The claimon the size of Sk(X) follows by induction from jS(X)j = jXj � �0(X) and its immediateconsequence jSk+1(X)j = jSk(X)j � �k(X).the electronic journal of combinatorics 8 (2001), #R10 12
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Figure 11: The two tableaux P and Q associated with the quasi-word ! from Fig. 8 .Now we are ready to describe a mapping from a switch diagram X with n switchesto a pair (P(X);Q(X)) of tableaux. The k-th row of P(X), k � 0, are the numbersof the wires of the right outgoing lines of Sk(X) in increasing order. The k-th row ofQ(X), k � 0, are the indices of the top outgoing lines of Sk(X) in increasing order. Asan example compare the outgoing lines of the �rst layer of Fig. 9 with the �rst row of thetwo tableaux in Fig. 11. We note some properties of the two tableaux:� The shapes of P(X) and Q(X) are equal.� The shape of P(X) and Q(X) is the diagram of the partition (�0; �1; : : : ; ��(X)�1)of jXj, (Lemma 3).� The entries of P(X) and Q(X) are strictly increasing in every row.� cont(Q(X)) = fi : s = [i; w] 2 Xg and fw : s = [i; w] 2 Xg � cont(P(X)).Given these properties the proof that P(X) and Q(X) are Young tableaux can be com-pleted by showing that the entries of both tableaux are strictly increasing in columns.Lemma 4. The jump line Lj(S(X)) is contained in the shadow of Lj(X) and they canonly touch in corners.Proof. Let s be a skeleton switch of layer j, i.e., s 2 Lj(S(X)), then s is the highest switchof a chain s1 < s2 < : : : < sj = s in S(X). Consider the antichain partition A0; : : : ; A�0�1of X. Since S(Ai) is an antichain, for each i the switches of the chain are in the skeletonof di�erent Ai. Hence, s = sj 2 S(Ak) for some k � j. Switch s can touch Lj(X) onlyif k = j and if s is above a switch t 2 Aj which is taken by Lj(X), i.e., if the base pointof s is at a right-down corner of Lj(X). Considering the switches of Lj(S(X) from left toright it thus follows that Lj(S(X) and Lj(X) can only touch in corners.It follows that the top outgoing line of Lj(S(X)) is to the right of the top outgoingline of Lj(X) and the right outgoing line of Lj(S(X)) is above the right outgoing line ofLj(X). Hence, P(X) and Q(X) are strictly increasing in columns. This completes theproof of the next proposition.Proposition 5. To every quasi-word ! of length r the above mapping associates a pair(P;Q) of Young tableaux of the same shape, with j�(P)j = r and cont(Q(!)) = fi :i is an index in !g and fw : w is a letter in !g � cont(P(!)).If we restrict this mapping to reduced words, it is the bijection of Edelman and Greene(Prop. 4); this will be shown in the next section. In general di�erent quasi-words can bethe electronic journal of combinatorics 8 (2001), #R10 13



mapped to the same pair of tableaux. The simplest case for this phenomenon is shown inFig. 12; the words !1 = (1; 1) and !2 = (2; 1) are both mapped to (T;T) with T = 12 .
1212 1 2 1 2Figure 12: Two switch diagrams associated with the same pair of Young tableaux.De�nition 1. Let X be a set of switches. A bad switch of X is a switch s = [i; w]such that s 2 Aj implies that s is touched by Lj and the upper end (i; w + 1) is not onLj+1(X). Set X is good if it contains no bad switch. X is very good if Sk(X) is good for0 � k � �(X)� 1.In the left example of Fig. 12 switch [2; 1] is bad, however, the right set of switches isvery good. We are ready now to formulate our main results.Theorem 2. The mapping X ! (P(X);Q(X)) is an injective mapping from very goodsets of switches to pairs of Young tableaux of the same shape such that cont(Q) = fi :[i; w] 2 Xg and cont(P) = fw : [i; w] 2 Xg. In particular, if X is normalized then Q(X)is standard.The two tableaux of Fig. 13 show that the mappingX ! (P(X);Q(X)) is not a surjectionto pairs of Young tableaux with Q standard and cont(P) � N .
