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Abstract. We show that if a tolerance graph is the complement of a comparability graph

it is a trapezoid graph, i.e., the complement of an order of interval dimension at most 2.

As consequences we are able to give obstructions for the class of bounded tolerance graphs

and to give an example of a graph which is alternatingly orientable but not a tolerance

graph. We also characterize the tolerance graphs among complements of trees

1 Introduction and Overview

An undirected graph G = (V,E) is called a tolerance graph if there exists a collection
I = {Ix | x ∈ V } of closed intervals on the line and a (tolerance) function t : V →
IR+ satisfying

{x, y} ∈ E ⇐⇒ |Ix ∩ Iy| ≥ min(tx, ty)

where |I| denotes the length of the interval I. A tolerance graph is a bounded
tolerance graph if it admits a tolerance representation {I, t} with |Ix| ≥ tx for all
x ∈ V .

Tolerance graphs were introduced by Golumbic and Monma [7]. They show that
if all tolerances tx equal the same value c, say, then we obtain exactly the class of
all interval graphs. If the tolerances are tx = |Ix| for all vertices x, then we obtain
exactly the class of all permutation graphs. Furthermore, the following theorem was
proved.

Theorem 1 Every bounded tolerance graph is the complement of a comparability
graph, i.e., a cocomparability graph.

The most important article on tolerance graphs is due to Golumbic, Monma and
Trotter [8]. We summarize some of the results shown there in the next theorem.

∗A preliminary version of this article appeared in the proceedings of WG’92, LNCS 657
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Theorem 2

(1) A tolerance graph must not contain a chordless cycle of length greater than
or equal to 5.

(2) A tolerance graph must not contain the complement of a chordless cycle of
length greater than or equal to 5.

(3) A tolerance graph admits an orientation such that every chordless 4 cycle is
oriented as shown in Figure 1.
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Figure 1: Alternating orientation of C4

A graph G is called alternatingly orientable if there is an orientation of G such
that around every chordless cycle of length greater than 3 the directions of arcs
alternate. As a consequence of the preceding theorem, we obtain that tolerance
graphs are alternatingly orientable, (see [3] for more information on this class of
graphs). We report on some results related to the following open problems.

Problem 1 Characterize tolerance and bounded tolerance graphs.

Problem 2 Is the intersection of tolerance graphs and cocomparability graphs ex-
actly the class of bounded tolerance graphs?

2 Tolerance Graphs and Orders of

Interval Dimension 2

The starting point of this work is a representation theorem for bounded tolerance
graphs. Let G = (V,E) be a bounded tolerance graph with representation {I, t}
and Ix = [ax, bx]. We define two interval orders P 1, P 2 on the set of vertices of G.
Let P 1 be represented by the intervals I1x = [ax + tx, bx] and let P 2 be represented
by the intervals I2x = [ax, bx − tx]. We claim that G is the cocomparability graph of
P = P 1 ∩ P 2.

Let vertices x and y be joined by an edge in G. Assume x < y in P 1 ∩ P 2. It
follows that bx < ay + ty < by and ax < bx − tx < ay. In the given relative position
of intervals |Ix ∩ Iy| = bx − ay. From the previous inequalities bx − ay < tx and
bx − ay < ty. This contradicts the edge condition |Ix ∩ Iy| ≥ min(tx, ty).
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Since P is the intersection of two interval orders P we have shown that G is the
complement of the comparability graph of an order with interval dimension at most
2.

A special feature of the interval realizer {I1, I2} of P is that |I1x| = |I
2
x| for all

x ∈ V . In the spirit of the term box embedding introduced in [6], we call such a
representation a square embedding.
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Figure 2: The square corresponding to [ax, bx] and tolerance tx

Let P = (X,<) be an order of interval dimension ≤ 2 that admits a square
embedding. We claim that the cocomparability graph of P (denoted by CoComp(P ))
is a bounded tolerance graph. Let a square embedding of P be given by {I1, I2} and
let the corresponding intervals of x be given by I1x = [a1x, a

1
x+lx] and I2x = [a2x, a

2
x+lx].

