
Triangles in Euclidean ArrangementsStefan Felsner and Klaus KriegelFreie Universit�at Berlin, Fachbereich Mathematik und Informatik,Takustr. 9, 14195 Berlin, GermanyE-mail: ffelsner,kriegelg@inf.fu-berlin.deAbstract. The number of triangles in arrangements of lines and pseudolines has beenobject of some research. Most results, however, concern arrangements in the projectiveplane. In this article we add results for the number of triangles in Euclidean arrange-ments of pseudolines. Though the change in the embedding space from projective toEuclidean may seem small there are interesting changes both in the results and in thetechniques required for the proofs.In 1926 Levi proved that a nontrivial arrangement -simple or not- of n pseudolinesin the projective plane contains at least n triangles. To show the corresponding resultfor the Euclidean plane, namely, that a simple arrangement of n pseudolines containsat least n� 2 triangles, we had to �nd a completely di�erent proof. On the other handa non-simple arrangements of n pseudolines in the Euclidean plane can have as few as2n=3 triangles and this bound is best possible. We also discuss the maximal possiblenumber of triangles and some extensions.Mathematics Subject Classi�cations (1991). 52A10, 52C10.Key Words. Arrangement, Euclidean plane, pseudoline, strechability, triangle.1 Introduction, De�nitions and OverviewThe number p3 of triangles in arrangements of (pseudo)lines has been object ofprevious research. In this article we add new results concerning the number oftriangles in Euclidean arrangements of pseudolines.Gr�unbaum [Gr�u72] de�nes an arrangement A of lines as a �nite collectionfL0; L1; : : : ; Lng of lines, i.e., 1{dimensional subspaces in the real projectiveplane IP. Specifying a line L0 in A as the \line at in�nity" induces the arrange-ment AL0 of lines fL1; : : : ; Lng in the Euclidean plane IE = IP n L0.With an arrangement we associate the cell complex of vertices, edges andcells into which the lines of the arrangement decompose the underlying spaceIP or IE. Arrangements are isomorphic provided their cell complexes are iso-morphic.An arrangement B of pseudolines in IP is a collection fP0; P1; : : : ; Png ofsimple closed curves (we call them pseudolines) in IP such that every two curveshave exactly one point in common. Specifying a pseudoline P0 in B as the lineat in�nity induces the arrangement BP0 of pseudolines fP1; : : : ; Png in IP n P0.Since IP n P0 is homeomorphic to the Euclidean plane and we are interested inproperties of the induced cell complex we may regard BP0 as an arrangementin IE.April 7. 1998 1



Already in early work of Levi [Lev26] and Ringel [Rin56] it has been notedthat arrangements of pseudolines are a proper generalization of arrangementsof lines. This is due to the existence of incidence laws in plane geometry, e.g.,the Theorem of Pappus. Arrangements of pseudolines have received attentionsince they provide a generic model for oriented matroids of rank 3. In thiscontext questions of strechability have attained considerable interest. For moreabout these connections we refer the reader to the `bible of oriented matroids'[BLS+93].An arrangement is called trivial if all the (pseudo)lines intersect in a singlepoint. If no point belongs to more then two of the (pseudo)lines we call thearrangement simple.Euclidean arrangements of pseudolines will be the main object of investi-gations in this paper. Work with these objects is simpli�ed by the fact thatevery arrangement of pseudolines, i.e., of doubly unbounded curves, is isomor-phic to an arrangement of x-monotone pseudolines, i.e., of curves that intersectevery vertical line in exactly one point. Particularly nice pictures of Euclideanarrangements of pseudolines are given by their wiring diagrams introduced inGoodman [Goo80], see Figure 1. In this representation the n x-monotone curvesare restricted to n y-coordinates except for some local switches where adjacentlines cross. Knuth [Knu92] points out a connection with `primitive sorting net-works'. 34521 5432
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Figure 1. Wiring diagram of a simple arrangement of 5 pseudolines.We now summarize bounds for the number p3 of triangles in arrangements.Theorem 1 For every arrangement A of n pseudolines in IP:(1) Every pseudoline is incident with at least three triangles. Since everytriangle is incident with three lines this implies p3(A) � n.(2) p3(A) � 13n(n� 1) for n � 9. Equality holds for some arrangements of npseudolines for in�nitely many values of n.Part (1) is due to Levi [Lev26]. The lower bound for p3 it best possible. Tosee this take the n supporting lines of the edges of a regular n-gon for n � 4.The arrangement thus obtained is a simple arrangement of lines with p3 = n.Part (2) has a more entangled history. In [Gr�u72] the following easy ar-gument for p3 � 13n(n � 1) in simple arrangements is given: Since A is sim-ple only one of the cells bounded by an edge can be a triangle. There aren(n � 1) edges and every triangle uses three of them. This proves the bound.Gr�unbaum conjectured the same bound for nonsimple arrangements of lineswith su�ciently large n. Several lower bounds and special cases where proved2



