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Abstract. The number of triangles in arrangements of lines and pseudolines has been
object of some research. Most results, however, concern arrangements in the projective
plane. In this article we add results for the number of triangles in Euclidean arrange-
ments of pseudolines. Though the change in the embedding space from projective to
Euclidean may seem small there are interesting changes both in the results and in the
techniques required for the proofs.

In 1926 Levi proved that a nontrivial arrangement -simple or not- of n pseudolines
in the projective plane contains at least n triangles. To show the corresponding result
for the Euclidean plane, namely, that a simple arrangement of n pseudolines contains
at least n — 2 triangles, we had to find a completely different proof. On the other hand
a non-simple arrangements of n pseudolines in the Euclidean plane can have as few as
2n/3 triangles and this bound is best possible. We also discuss the maximal possible
number of triangles and some extensions.
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1 Introduction, Definitions and Overview

The number p3 of triangles in arrangements of (pseudo)lines has been object of
previous research. In this article we add new results concerning the number of
triangles in Euclidean arrangements of pseudolines.

Griinbaum [Grii72] defines an arrangement A of lines as a finite collection
{Lo,Ly,...,Ly,} of lines, i.e., 1-dimensional subspaces in the real projective
plane IP. Specifying a line Lg in A as the “line at infinity” induces the arrange-
ment Ay, of lines {Li,..., Ly} in the Euclidean plane IE = P \ L.

With an arrangement we associate the cell complex of vertices, edges and
cells into which the lines of the arrangement decompose the underlying space
P or IE. Arrangements are isomorphic provided their cell complexes are iso-
morphic.

An arrangement B of pseudolines in IP is a collection {Py, Pi,...,P,} of
simple closed curves (we call them pseudolines) in IP such that every two curves
have exactly one point in common. Specifying a pseudoline Py in B as the line
at infinity induces the arrangement Bp, of pseudolines {P,...,P,} in P\ Py.
Since IP \ Py is homeomorphic to the Euclidean plane and we are interested in
properties of the induced cell complex we may regard Bp, as an arrangement
in IE.
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Already in early work of Levi [Lev26] and Ringel [Rin56] it has been noted
that arrangements of pseudolines are a proper generalization of arrangements
of lines. This is due to the existence of incidence laws in plane geometry, e.g.,
the Theorem of Pappus. Arrangements of pseudolines have received attention
since they provide a generic model for oriented matroids of rank 3. In this
context questions of strechability have attained considerable interest. For more
about these connections we refer the reader to the ‘bible of oriented matroids’
[BLS93].

An arrangement is called trivial if all the (pseudo)lines intersect in a single
point. If no point belongs to more then two of the (pseudo)lines we call the
arrangement simple.

FEuclidean arrangements of pseudolines will be the main object of investi-
gations in this paper. Work with these objects is simplified by the fact that
every arrangement of pseudolines, i.e., of doubly unbounded curves, is isomor-
phic to an arrangement of z-monotone pseudolines, i.e., of curves that intersect
every vertical line in exactly one point. Particularly nice pictures of Euclidean
arrangements of pseudolines are given by their wiring diagrams introduced in
Goodman [Goo80], see Figure 1. In this representation the n z-monotone curves
are restricted to n y-coordinates except for some local switches where adjacent
lines cross. Knuth [Knu92] points out a connection with ‘primitive sorting net-
works’.
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Figure 1. Wiring diagram of a simple arrangement of 5 pseudolines.
We now summarize bounds for the number p3 of triangles in arrangements.

Theorem 1 For every arrangement A of n pseudolines in IP:

(1)  Ewvery pseudoline is incident with at least three triangles. Since every
triangle is incident with three lines this implies p3(A) > n.

2) p3(A) < in(n—1) for n > 9. Equality holds for some arrangements of n
3
pseudolines for infinitely many values of n.

Part (1) is due to Levi [Lev26]. The lower bound for ps it best possible. To
see this take the n supporting lines of the edges of a regular n-gon for n > 4.
The arrangement thus obtained is a simple arrangement of lines with p3 = n.

Part (2) has a more entangled history. In [Grii72] the following easy ar-
gument for ps < %n(n — 1) in simple arrangements is given: Since A is sim-
ple only one of the cells bounded by an edge can be a triangle. There are
n(n — 1) edges and every triangle uses three of them. This proves the bound.
Grinbaum conjectured the same bound for nonsimple arrangements of lines
with sufficiently large n. Several lower bounds and special cases where proved



by Strommer [Str77], Purdy [Pur79, Pur80] and Entringer and Purdy [EP82].
Finally, Roudneff [Rou96] proved the conjecture for n > 9. By perturbing high
degree vertices so that suitable arrangements are formed in the neighborhood
he shows that ps is maximized by what he calls ‘reduced arrangements’. In
particular these arrangements have no vertices of degree more then four. The
crucial part of the proof is to show that if ¢; counts vertices of degree i then for
n > 9 every reduced arrangement has

3p3 S 2(t2 + 3t3 + 6t4).