We now fix some s ∈ IR such that s ≥ maxx∈X( a2x − a1x ). The cocomparability
graph of P is the bounded tolerance graph given by the intervals Ix = [a2x, s+a1x+ lx]
and the tolerances tx = s + a1x − a2x. This proves the following characterization of
bounded tolerance graphs.

Theorem 3 A graph G is a bounded tolerance graph iff G is the cocomparability
graph of an order P with interval dimension at most 2 which has a square embedding.

Cocomparability graphs of orders with interval dimension at most 2 are known as
trapezoid graphs. An observation similar to ours is used by Bogart et al. [2] to show
that the class of bounded tolerance graphs coincides with the class of parallelogram
graphs, i.e., trapezoid graphs where every trapezoid is a parallelogram.

There exist orders of interval dimension 2 which do not admit a square embed-
ding. This is shown with the following example.
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Example. It is easy to see that the graph G given in Figure 3 is not alternatingly
orientable. An orientation which is alternating on the cycles (3, 4, 7, 8), (7, 8, 5, 6),
(5, 6, 1, 2) and (1, 2, 4, 3) and contains 3→ 4 would require 7→ 8, 5→ 6, 1→ 2, 4→
3 a contradiction. Therefore G is not a tolerance graph.

On the other hand, G is the cocomparability graph of the order P whose box
embedding is shown in Figure 3. The existence of a box embedding for P proves
that Idim(P ) = 2.
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Figure 3: The graph G = CoComp(P ) and the order P .

As a consequence of the next theorem, we will obtain: Every tolerance graph
which is a cocomparability graph is a trapezoid graph. This will be useful later when
we characterize tolerance graphs among complements of trees and seems interesting
also in view of Problem 2.

Theorem 4 The intersection of cocomparability graphs and alternatingly orientable
graphs is contained in the class of trapezoid graphs.

Proof. The main ingredient into the proof of this theorem will be the necessary
condition for interval dimension 2 given in Lemma 1 below.

Let P = (X,<) be an order of interval dimension two and x < y, z < t be a
2+2 in P . The pairs (x, t) and (z, y) are the diagonals of the 2+2. Let {I1, I2} be
an interval realizer of P . W.l.o.g. we may assume that x 6< t in I1 and note that
this implies z < y in I1. In I2 we then have z 6< y and x < t.

Associate with P the incompatibility graph FP .

• As vertices of FP we take the ordered incomparable pairs, i.e., (x, y) and (y, x)
for all x||y.
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• Two vertices of FP are connected by an edge iff they are the diagonals of a
common 2+2 in P .

Lemma 1 If Idim(P ) ≤ 2 then FP is bipartite.

Proof. We have shown that independent of the interval realizer {I1, I2} a diagonal
(x, t) of a 2+2 is a relation in exactly one of I1 and I2. Color diagonal (x, t) with
color 1 if it is a relation in I1 and color all the remaining vertices of FP with color
2. This is a legal 2 coloring of FP . △

We are ready to show that Idim(P ) > 2 implies that the cocomparability graph
of P is not alternatingly orientable.

Let P with Idim(P ) ≥ 3 be given. From Lemma 1 we know that FP contains
odd cycles. Fix an odd cycle C = [(x1, y1), (x2, y2), . . . , (x2k+1, y2k+1), (x1, y1)] in FP .
If (xi, yi) and (xi+1, yi+1) are consecutive elements of C then, by the definition of
FP , [xi, yi, yi+1, xi+1, xi] is a 4-cycle in CoComp(P ). Therefore:

(*) An alternating orientation of CoComp(P ) will either contain the two arcs xi →
yi and yi+1 → xi+1 or the two arcs yi → xi and xi+1 → yi+1.

Suppose that an alternating orientation A of CoComp(P ) is given. We may assume
that x1 → y1 is in A. Using (*) we obtain that y2 → x2 is in A. Using (*)
once more we obtain that x3 → y3 is in A. Repeating this argument we finally
find x2k+1 → y2k+1 and hence y1 → x1 in A. This contradicts the existence of an
alternating orientation. 2

Remark. Cogis [4] has shown that the implication of Lemma 1 is in fact an equiv-
alence. He obtained this result in the more general context of Ferrers-dimension for
directed graphs.