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P QFigure 13: Two tableaux P andQ with no associated setX of switches such that (P;Q) =(P(X);Q(X)).So far the only technique to decide whether (P;Q) is in the image of the mapping isto try to apply the inverse mapping and see if it fails. It would be interesting to �nd abetter characterization of those pairs (P;Q) which are in the image of the mapping. Inother words it would be interesting to understand the bijection hidden in the theorem.From the next theorem it follows that the bijection of Edelman and Greene (Prop. 4) iscontained in the more general bijection of Theorem 2.Theorem 3.(1) If ! is a reduced quasi-word then X! is a very good set of switches.(2) If X is a very good set of switches, then !X � reading(P(X)).the electronic journal of combinatorics 8 (2001), #R10 14



We indicate how Proposition 4 is obtained from this theorem: If ! is reduced then X!is very good, by (1), hence, ! � reading(P) by (2). Since they have the same lengthreading(P) is a reduced word i� ! is reduced.The example of Fig. 14 shows that part (2) of the theorem can not be improved to an `ifand only if' statement.
Figure 14: A very good set X of switches such that !X = 3; 1; 3 is not reduced.The generalization Proposition 4 provided by Theorem 2 and 3 to is similar to theextension of the Robinson-Schensted correspondence to two line arrays due to Knuth [10].3 Proofs of Theorems 2 and 3For the proof that the mapping is injective it is convenient to review the construction of theskeleton and the iterated skeletons of switch diagrams. The idea is that we can computeall iterated skeletons in one single sweep from left to right through the diagram. Considera diagram X and let s = [t; w] be the switch of largest index t in X and X 0 = X n fsg.Given the canonical partitionA00; A01; : : : ; A0�0�1 ofX 0 with layers L0j = L(A0j) the canonicalpartition of X is obtained by inserting s into the set A0j with j minimal such that theright outgoing line of L0j is on a wire � w. To be more precise, let S 0 = S(X 0) andh00 < h01 < : : : < h0�0�1 be the wires of the right outgoing lines of the layers of X 0. Skeletonand layers of X, i.e., after insertion of s = [t; w], are obtained according to one of thefollowing cases:(1) If h0�0�1 < w then A�0 = fsg, i.e., s generates a new layer which takes s. In thiscase S(X) = S(X 0) and the outgoing lines of X are at heights h00; h01; : : : ; h0�0�1; w.(2) If h0j > w and h0j+1 < w then Aj = A0j [ fsg, i.e., s is taken by layer j. In this casea new skeleton switch is created: S(X) = S(X 0) [ f[t; h0j]g. The outgoing lines ofX are at heights h00; : : : ; h0j�1; w; h0j+1; : : : ; h0�0�1.(3) If h0j = w and h0j+1 = w + 1 then Aj = A0j [ fsg, s is touched by layer j. In thiscase a new skeleton switch is created: S(X) = S(X 0) [ f[t; w + 1]g. The outgoinglines of X remain at the same heights as those of X 0.(4) If h0j = w and h0j+1 > w + 1 then switch s is a bad switch. A new skeleton switch[t; w+1] is created and the outgoing lines of X remain at the same heights as thoseof X 0.The new skeleton switch (if there is one) is handled recursively according to the samerules. Note that if X is very good, i.e., rule (4) is never applied, then the horizontalthe electronic journal of combinatorics 8 (2001), #R10 15



