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Abstract. A table cartogram of a two dimensional m × n table A of
non-negative weights in a rectangle R, whose area equals the sum of the
weights, is a partition of R into convex quadrilateral faces corresponding
to the cells of A such that each face has the same adjacency as its cor-
responding cell and has area equal to the cell’s weight. Such a partition
acts as a natural way to visualize table data arising in various fields of
research. In this paper, we give a O(mn)-time algorithm to find a table
cartogram in a rectangle. We then generalize our algorithm to obtain ta-
ble cartograms inside arbitrary convex quadrangles, circles, and finally,
on the surface of cylinders and spheres.

1 Introduction

A cartogram, or value-by-area diagram, is a thematic cartographic visualization,
in which the areas of countries are modified in order to represent a given set
of values, such as population, gross-domestic product, or other geo-referenced
statistical data. Red-and-blue population cartograms of the United States were
often used to illustrate the results in the 2000 and 2004 presidential elections.
While geographically accurate maps seemed to show an overwhelming victory
for George W. Bush, population cartograms effectively communicated the near
50-50 split, by deflating the rural and suburban central states.

The challenge in creating a good cartogram is thus to shrink or grow the
regions in a map so that they faithfully reflect the set of pre-specified area values,
while still retaining their characteristic shapes, relative positions, and adjacencies
as much as possible. In this paper we introduce a new table cartogram model,
where the input is a two dimensionalm×n table of non-negative weights, and the
output is a rectangle with area equal to the sum of the input weights partitioned
into m×n convex quadrilateral faces each with area equal to the corresponding
input weight. Fig. 1 shows two such examples. Such a visualization preserves
both area and adjacencies, furthermore, it is simple, visually attractive, and
applicable to many fields that require visualization of data table.



7 9 9 6

62.5 10.54.5

2.54.5 4.5 16

33 4.54

B (2.34) C (2.26) N(1.25) O(1.45)

Al (2.70) Si (2.33) P (1.82) S (2.07)

Ga (5.91) Ge (5.32) As (5.72) Se(4.79)

In (7.31) Sn (7.31) Sb (6.68)Te(4.93)

Fig. 1. A 4 × 4 table, its table cartogram, and a cartogram of some elements of the
periodic table according to their density in grams per cubic centimeter (for solids) or
per liter (for gases).

The solution to the problem is not obvious even for a 2×2 table. For example,
Fig. 2(a–b) shows a table A and a unit square R. One attempt to find the
cartogram of A in R may be to first split R horizontally according to the sum
of each row, and then to find a good split in each subrectangle to realize the
correct areas. But this approach does not work, because the first split prevents
the creation of the two convex quadrilaterals with area ε in opposite corners that
share a boundary vertex, Fig. 2(c). Fig. 2(d) shows a possible cartogram.

The following little argument shows that 2 × 2 table cartograms exist. The
argument contains some elements that will be reused for the general case. The
input is a 2 × 2 table with four positive reals a, b, c, d with a + b + c + d = 1,
as shown in Fig. 2(e). Rotational symmetry of the problem allows us to assume
that a + b ≤ 1/2. Fix the unit square R with corners (0, 0), (0, 1), (1, 1), (1, 0)
as the frame for the table cartogram. Now consider the horizontal line ` with
the property that every triangle T (p) with top side equal to the top side of R
and one corner p on ` has area a + b. Since a + b ≤ 1/2, the line ` intersects
R in a horizontal segment. For p ∈ ` ∩ R, the vertical line through p partitions
R\T (p) into a left 4-gon S− and a right 4-gon S+. The areas of these two 4-gons
depend continuously on the position of point p but their sum is always c+ d. If
p is on the left boundary, Area (S+) = c+ d, and if p is on the right boundary,
Area (S+) = 0. Hence, it follows from the intermediate value theorem that there
is a position for p on ` ∩ R such that Area (S−) = c and Area (S+) = d. By
rotating a line around this p, we find a line that partitions T (p) such that the
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Fig. 2. (a) A 2×2 table A. (b) R. (c) An attempt to find a cartogram. (d) A cartogram
of A in R. (e) A 2× 2 table A. (f) The cartogram showing ` as a dashed line.
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left triangle has area a and thus the right triangle has area b, this again uses the
intermediate value theorem. The resulting partition of R into four parts is a table
cartogram for the input table, see Fig. 2(f). The critical reader may object that
two of the 4-gons have a degenerate side. This can be avoided by perturbing the
cartogram slightly to make a very short edge instead of a point. The result is an
ε approximate cartogram without degeneracies. Another approach is to modify
the construction rules so that degeneracies are avoided. We take this approach
in Section 2 to show the existence of non-degenerate table cartograms in general.