by Strommer [Str77], Purdy [Pur79, Pur80] and Entringer and Purdy [EP82].Finally, Roudne� [Rou96] proved the conjecture for n � 9. By perturbing highdegree vertices so that suitable arrangements are formed in the neighborhoodhe shows that p3 is maximized by what he calls `reduced arrangements'. Inparticular these arrangements have no vertices of degree more then four. Thecrucial part of the proof is to show that if ti counts vertices of degree i then forn � 9 every reduced arrangement has3p3 � 2(t2 + 3t3 + 6t4):Since Pk �k2�tk = �n2� this implies the bound.In�nite families of simple arrangements with p3 = 13n(n � 1) have beenobtained by Roudne� [Rou86] and Harborth [Har85]. For stretchable arrange-ments the best known constructions are due to F�uredi and Pal�asti [FP84]. Theirexamples have at least 13n(n� 3) triangles.In this paper we discuss triangles in Euclidean arrangements. The cellcomplex of an arrangement in IE consists of unbounded and bounded cells. Inour treatment we ignore unbounded cells. In the arrangement of Figure 1 wethus count 3 triangles and 3 quadrangles. Our main results are summarized inthe following Theorem whose proof will be given in Sections 2 and 3.Theorem 2 For every arrangement B of n pseudolines in IE:(1) If B is simple then p3(B) � n� 2. Equality is possible for all n � 3.(2) If n � 6 then p3(B) � 23n. Equality is possible for all n = 0 (mod 3).(3) p3(B) � 13n(n� 2). Equality is possible for in�nitely many values of n.Part (1) again has a long history. In 1889 Roberts [Rob89] claimed thatevery simple arrangement A of n lines in IE contains n� 2 triangles. The argu-ment however was awed. Ninety years later Shannon [Sha79] proved Robertstheorem using dual con�gurations. Actually, he proved the analog of Robertstheorem for arbitrary dimensions: Every arrangement of n hyperplanes in IRdcontains at least n � d simplicial d-cells. Shannon's proof does not requirethat the arrangement is simple. Therefore, Shannon's theorem together withTheorem 2(2) gives the following amazing result.Corollary 3 If p3(B) < n� 2 for an arrangement B of n pseudolines then Bis non-strechable.A similar e�ect in the projective setting was conjectured by Gr�unbaum andproved by Roudne� [Rou88]. A nonsimple projective arrangement with p3 = nis non-strechable. An example of such an arrangement is due to Canham,see Gr�unbaum [Gr�u72, page 55]. In Section 3 we describe a family Wn ofarrangements with few triangles. If Wn is considered as an arrangement in theprojective plane it is a nonsimple arrangement with n lines and p3 = n.It is interesting to note that Levi's theorem about the number of trianglesincident to a line in a projective arrangement and Theorem 2(1) about thenumber of triangles in Euclidean arrangements both give easy double-countingproofs for the bound p3 � n in the projective case. We elaborate the second:3