Since Y, (g)tk = (3) this implies the bound.

Infinite families of simple arrangements with p3 = in(n — 1) have been
obtained by Roudneff [Rou86] and Harborth [Har85]. For stretchable arrange-
ments the best known constructions are due to Fiiredi and Palasti [FP84]. Their
examples have at least n(n — 3) triangles.

In this paper we discuss triangles in Euclidean arrangements. The cell
complex of an arrangement in IE consists of unbounded and bounded cells. In
our treatment we ignore unbounded cells. In the arrangement of Figure 1 we
thus count 3 triangles and 3 quadrangles. Our main results are summarized in
the following Theorem whose proof will be given in Sections 2 and 3.

Theorem 2 For every arrangement B of n pseudolines in IE:

(1) If B is simple then p3(B) > n — 2. Equality is possible for all n > 3.
(2) Ifn > 6 then p3(B) > 2n. Equality is possible for alln =0 (mod 3).
(3) p3(B) < in(n —2). Equality is possible for infinitely many values of n.

Part (1) again has a long history. In 1889 Roberts [Rob89] claimed that
every simple arrangement A of n lines in IE contains n — 2 triangles. The argu-
ment however was flawed. Ninety years later Shannon [Sha79] proved Roberts
theorem using dual configurations. Actually, he proved the analog of Roberts
theorem for arbitrary dimensions: Every arrangement of n hyperplanes in R¢
contains at least n — d simplicial d-cells. Shannon’s proof does not require
that the arrangement is simple. Therefore, Shannon’s theorem together with
Theorem 2(2) gives the following amazing result.

Corollary 3 If p3(B) < n — 2 for an arrangement B of n pseudolines then B
s non-strechable.

A similar effect in the projective setting was conjectured by Griinbaum and
proved by Roudneff [Rou88]. A nonsimple projective arrangement with p3 = n
is non-strechable. An example of such an arrangement is due to Canham,
see Griinbaum [Grii72, page 55]. In Section 3 we describe a family W, of
arrangements with few triangles. If W, is considered as an arrangement in the
projective plane it is a nonsimple arrangement with n lines and ps = n.

It is interesting to note that Levi’s theorem about the number of triangles
incident to a line in a projective arrangement and Theorem 2(1) about the
number of triangles in Euclidean arrangements both give easy double-counting
proofs for the bound p3 > n in the projective case. We elaborate the second:



Corollary 4 The number of triangles in a simple arrangement A of n pseudo-
lines in IP is at least n.

Proof. For each pseudoline P; consider the Euclidean arrangement A p, obtained
by taking P; as line at infinity. Each such arrangement has at least (n — 1) — 2
triangles. Altogether this gives at least n(n — 3) triangles. Any fixed triangle
A in A is bounded by three pseudolines and hence counted exactly n — 3 times.
This shows that there are at least n different triangles. O

The upper bound on the number of triangles in the Euclidean case claimed
in (3) of Theorem 2 can be proved along the lines of Roudneff’s upper bound
for the projective case. The proof is long and the changes necessary to adapt it
to the Euclidean case are obvious. Therefore, we will refrain from elaborating
on it and refer to Roudneff’s original paper [Rou96].

To show that the bound is best possible again the examples from the same
paper [Rou96] do the work. Roudneff shows that there is an infinite family of
simple projective arrangements with n+ 1 lines and (n + 1)n/3 triangles. Each
line of such an arrangement is incident to n triangles. Choose an arbitrary
line [ as line in infinity. The remaining Kuclidean arrangement of n lines has
(n+1)n/3 —n =n(n—2)/3 triangles.

2 Simple Euclidean arrangements

In this section we prove the lower bound for the number of triangles in simple
arrangements of pseudolines in TE. For arrangements of lines (even non-simple
ones) the same bound has been obtained by Shannon [Sha79] using dual config-
urations in n — 2 dimensional space. Our argument is confined to considerations
in two dimensions.

Proposition 2.1 p3(B) > n—2 for every simple arrangement B of n pseudolines
in IE.

Proof. We consider the finite part of B as a planar graph. Let V' be the number
of vertices, E be the number of edges and F' be the number of (finite!) faces.
These statistics can all be expressed as functions of the number of pseudolines.

n n—1
V=<2>, E=n(n-2), F=< 5 >

Note that in this setting Euler’s formula gives V — E + F = 1.