Related Work. The problem of representing additional information on top
of a geographic map dates back to the 19th century, and highly schematized
rectangular cartograms can be found in the 1934 work of Raisz [16]. Recently, van
Kreveld and Speckmann describe automated methods to produce rectangular
cartograms [19]. With such rectangular cartograms it is not always possible to
represent all adjacencies and areas accurately [12, 19]. However, in many “simple”
cases, such as France, Italy and the USA, rectangular cartograms and even table
cartograms offer a practical and straightforward schematization, e.g., Fig. 3.Grid
maps are a special case of single-level spatial treemaps: the input is a geographic
map mapped onto a grid of equal-sized rectangles, in such a way as to preserve
as well as possible the relative positions of the corresponding regions [20, 9]. As
we show, such maps can always be visualized as table cartograms.

Eppstein et al. studied area-universal rectangular layouts and characterized
the class of rectangular layouts for which all area-assignments can be achieved
with combinatorially equivalent layouts [8]. If the requirement that rectangles
are used is relaxed to allow the use of rectilinear regions then de Berg et al. [4]
showed that all adjacencies can be preserved and all areas can be realized with
40-sided regions. In a series of papers the polygon complexity that is sufficient to
realize any rectilinear cartogram was decreased from 40 sides down to 8 sides [2],
which is best possible due to an earlier lower bound [21].

More general cartograms without restrictions to rectangular or rectilinear
shapes have also been studied. For example adjacencies can be preserved and
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Fig. 3. A table cartogram of USA according to the population of the states in 2010,
using the grid map of [9]. See Fig. 9 for the data table.
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areas represented perfectly using convex quadrilaterals if the dual of the map is
an outerplanar graph [1]. Dougenik et al. introduced a method based on force
fields where the map is divided into cells and every cell has a force related to its
data value which affects the other cells [6]. Dorling used a cellular automaton
approach, where regions exchange cells until an equilibrium has been achieved,
i.e., each region has attained the desired number of cells [5]. This technique can
result in significant distortions, thereby reducing readability and recognizabil-
ity. Keim et al. defined a distance between the original map and the cartogram
with a metric based on Fourier transforms, and then used a scan-line algorithm
to reposition the edges so as to optimize the metric [14]. Gastner and New-
man [11] project the original map onto a distorted grid, calculated so that cell
areas match the pre-defined values. The desired areas are then achieved via an
iterative diffusion process inspired by physical intuition. The cartograms pro-
duced this way are mostly readable but the complexity of the polygons can
increase significantly. Edelsbrunner and Waupotitsch [7] generated cartograms
using a sequence of homeomorphic deformations. Kocmoud and House [13] de-
scribed a technique that combines the cell-based approach of Dorling [5] with
the homeomorphic deformations of Edelsbrunner and Waupotitsch [7].

There are thousands of papers, spanning over a century, and covering var-
ious aspects of cartograms, from geography to geometry and from interactive
visualization to graph theory and topology. The above brief review is woefully
incomplete; the survey by Tobler [18] provides a more comprehensive overview.

Our Results. The main construction is presented in Section 2. We start with a
simple constructive algorithm that realizes any table inside a rectangle in which
each cell is represented by a convex quadrilateral with its prescribed weight. The
approach relies on making many of the regions be triangles. We then modify the
method to remove such degeneracies. The construction can be implemented to
run in O(mn) time, i.e., in time linear in the input size.