2.1 Some Examples

In this section we give examples separating several classes of graphs. We first show
that the class of graphs obtained as intersection of cocomparability graphs with
alternatingly orientable graphs and the intersection class of cocomparability graphs
with tolerance graphs are not the same.

Let P = (X,<) be an order of interval dimension 2 with realizer, i.e., box
embedding, I1 = { [a1x, b

1
x] : x ∈ X}, I2 = { [a2x, b

2
x] : x ∈ X}. We say x, y ∈ X

have crossing diagonals if the line segments (a1x, a
2
x)→ (b1x, b

2
x) and (a1y, a

2
y)→ (b1y, b

2
y)

intersect in IR2.

Lemma 2 If an order P of interval dimension 2 has a box embedding without cross-
ing diagonals then G = CoComp(P ) has an alternating orientation.

Proof. The orientation we define for G will capture a relation of ‘being left of’ for
pairs of diagonals. The non-crossing condition will be sufficient to have this relation
well defined. As a cocomparability graph G is free of cycles of length 5 and more we

5



only have to show that the four-cycles in G are alternatingly oriented. A four-cycle
(v, w, x, y) in G corresponds to a 2+2 in P . Assume v < x and w < y and note
that by an argument from the proof of Theorem 4 in every box embedding of P the
boxes of one edge of the 2+2 are left of the boxes of the other edge. If v, x is left of
w, y we obtain the orientation v → w ← x→ y ← v, i.e., an alternating orientation.

We now give a formal definition of the orientation on G. Let the Euclidean

distance in the plane be d[(u1, v1), (u2, v2)] =
√

(u1 − u2)2 + (v1 − v2)2. Relative to

the box of a vertex x we define two regions R1(x) and R2(x) (see Figure 4).
R1(x) = { (u, v) : u ≥ a1x and v ≤ b2x and d[(u, v), (b1x, a

2
x)] ≤ d[(u, v), (a1x, b

2
x)] }

R2(x) = { (u, v) : u ≤ b1x and v ≥ a2x and d[(u, v), (b1x, a
2
x)] ≥ d[(u, v), (a1x, b

2
x)] }.

Note that if y is incomparable to x then the diagonal of the box of y has to intersect
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Figure 4: The regions defined by a box.

either R1(x) or R2(x). It can not intersect both since there are no crossing diagonals.
If the diagonal of y intersects R1(x) we orient the edge {x, y} from x to y and if the
diagonal of y intersects R2(x) we orient it from y to x. Obviously, taking the box
of y as the reference box for the definition of the orientation of edge {x, y} leads to
the same orientation. 2

We will use Lemma 2 for the construction of an order P such thatG = CoComp(P )
is alternatingly orientable but P admits no square embedding, i.e., G is not bounded
tolerance. The idea for the construction is to set up a box-order P , i.e, an order of
interval dimension two, so that in every box realizer of P four boxes a, b, c, d form
a ‘windmill configuration’ as in Figure 5. This implies that P is not a square order.
On the other hand Figure 5 shows a representation of P without crossing diagonals.

The order P consists of two parts. The first part to be defined will serve as a
frame. The frame consists of chains x0 < x1 < . . . < x4 and y0 < y1 < . . . < y4
together with an element z > x0, y0. Let I1, I2 be an interval realizer of F . Since
x0 < x4, y0 < y4 is a 2+2 in F we have the relation y0 < x4 in either I1 or I2.
Denote relations in I1 by <1 and relations in I2 by <2 and suppose y0 <1 x4. This
forces x0 <2 y4. Relation y0 <1 x4 also forces x3 <2 y1 via the 2+2 x3 < x4 and
y0 < y1. Choosing an appropriate sequence of induced 2+2 we find that y0 <1 x4
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forces y3 <1 z and z <1 x2 and y3 <1 x1. Symmetrically, x0 <2 y4 forces x3 <2 z and
z <2 y2 and x3 <2 y1. Hence, in every realizer chains x1 < x2 < x3 and y1 < y2 < y3
induce a ‘grid-structure’ on the quarterplane of points dominating the box of z.