Corollary 4 The number of triangles in a simple arrangement A of n pseudo-lines in IP is at least n.Proof. For each pseudoline Pi consider the Euclidean arrangement APi obtainedby taking Pi as line at in�nity. Each such arrangement has at least (n� 1)� 2triangles. Altogether this gives at least n(n � 3) triangles. Any �xed triangle� in A is bounded by three pseudolines and hence counted exactly n�3 times.This shows that there are at least n di�erent triangles.The upper bound on the number of triangles in the Euclidean case claimedin (3) of Theorem 2 can be proved along the lines of Roudne�'s upper boundfor the projective case. The proof is long and the changes necessary to adapt itto the Euclidean case are obvious. Therefore, we will refrain from elaboratingon it and refer to Roudne�'s original paper [Rou96].To show that the bound is best possible again the examples from the samepaper [Rou96] do the work. Roudne� shows that there is an in�nite family ofsimple projective arrangements with n+1 lines and (n+1)n=3 triangles. Eachline of such an arrangement is incident to n triangles. Choose an arbitraryline l as line in in�nity. The remaining Euclidean arrangement of n lines has(n+ 1)n=3 � n = n(n� 2)=3 triangles.2 Simple Euclidean arrangementsIn this section we prove the lower bound for the number of triangles in simplearrangements of pseudolines in IE. For arrangements of lines (even non-simpleones) the same bound has been obtained by Shannon [Sha79] using dual con�g-urations in n�2 dimensional space. Our argument is con�ned to considerationsin two dimensions.Proposition 2.1 p3(B) � n�2 for every simple arrangement B of n pseudolinesin IE.Proof. We consider the �nite part of B as a planar graph. Let V be the numberof vertices, E be the number of edges and F be the number of (�nite!) faces.These statistics can all be expressed as functions of the number of pseudolines.V =  n2!; E = n (n� 2); F =  n� 12 !Note that in this setting Euler's formula gives V �E + F = 1.We assign labels � or 	 to each side of every edge. Let f be one of thetwo (possibly unbounded) faces bounded by e and let e0 and e00 be the edge-neighbors of e along f . Let l, l0 and l00 be the supporting pseudolines of e, e0 ande00 respectively. The label of e on the side of f is � if f is contained in the �nitetriangle T of the arrangement fl; l0; l00g otherwise the label is 	 . See Figure 2for an illustration of the de�nition and Figure 3 for a complete labelling. Withthe next lemmas we collect important properties of the edge labelling.Lemma 5 Every edge e of a simple arrangement has a � and a 	 label.4



Proof. Let f1 and f2 be the two faces bounded by e and let e01, e001 and e02, e002be the edge-neighbors of e in these two faces. Since the arrangement is simplethe supporting lines fl01; l001g of both pairs of edges are the same. The �nitetriangular region T of the arrangement fl; l0; l00g has edge e on its boundary.Therefore, exactly one of the two faces f1 and f2 is contained in T . 4
f e

Figure 2. The label of e at f is � since f is contained in the shaded triangle.
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Figure 3. The arrangement of Figure 2 with the completed edge labelling.As seen in the proof of the lemma the triangular region T used to de�ne theedge label of e on the side of f is independent of f . This allows to adopt thenotation T (e) for this region.Lemma 6 All three edge labels in a triangle are � . A quadrangle contains two� and two 	 labels. For k � 5 a k sided face contains at most two � labels.Proof. If f is a triangle then for each of its edges e the triangular region T (e)is f itself.Let f be a quadrangle and e, e be a pair of opposite edges of f . Bothedges have the same neighboring edges, hence, two of the lines bounding the5



triangles T (e) and T (e) are equal. It is easy to see that either T (e) = f [ T (e)or T (e) = f [T (e). In the �rst case e has label � and e has label 	 in f , in thesecond case the labels are exchanged. The second pair of opposite edges alsohas one label � and the other 	.Let f be a face with k � 5 sides; the lemma immediately follows from thefollowingClaim. Any two edges with label � in f are neighbors, i.e., share a commonvertex.Let e1; e2; : : : ; ek be the edges of f numbered in counterclockwise directionalong f and let li be the supporting line of ei. Let e1 have label � and consideran edge ei with 4 � i � k � 2. We show that the label of ei is 	:Face f is contained in T (e1) and line li has to leave T (e1) n f through lkand l2. Figure 4 is a generic sketch of the situation.lil2 R2 ei e1
R1