segments of jump lines of all iterated skeletons remain on wires containing the base pointof a switch. Since a wire which is occupied by a segment of a jump line is occupiedby segments of jump lines everywhere to the right we obtain: If X is very good thencont(P) = fw : [i; w] 2 Xg.We restate the above procedure on the level of the associated tableaux. Let (P0;Q0)be the tableaux associated with X 0. Let P0; P1; : : : ; P�0�1 be the rows of P0 and recall thatPi lists the wires of the right outgoing lines of Si(X 0) in increasing order. To avoid specialcases we consider P�0 as an empty row. From the above we obtain by an easy translationthat the tableau P associated with X = X 0[f[t; w]g is obtained by the following iterationwith initial values w0 = w and i = 0:(1) If wi is greater than every entry of Pi add wi at the end of this row and stop.(2) If the least value x in Pi with x � wi is greater than wi, then replace x by wi inthis row, let wi+1 = x and i = i + 1, continue with (1).(3) If the least value x in Pi with x � wi equals wi, then let wi+1 = wi+1 and i = i+1,continue with (1).This modi�ed-bumping yields the tableau P. The recording tableau Q is Q0 augmentedby the unique cell of �(P) n �(P0), the entry of this cell is t.Statement (2) from the Theorem (proof follows) tells us that the set of switches of areduced word is very good. Therefore, case (3) of the above bumping procedure is onlyapplied when Pi contains wi and wi + 1. This shows that the pair of Young tableauxassociated to a reduced word ! by our construction is the same as the pair associated to! by the generalized RSK correspondence of Edelman and Greene ([2], De�n.6.21).3.1 Proof of Theorem 2The proof is by induction on n. LetX be a very good set of switches andX = X 0[f[t; w]g,where t is the largest index of a switch of X. Let (P;Q) = (P(X);Q(X)). The entry tis in some extremal cell of Q. Say, it is the last cell of row Qk of Q. Let Q0 be obtainedfrom Q by deletion of this cell. Working with rows Pk; Pk�1 : : : ; P0 of P we construct asequence sj = [t; wj] of switches with wk > wk�1 > : : : > w0. Switch sj will be an elementof Sj(X)). We claim the following:(a) w0 = w, i.e., the last switch of X can be reconstructed from (P;Q).(b) Via the sequence sk; : : : ; s0 of switches the right outgoing lines of X 0 and theiterated skeletons of X 0 are uniquely determined. These outgoing lines determinethe Young tableaux P0 = P(X 0).We have assumed that t was the entry of the last cell of row Qk of length �k. From theconstruction of Q = Q(X) the top outgoing line at x-coordinate t comes from Sk(X)and leaves at wire wk where wk is recorded in the last cell of Pk. Since the jump lineL�k�1(Sk(X)) can only have one corner there is a switch sk = [t; wk] in Sk(X).the electronic journal of combinatorics 8 (2001), #R10 16



When switch si = [t; wi], k � i > 0, from Si(X) has been constructed we turn to theconstruction of si�1 from Si�1(X) below si. Switch si�1 is either touched or taken by itsjump line. These two cases can be distinguished by comparing wi to row Pi�1:If switch si�1 is touched, then, since X is very good, there are jump lines of Si�1(X)on wires wi and wi� 1 at t and to the right of t. This happens if Pi�1 contains entries wiand wi � 1.If switch si�1 is taken, then (t; wi) is a right down corner of a jump line of Si�1(X)which continues to the right at some wire wi�1 < wi. The value wi�1 is the largest entryx < wi of Pi�1.In both cases si�1 = [t; wi�1] with wi�1 being the the largest entry x < wi of Pi�1. Inthe �rst case the (i� 1)-st row P 0i�1 of P0 equals Pi�1. In the second case P 0i�1 is obtainedfrom Pi by replacing wi�1 by wi.3.2 Proof of Theorem 3The proof of (1) is in two parts.(a) If ! is a reduced quasi-word then X! is a good set of switches.(b) If ! is a reduced quasi-word and Y = S(X!) then !Y is again a reduced quasi-word.Let ! be a reduced quasi-word. We view the switch diagram X! as a wiring diagram,lines enter from the left and at every switch the lines on the wires connected by the switchcross, i.e., both lines change the wire. Since ! is reduced, any two lines cross at mostonce. Now assume that X! is not good. From this assumption it will follow that thereare two lines crossing twice, a contradiction.Let s = [t; w] be the leftmost bad switch of X!. Starting from s we de�ne twosequences aw; aw�1; : : : and bw; bw�1; : : : of switches. Fig. 15 illustrates the constructionwhich is explained next.