Let x2 be an element whose relations to the frame elements are y4 < x2, x1 < x2,
z < x2 together with the relations implied by transitivity. Let x3, y2 and y3 be three
more elements with relations y4 < x3, x2 < x3, z < x3, x4 < y2, y1 < y2, z < y2,
x4 < y3, y2 < y3 and z < y3. Note that the intervals of x2 and x2 and the intervals
of x3 and x3 overlap in I1. Similarly the intervals of y2 and y2 and the intervals of
y3 and y3 overlap in I2.

To obtain P as shown in Figure 5 we add four more elements to form the windmill
configuration. Let a, b, c and d be pairwise incomparable elements and relate them
to the frame by z < a, b, c, d and x0, y1 < a and a < x3, y2, y3 and x1, y1 < b and
b < x2, x3 and x1, y2 < c and c < y3 and x2, y0 < d and d < x3, y3. Consider the
intervals corresponding to a in I1 and note that it has to intersect the intervals of
x1 and x2. Since x1 < b < x2 we find the interval of b completely contained in the
interval of a, i.e., the width of the box of b is smaller than the width of the box of
a. Similar arguments show that the height of the box of c is smaller than the height
of the box of b, the width of the box of d is smaller than the width of the box of
c and finally, the height of the box of a is smaller than the height of the box of d.
Together this proves that there is no square embedding of P .
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Figure 5: The complement of this order is alternatingly orientable but not a bounded
tolerance graph

In Theorem 6 we will give more obstructions for the class of bounded tolerance
graphs. Our next aim is to exhibit cocomparability graphs which possess an alter-
nating orientation but are not tolerance graphs. To this end we introduce another
notion.
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A vertex x of G is called assertive if for every tolerance representation {I, t} of
G replacing tx by min(tx, |Ix|) leaves the tolerance graph unchanged. An assertive
vertex never requires unbounded tolerance. Therefore, if every vertex of a tolerance
graph G is assertive then G is bounded tolerance. In [8] it is shown that for a vertex
x to be nonassertive there has to be a y with {x, y} 6∈ E and Adj(x) ⊆ Adj(y).
Restating this we obtain.

Lemma 3 Let x be a vertex in a tolerance graph G = (X,E). If Adj(x)\Adj(y) 6= ∅
for all y with {x, y} 6∈ E, then x is assertive.

Given a graph G = (X,E) we define a new graph 2G. The set of vertices of
2G is the union of two copies X1, X2 of X. For all x ∈ X there is an edge {x1, x2}
between the two copies of x and for all {x, y} ∈ E there are the four edges {xi, yj}
between copies of x and y in 2G. That is, we substitute a 2 clique for each vertex
of G to obtain 2G.

Lemma 4 If G is not bounded tolerance then 2G is not a tolerance graph.

Proof. Let x, y be a pair of vertices of 2G with {x, y} 6∈ E then x′ ∈ Adj(x)\Adj(y)
where x′ and x are the two copies of an element of G. Therefore, if 2G is a tolerance
graph it will only have assertive vertices and hence be a bounded tolerance graph.
This, however, is impossible since G is a subgraph of 2G and not even G is bounded
tolerance. 2

Let G be the cocomparability graph of the order of Figure 5 It is an easy exercise
to show that the order corresponding to 2G has a box representation without crossing
diagonals. Hence 2G is a cocomparability graph admitting an alternating orientation
but not a tolerance graph.

2.2 Cotrees and More Examples

Complements of trees are cocomparability graphs. In [8] it is suggested to take them
as an initial step towards a solution of Problem 2.

Theorem 5 If T is the complement of a tree T , then the following conditions are
equivalent:

(1) T is a tolerance graph.
(2) T is a bounded tolerance graph.
(3) T is a trapezoid graph.
(4) T is a tolerance graph.
(5) T contains no subtree isomorphic to the tree T3 of Figure 7.

Proof. If T is a tolerance graph then, by Theorem 4, T is the comparability graph
of an order of interval dimension 2, i.e., T is a trapezoid graph. Orders which have
trees as comparability graphs are of height 1. In a box realizer of a height 1 order
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Figure 6: Relations of tolerance graphs to other classes of graphs.

with interval dimension 2 we have two types of move that do not change the order
relations. First, we may move the upper right corner of boxes of maximal elements
up and right and second, we may move the lower left corners of boxes of minimal
elements down and left. Using this two moves we can transform all the boxes into
squares. Therefore if T is a tolerance graph, then T is a bounded tolerance graph.