lk e2
Figure 4. Edge e1 has label � in f so ei must have 	.Consider line li�1. This line enters the region R1 bounded by l2, li and thechain of edges e3; e4; : : : ; ei�1 at the vertex ei�1 \ ei. To leave region R1 lineli�1 has to cross l2. Therefore, li�1 has to leave the region R2 bounded by li, l2and lk through lk. Symmetrically, li+1 has a crossing with lk to leave the regionbounded by lk, li and the chain of edges ei+1; ei+2; : : : ; ek. Therefore, to leaveregion R2 line li+1 has to cross l2. This shows that li�1 and li+1 cross insideregion R2. Hence, T (ei) is contained in R2 and ei has label 	 in f .It remains to show that if e1 is labelled � then neither e3 nor ek�1 are.Considering the crossing of lines l4 and l2 observe that T (e3) is contained inT (e1) n f . Hence, the label of e3 in f in 	. A symmetric argument applies toek�1. This completes the proof of the claim. 4We use the two lemmas to count the number of � labels in di�erent ways:E =Xf #f� labels in fg � 2F + p3:With E = n(n� 2) and 2F = (n� 1)(n� 2) this impliesp3 � n� 2:6



3 Nonsimple Euclidean arrangementsWe now come to the lower bound for the number of triangles in the nonsimplecase.Proposition 2.2 A Euclidean nonsimple and nontrivial arrangement of n �6 pseudolines has at least 2n=3 triangles. Equality is possible for all n �= 0(mod 3).Proof. We distinguish two cases. First suppose that every line l of the arrange-ment contains crossings of the arrangement in both open halfspaces it de�nes.Consider l as a state of a sweepline going across the arrangement. From thetheory of sweeps for arrangements of pseudolines (see e.g. [SH91]) we know thatthe sweep can make progress both in the forward as well as in the backwarddirection. A progress-move pulls line l across a crossing c of some lines of thearrangement with the property that the parts of all lines contributing to c be-tween c and l are free of further crossings, i.e., are edges of the cell complexinduced by the arrangement. Hence, such a move pulls l across some triangleswith corner c and an edge on l. This shows that l contributes to at least onetriangle on either side. Since we assumed that every line has crossings on bothsides this accounts for 2n triangles each counted at most three times and theinequality is proved in this case.Now assume that there is a line l so that all crossings of the arrangementnot on l are on one side of l. If, on taking away l, all lines cross in just one pointc then there are n� 2 triangles in the arrangement and since we assume n � 6we are done. Else removing l from the arrangement we still have a nontrivialarrangement which by induction has at least 2(n � 1)=3 triangles. Since l canmake a sweep move to one of its sides there is at least one triangle with an edgeon l that disappeared after removal of l (it turned into an unbounded region).His makes a total of 2(n� 1)=3+1 > 2n=3 triangles in the initial arrangement.It remains to describe a family Wn of arrangements with 3n lines but only2n triangles. A drawing of W4 is given in Figure 5.Let P be a regular 2n-gon with edges e1; e2; : : : ; e2n in counterclockwiseordering and barycenter c. Let lines l1; : : : ; l2n be straight lines such that licontains edge ei of P . Orient the lines such that P is to their left. Note that liis crossed by lines li+n+1; li+n+2; : : : ; li�1; li+1; li+2; : : : li+n�1 in this order withindices being taken cyclically. The arrangement A formed by these 2n lineshas 2n triangles all adjacent to P . All the other faces of the arrangement arequadrangles.For every pair li; li+n of parallel lines we construct an additional line gi.We lead g1 from the unbounded region between the positive end of l1 and thenegative end of ln to the unbounded region between the positive end of ln+1and the negative end of l2n. The �rst line crossed by g1 is l1. Parallel to ln+1line g1 crosses l2; l3; : : : ; ln�1 and splits quadrangles into two. Before entering Pline g1 splits the triangle sitting over edge en into a quadrangle and a triangle.From edge en line g1 joins to point c and then to the opposite edge e2n to crosslines l2n; l2n�1; : : : ; ln+1 in this order.De�ne lines g2; : : : ; gn by rotational symmetry and note that g1; : : : ; gn all7