aw�1k ak bk yxw + 1 s = bwbw�1awww � 1

Figure 15: The sequences aw; aw�1; : : : and bw; bw�1; : : : and their region.Let bw = s be the bad switch and Lj be the jump line of X touching s. De�ne aw asthe switch taken by Lj when it comes down to wire w. From the choice of s as the �rstbad switch and the de�ning property of badness we conclude:the electronic journal of combinatorics 8 (2001), #R10 17



� Between aw and bw wire w + 1 is not incident to a switch.Let bw�1 be the rightmost switch connecting to wire w from below but left of bw. If bw�1is left of aw then stop the construction. Otherwise, if bw�1 is between aw and bw then bw�1is touched by jump line Lj�1. Let aw�1 be the switch taken by Lj when it comes downto wire w. Again from the choice of s and since every switch belongs to a jump line itfollows that:� Between aw�1 and aw wire w is not incident to a switch.Iterate this construction until it stops at some wire k � 1. Now consider the two lines xand y crossing at switch s. Let y be on wire w to the right of of s. Since no switch isconnected to wire i between ai�1 and ai, k < i � w, and to wire w + 1 between aw andbw = s. It is easy to trace y backwards and see that y is changing wires at the switchesak; : : : ; aw; s. Now consider line x. No switch is connected to wire i between bi�1 and bi,k < i � w, and between ak and bk from below. Therefore, it is impossible for line x toenter the region between the ai's and the bi's (the gray region of Figure 15) from below.Again using that no switch is connected to wire i between ai�1 and ai, k < i � w, itfollows, that line x has to use one of the switches ak; : : : ; aw. This shows that lines x andy cross twice in contradiction to the assumption that ! is reduced.The second part of the proof of (1) is based on the next lemma which will also becentral to the proof of part (2) of the theorem.Lemma 5. If ! is a good word, P0 is the �rst row of the P-symbol of ! and Y = S(X!)then the concatenation !Y � P0 is equivalent to !.Proof. First note that the right outgoing lines of X and S(X) �P0 are on the same wires.The right outgoing lines of X are on the wires speci�ed by P0. By Lemma 4 the j-th jumpline of S(X) is above the j-th switch of P0, hence, it can carry on to contain that switch.Since the switches of P0 form a chain they are on di�erent jump lines and P0 encodes thewires of the outgoing lines of S(X) � P0.The lemma is proved by induction on the length n of !. Let X = X! and s = [n; w] bethe last switch of X. Let X 0 = X nfsg and assume the result for X 0, i.e., X 0 � S(X 0)�P 00and the right outgoing lines are on the wires speci�ed by P 00. We distinguish several cases:Case 1. If s creates a new highest layer and no skeleton switch. Then S(X) = S(X 0)and P0 = P 00; w.Case 2. If s is touched by its jump line. Let P 00 = x1; : : : ; xi; xi+1; : : : ; xk with w = xiand since X is good xi+1 = w+1. In this case P0 = P 00 and the skeleton switch generatedby s is s1 = [n; w + 1]. We show that P 00; w � (w + 1); P0.x1; : : : ; xi; xi+1; : : : ; xk; w � (a sequence of COX 1 moves)x1; : : : ; xi; xi+1; w; : : : ; xk � (a single COX 2 move)x1; : : : ; (w + 1); xi; xi+1; : : : ; xk � (a sequence of COX 1 moves)(w + 1); x1; : : : ; xi; xi+1; : : : ; xk:the electronic journal of combinatorics 8 (2001), #R10 18



Case 3. If s is taken by its jump line. Again let P 00 = x1; : : : ; xk and let xi be the �rstindex such that w < xi, note that xi�1 < xi � 1. Since P0 = x1; : : : ; xi�1; w; xi+1; : : : ; xkand the skeleton switch generated by s is s1 = [n; xi] we have to show that P 00; w � xi; P0.x1; : : : ; xi; : : : ; xk; w � (a sequence of COX 1 moves)x1; : : : ; xi; w; xi+1; : : : ; xk � (a sequence of COX 1 moves)xi; x1; : : : ; xi�1; w; xi+1; : : : ; xk:We complete the proof of (1) by showing that if ! is a reduced quasi-word and Y = S(X!)then !Y is again a reduced quasi-word. Since !Y � P0 is a reduced word for the samepermutation as ! and both words have the same length !Y � P0 is reduced. Since everyinitial segment of a reduced word is reduced we conclude that !Y is reduced.Iterated application of Lemma 5 shows that a very good word ! with P-symbol P isequivalent to P��1 � : : : P1 � P0 = reading(P). This is