If T is a bounded tolerance graph, then trivially it is a tolerance graph, and by
Theorem 3 it is a trapezoid graph. This gives the equivalence of (1),(2) and (3).

For the equivalence of (3) and (5) we need a characterization of those trees which
are the comparability graphs of orders of interval dimension 2. In [6] it is shown
that the interval dimension of a tree T equals the dimension of the truncation of
T , i.e., of the tree obtained after removing the leaves of T . Among the irreducible
orders of dimension 3 there is only one tree, namely T2. From this we obtain that
T3 is the unique tree among the obstructions against interval dimension 3. This last
result can also be found in [10].
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Figure 7: The trees T2 and T3.

For the remaining equivalence, i.e., to show the equivalence of (4) with (5) we
refer to [8]. 2

It was observed by Bogart and Trenk [1] that the above proof for the equivalence
of (1) and (2) holds true in the more general case that T is the complement of a
bipartite graph.

We now come back to minimal obstructions for the class of bounded tolerance
graphs. Quite simple observation will provide us with many examples.

A now classical result of Dushnik and Miller says that a graph G is both a
comparability graph and a cocomparability graph exactly if G and G are both com-
parability graphs of orders of dimension 2. An order P is called 3–irreducible if
dim P = 3 but whatever vertex x we remove from P we obtain an order of dimen-
sion 2, i.e., dim(Px) = 2.

Now let P be 3–irreducible and G = Comp(P ). G is not a bounded tolerance
graph since it is not a cocomparability graph. But if we remove any vertex x from
G then by the Dushnik and Miller characterization Gx will be the cocomparability
graph of an order of dimension 2. This order has an embedding by points, hence
a square embedding by minisquares. This proves that Gx is a bounded tolerance
graph.

Theorem 6 If P is a 3–irreducible order then the comparability graph of P is a
minimal obstruction for the class of bounded tolerance graphs.

Remark. A complete list of 3–irreducible orders has independently been compiled
by Kelly and by Trotter and Moore (see [9]). They found 10 isolated examples and
7 infinite families.

We now turn to a second large class of obstructions. Recall that in the proof of
Theorem 5 we gave evidence that a height 1 order of interval dimension 2 admits
a square embedding, i.e., its cocomparability graph is a bounded tolerance graph.
An order P is called 3–interval irreducible if Idim(P ) = 3 but whatever vertex x we
remove from P we obtain an order of interval dimension 2, i.e., Idim(Px) = 2.

Now let P be a 3–interval irreducible order of height 1 and G = CoComp(P ).
From Idim(P ) = 3 it follows by Theorem 4 that G is not a tolerance graph. But if
we remove any vertex x from G then Gx is the cocomparability graph of an order
possessing a square embedding. Hence Gx is a bounded tolerance graph.
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Theorem 7 If P is a 3–interval irreducible order of height 1 then the cocompara-
bility graph of P is a minimal obstruction for both the class of tolerance graphs and
the class of bounded tolerance graphs.

Remark. A complete list of the 3–interval irreducible orders of height 1 has been
compiled by Trotter [10]. There are 3 isolated examples and 6 infinite families.

We close with a last example. Let N(x) = Adj(x)∪{x} denote the neighborhood
of a vertex x in G. A set of vertices {x1, x3, x3} is called an asteroidal triple if
any two of them are connected by a path which avoids the neighbourhood of the
remaining vertex. In [8] it is shown that cocomparability graphs do not contain
asteroidal triples, hence bounded tolerance graphs are asteroidal triple-free as well.
More information on asteroidal triple-free graphs is given in [5].

All examples of tolerance graphs which are not bounded tolerance graphs given
in [8] contain an asteroidal triple. Therefore, it seems plausible to conjecture that
every tolerance graph which is not bounded contains an asteroidal triple. Using
Theorem 6 we now show that this is not true in general.
Example. Let G be the comparability graph of the order H0 from the list of 3–
irreducible orders, see Figure 8. This graph is a tolerance graph and asteroidal
triple-free, but by Theorem 6 it can not be a bounded tolerance graph.
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Figure 8: G = Comp(H0) and a tolerance representation of G.
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