cross in c. The arrangementA[fg1; g2; : : : ; gng has the same number of trianglesas A.So far we still have n pairs of parallel lines. Note however that withoutincreasing the number of triangles we may arbitrarily choose to have the crossingof pair fli; li+ng to be on the side of the positive end of either li or li+n. ThusWn is itself not just one but an exponentially large class of examples.

Figure 5. The arrangement W4 with 12 lines and 8 triangles.4 Triangles in arrangements of curves with multipleintersectionsIn his monograph Gr�unbaum extends the notion of arrangements in severaldirections. Let an arrangement of pseudocircles be a family of closed curves withthe property that any two curves cross twice�. A digon in such an arrangementis a face bounded by only two of the curves. Gr�unbaum asks for the relationshipbetween the number of triangles and digons in such arrangements. In particularhe conjectures [Gr�u72, Conjecture 3.7] that every digon-free arrangement ofpseudocircles contains 2n � 4 triangles. The only progress on this conjectureis a result of Snoeyink and Hershberger [SH91]. They prove p3 � 4n=3. Theproof is only given for the simple case, i.e., no three curves cross in a singlepoint. However, it is not hard to see that it also applies to the general case.Based on the arrangements Wn from Section 3 it is possible to constructexamples of nonsimple arrangements of pseudocircles in IP with only 4n=3 trian-gles. The idea is to glue two copies of Wn together such that all faces generatedby gluing are quadrangles, see Figure 6. Therefore, the result of Snoeyinkand Hershberger is best possible. However, if the arrangement is simple, i.e.,no three curves meet in a single point we think that Gr�unbaum's conjectureshould prove correct. For emphasis we restate the conjecture.�Gr�unbaum calls this an arrangement of curves8



Figure 6. A digon-free arrangement of 9 two-intersecting curves with12 triangles.Conjecture 1 Every simple digon-free arrangement of pseudocircles containsat least 2n� 4 triangles.We feel that the spirit of Euclidean arrangements is captured well withthe following generalization. Call an arrangement of x-monotone curves withthe property that any two curves cross exactly k times a k-curve arrangement.Again based on the family Wn it is possible to obtain k-curve arrangements ofn curves with only 2kn=3 triangles. On the other hand we conjecture.Conjecture 2 Every simple digon-free k-curve arrangement contains at leastk(n� 2) triangles.If true this would obviously be best possible since gluing together k appro-priate arrangements of pseudolines with n�2 triangles each gives arrangementswith only k(n� 2) triangles.References[BLS+93] A. Bj�orner, M. Las Vergnas, B. Sturmfels, N. White, andG. Ziegler, Oriented Matroids, Cambridge University Press, 1993.[EP82] R. Entriger and G. Purdy, How often is a polygon bounded bythree sides?, Isr. J. Math., 43 (1982), pp. 23{27.[FP84] Z. F�uredi and I. Palasti, Arrangements of lines with large numberof triangles., Proc. Am. Math. Soc., 92 (1984), pp. 561{566.[Goo80] J. E. Goodman, Proof of a conjecture of Burr, Gr�unbaum andSloane, Discrete Math., 32 (1980), pp. 27{35.[Gr�u72] B. Gr�unbaum, Arrangements and spreads, Regional Conf. Ser.Math., Amer. Math. Soc., 1972.[Har85] H. Harborth, Some simple arrangements of pseudolines with amaximum number of triangles., in Discrete geometry and convex-ity, Proc. Conf., New York 1982, vol. 440, Ann. N. Y. Acad. Sci.,1985, pp. 31{33. 9
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