We assign labels @ or © to each side of every edge. Let f be one of the
two (possibly unbounded) faces bounded by e and let ¢’ and ¢” be the edge-
neighbors of e along f. Let [, I’ and I” be the supporting pseudolines of e, €’ and
e’ respectively. The label of e on the side of f is @ if f is contained in the finite
triangle T of the arrangement {l,1’,1"} otherwise the label is © . See Figure 2
for an illustration of the definition and Figure 3 for a complete labelling. With
the next lemmas we collect important properties of the edge labelling.

Lemma 5 FEvery edge e of a simple arrangement has a & and a © label.



Proof. Let fi; and fy be the two faces bounded by e and let €}, e and e}, €}
be the edge-neighbors of e in these two faces. Since the arrangement is simple
the supporting lines {I},1{} of both pairs of edges are the same. The finite
triangular region T of the arrangement {[,1’,]"”} has edge e on its boundary.

Therefore, exactly one of the two faces fi and fs is contained in T A

Figure 2. The label of e at f is @ since f is contained in the shaded triangle.

Figure 3. The arrangement of Figure 2 with the completed edge labelling.

As seen in the proof of the lemma the triangular region T used to define the
edge label of e on the side of f is independent of f. This allows to adopt the
notation 7T'(e) for this region.

Lemma 6 All three edge labels in a triangle are & . A quadrangle contains two
@ and two © labels. For k > 5 a k sided face contains at most two @ labels.

Proof. If f is a triangle then for each of its edges e the triangular region T'(e)
is f itself.

Let f be a quadrangle and e, € be a pair of opposite edges of f. Both
edges have the same neighboring edges, hence, two of the lines bounding the



triangles T'(e) and T'(€) are equal. It is easy to see that either T'(e) = f U T (e)
or T'(e) = fUT(e). In the first case e has label @ and € has label © in f, in the
second case the labels are exchanged. The second pair of opposite edges also
has one label @ and the other &.

Let f be a face with & > 5 sides; the lemma immediately follows from the
following
Claim. Any two edges with label @ in f are neighbors, i.e., share a common
verter.

Let e1,ea,...,e, be the edges of f numbered in counterclockwise direction
along f and let I; be the supporting line of e;. Let e; have label & and consider
an edge e; with 4 <14 < k — 2. We show that the label of ¢; is ©:

Face f is contained in T'(e;) and line /; has to leave T'(eq) \ f through Iy
and [y. Figure 4 is a generic sketch of the situation.

l;

Figure 4. Edge e; has label @ in f so ¢; must have ©.

Consider line [;_1. This line enters the region Ry bounded by [s, I; and the
chain of edges e3,ey4,...,€e;_1 at the vertex e; 1 Ne;. To leave region R; line
l;—1 has to cross ls. Therefore, [;_1 has to leave the region Ry bounded by [;, lo
and [ through l;. Symmetrically, /;11 has a crossing with [; to leave the region
bounded by [, I; and the chain of edges e;+1,€;19,...,¢e;. Therefore, to leave
region Ry line l;; has to cross lo. This shows that [;_; and [; 1 cross inside
region Ry. Hence, T'(e;) is contained in Ry and e; has label & in f.

It remains to show that if e; is labelled @ then neither ez nor e;_; are.
Considering the crossing of lines I4 and Il observe that T'(e3) is contained in
T(e1) \ f. Hence, the label of e3 in f in ©. A symmetric argument applies to
er_1. This completes the proof of the claim. A

We use the two lemmas to count the number of & labels in different ways:
E =Y #{a labels in f} < 2F + ps.

f
With E = n(n —2) and 2F = (n — 1)(n — 2) this implies

p3 >n— 2.



3 Nonsimple Euclidean arrangements

We now come to the lower bound for the number of triangles in the nonsimple
case.

Proposition 2.2 A Euclidean nonsimple and nontrivial arrangement of n >
6 pseudolines has at least 2n/3 triangles. Equality is possible for all n = 0
(mod 3).

Proof. We distinguish two cases. First suppose that every line [ of the arrange-
ment contains crossings of the arrangement in both open halfspaces it defines.
Consider [ as a state of a sweepline going across the arrangement. From the
theory of sweeps for arrangements of pseudolines (see e.g. [SH91]) we know that
the sweep can make progress both in the forward as well as in the backward
direction. A progress-move pulls line [ across a crossing ¢ of some lines of the
arrangement with the property that the parts of all lines contributing to ¢ be-
tween ¢ and [ are free of further crossings, i.e., are edges of the cell complex
induced by the arrangement. Hence, such a move pulls [ across some triangles
with corner ¢ and an edge on [. This shows that [ contributes to at least one
triangle on either side. Since we assumed that every line has crossings on both
sides this accounts for 2n triangles each counted at most three times and the
inequality is proved in this case.