statement (2) of the theorem.4 Concluding RemarksLet ! be a reduced decomposition of w0. The P-symbol of X! is a Young tableaux with�n2� entries from N = f1; : : : ; n� 1g. It is easy to see that there is only one such tableau.The shape of this tableau is the staircase shape � = fn� 1; n� 2; : : : ; 1g. Therefore ! isuniquely determined by its Q-symbol. This proves the formula of Stanley shown in theintroduction.Edelman and Greene have also given nice descriptions of the two tableaux associated tothe reverse wk; wk�1; : : : ; w1 and the reection n�w1; n�w2; : : : ; n�wk of a reduced word! = w1; w2; : : : ; wk. These descriptions involving Sch�utzenberger's slide and evacuationoperation and transposes largely resemble the corresponding statements for permutations.We need some preparatory de�nitions to state these results.The transpose TT of tableau T is obtained by reecting T on the diagonal x = �y,just as matrices are transposed. The slide s(T) of a Young tableau T is obtained bydeleting the corner cell c = (0; 0) and then �lling the gap. To �ll a gap in cell c = (i; j)look at cells (i + 1; j) and (i; j + 1), i.e., at the cell below and that to the right of c. Ifboth contain elements move the smaller one to c. If only one contains an element, takethat. The new gap is treated similarly until there is no element below and to the rightof the cell with the gap, i.e., until the gap has moved into an upper corner cell. If allentries of T are di�erent this process is well de�ned and actually yields a Young tableau.The evacuation tableau evac(T) of a standard Young tableau T is the recording tableaufor the sequence of shapes obtained by iterating the slide operation, i.e., the recordingtableau for the sequence ;; sn�1(T); sn�2(T); : : : ; s2(T); s(T);Tthe electronic journal of combinatorics 8 (2001), #R10 19



Proposition 6. Let � be a permutation and � its reverse then(P(�);Q(�)) = (P(�)T ; evac(Q(�))T )Proposition 7. Let ! be a reduced word with reverse ! and reection b! then(P(!);Q(!)) = (P(!)T ; evac(Q(!))T ) and Q(b!) = Q(!)T :A planarized proof for Proposition 6 was given by Wernisch [19]. The main tool forhis proof is a lemma showing that the skeleton operator S- with respect to north-westshadows and the standard skeleton operator S, which is de�ned with respect to north-east shadows, commute. He shows that S-(S(X)) = S(S-(X)) for every point setX. Furthermore the right outgoing line Li(X) coincides with that of Li�1(S-(X)), for1 � i < �0(X).A proof of Proposition 7 can be given along the lines of Wernisch's argument. For aswitch diagramX let S-(X) and S& be de�ned with respect to north-west and south-eastshadows. Alternatively these skeletons could be de�ned by the relationsS-(X) = S(X) and S&(X) = [S( bX):If switch diagram X corresponds to a reduced word then S-(S(X)) = S(S-(X)) andS&(S(X)) = S(S&(X)). Furthermore the right outgoing line Li(X) coincides with thatof Li�1(S-(X)) and the top outgoing line Li(X) coincides with that of Li�1(S&(X)),for 1 � i < �0(X). Unfortunately, the proof of these statements requires a lengthy caseanalysis.References[1] A. Bj�orner, M. Las Vergnas, B. Sturmfels, N. White and G. M. Ziegler,Oriented Matroids, Encyc. of Math., Vol. 46, Cambridge Univ. Press 1993.[2] P. Edelman and C. Greene, Balanced tableaux, Adv. in Math., 63 (1987), pp. 42{99.[3] S. Felsner, The Skeleton of a Reduced Word and a Correspondence of Edelman andGreene, in Formal Power Series and Algebraic Combinatorics, D. Krob et. al ed., Springer2000, pp. 179{190.[4] S. Felsner and L. Wernisch, Maximum k-chains in planar point sets: Combinatorialstructure and algorithms, SIAM J. on Computing, 28 (1999), pp. 192{209.[5] S. Fomin and A. N. Kirillov, Reduced words and plane partitions, J. Algebr. Comb., 6(1997), pp. 311{319.[6] W. Fulton, Young Tableaux, LMS Student Texts 35, Cambridge Univ. Press, 1997.[7] J. E. Goodman, Proof of a conjecture of Burr, Gr�unbaum and Sloane, Discrete Math., 32(1980), pp. 27{35.[8] J. E. Goodman and R. Pollack, Semispaces of con�gurations, cell complexes of ar-rangements, J. Combin. Theory Ser. A, 37 (1984), pp. 257{293.the electronic journal of combinatorics 8 (2001), #R10 20
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