Now assume that there is a line [ so that all crossings of the arrangement
not on [ are on one side of [. If, on taking away [, all lines cross in just one point
c then there are n — 2 triangles in the arrangement and since we assume n > 6
we are done. Else removing [ from the arrangement we still have a nontrivial
arrangement which by induction has at least 2(n — 1)/3 triangles. Since [ can
make a sweep move to one of its sides there is at least one triangle with an edge
on [ that disappeared after removal of [ (it turned into an unbounded region).
His makes a total of 2(n —1)/3 +1 > 2n/3 triangles in the initial arrangement.

It remains to describe a family W), of arrangements with 3n lines but only
2n triangles. A drawing of Wy is given in Figure 5.

Let P be a regular 2n-gon with edges ey, es,...,e9, in counterclockwise
ordering and barycenter ¢. Let lines ly,...,ls, be straight lines such that I;
contains edge e; of P. Orient the lines such that P is to their left. Note that I;
is crossed by lines l;4pn11, Lisnt2, - -5 lim1,liv1, liva, ... lizn—1 in this order with
indices being taken cyclically. The arrangement A formed by these 2n lines
has 2n triangles all adjacent to P. All the other faces of the arrangement are
quadrangles.

For every pair l;,l;;,, of parallel lines we construct an additional line g;.
We lead g; from the unbounded region between the positive end of /1 and the
negative end of [, to the unbounded region between the positive end of [,
and the negative end of ly,. The first line crossed by g is ;. Parallel to l,,41
line gy crosses lo,l3, ... 1,1 and splits quadrangles into two. Before entering P
line g; splits the triangle sitting over edge e, into a quadrangle and a triangle.
From edge e, line g; joins to point ¢ and then to the opposite edge es, to cross
lines lop, lop—1,-..,lpy1 in this order.

Define lines g9, ..., g, by rotational symmetry and note that g1,..., g, all



cross in ¢. The arrangement AU{g1, 92, .., gn} has the same number of triangles
as A.

So far we still have n pairs of parallel lines. Note however that without
increasing the number of triangles we may arbitrarily choose to have the crossing
of pair {l;,l;1,} to be on the side of the positive end of either ; or l;{,. Thus
W, is itself not just one but an exponentially large class of examples. O

ST

Figure 5. The arrangement W, with 12 lines and 8 triangles.

4 'Triangles in arrangements of curves with multiple
intersections

In his monograph Griinbaum extends the notion of arrangements in several
directions. Let an arrangement of pseudocircles be a family of closed curves with
the property that any two curves cross twice*. A digon in such an arrangement
is a face bounded by only two of the curves. Grinbaum asks for the relationship
between the number of triangles and digons in such arrangements. In particular
he conjectures [Grii72, Conjecture 3.7] that every digon-free arrangement of
pseudocircles contains 2n — 4 triangles. The only progress on this conjecture
is a result of Snoeyink and Hershberger [SH91]. They prove p3 > 4n/3. The
proof is only given for the simple case, i.e., no three curves cross in a single
point. However, it is not hard to see that it also applies to the general case.

Based on the arrangements W, from Section 3 it is possible to construct
examples of nonsimple arrangements of pseudocircles in IP with only 4n/3 trian-
gles. The idea is to glue two copies of W,, together such that all faces generated
by gluing are quadrangles, see Figure 6. Therefore, the result of Snoeyink
and Hershberger is best possible. However, if the arrangement is simple, i.e.,
no three curves meet in a single point we think that Griinbaum’s conjecture
should prove correct. For emphasis we restate the conjecture.

*Griinbaum calls this an arrangement of curves



Figure 6. A digon-free arrangement of 9 two-intersecting curves with
12 triangles.

Conjecture 1 Every simple digon-free arrangement of pseudocircles contains
at least 2n — 4 triangles.

We feel that the spirit of Euclidean arrangements is captured well with
the following generalization. Call an arrangement of z-monotone curves with
the property that any two curves cross exactly k times a k-curve arrangement.
Again based on the family W, it is possible to obtain k-curve arrangements of
n curves with only 2kn/3 triangles. On the other hand we conjecture.

Conjecture 2 FEvery simple digon-free k-curve arrangement contains at least
k(n — 2) triangles.

If true this would obviously be best possible since gluing together k appro-
priate arrangements of pseudolines with n — 2 triangles each gives arrangements
with only k(n — 2) triangles.
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