In Section 3 we find table cartograms inside arbitrary triangles or convex
quadrilaterals, which is best possible, because regular n-gons, n ≥ 5, do not
always support table cartograms (e.g., consider a table with some cell value
larger than the maximum-area convex quadrangle that can be drawn inside the
n-gon). We also realize table cartograms inside circles, using circular-arcs, and
on the surface of a sphere via a transformation from a realization on the cylinder.

2 Table cartograms in rectangles

We first construct a cartogram with degenerate 4-gons. The input is a table A
with m rows and n columns of non-negative numbers Ai,j . Let S =

∑
i,j Ai,j

and let Si be the sum of the numbers in row i, i.e., Si =
∑

1≤j≤n Ai,j . Assume,
by scaling, that S > 4. Let R be the rectangle with corners (0, 0), (S/2, 0),
(S/2, 2), (0, 2). We construct the cartogram within R and later generalize the
construction to all rectangles with area S. Let k be the largest index such that
the sum of the numbers in rows 1, 2, . . . , k − 1 is less than S/2. We may then
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Fig. 4. (a) Illustration for A,At and Ab, where k = 2 and λ ≈ 0.886. (b) The zigzag
path Z. We have distorted the aspect ratio of the figure to increase readability. (c) The
subdivision of triangles, where Z is shown in red, and (d) the complete cartogram.

choose λ ∈ (0, 1] such that
∑

1≤i≤k−1 Si + λSk = S/2. We split the table A into

two tables At and Ab. Table At consists of k rows and n columns. The first k−1
rows are taken from A, i.e., At

i,j = Ai,j for 1 ≤ i ≤ k − 1 and 1 ≤ j ≤ n. The
last row is a λ-fraction of row k from A, i.e., At

k,j = λ · Ak,j for all j. Table

Ab consists of m− k + 1 rows and n columns. The first row accommodates the
remaining portion of row k from A, i.e., Ab

1,j = (1− λ) ·Ak,j . All the other rows

are taken from A, i.e., Ab
i,j = Ai+k−1,j for i > 1 and all j. An example is shown

in Fig. 4(a). If λ = 1, then Ab contains a top row of zeros.

Let Dt
j be the sum of entries in columns 2j − 2 and 2j − 1 from At, where

1 ≤ j ≤ bm/2 + 1c. Note that Dt
1 is only responsible for one column. The same

may hold for the lastDt
j depending on the parity ofm. Similarly,Db

l is the sum of

entries in columns 2l−1 and 2l from Ab, where 1 ≤ l ≤ dm/2e. Again, depending
on the parity of m the last Db

l may only be responsible for one column.

We now define a zig-zag Z in R (formally, Z is a polygonal line) such that
the areas of the triangles defined by Z are the numbers Dt

1, D
b
1, D

t
2, D

b
2, D

t
3, . . .

in this order. The zig-zag starts at z0 = (0, 0). Since the height of R is 2, the first
segment ends at z1 = (Dt

1, 2) and the second segment goes down to z2 = (Db
1, 0).

In general, for i odd, zi = (
∑di/2e

j=1 Dt
j , 2) and for i even, zi = (

∑i/2
l=1 D

b
l , 0). An

important property of Z is that it ends at one of the two corners on the right
side of R. This is because

∑
j D

t
j = S/2 =

∑
l D

b
l .

Lemma 2 shows that we can partition each triangle created by the zig-zag
Z into triangles whose areas are the corresponding entries in At or Ab. It re-
lies on the following lemma which is a consequence of properties of barycentric
coordinates. The proof is in Appendix A.
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Lemma 1 (Triangle Lemma). Let 4abc be a triangle and let α, β, γ be non-
negative numbers, where α + β + γ = Area(4abc). Then we can find a point p
in 4abc, where Area(4pbc) = α, Area(4apc) = β, Area(4abp) = γ, in O(1)
arithmetic operations.

Lemma 2. Let A be a m×2 table such that each cell is assigned a non-negative
number. Let 4abc be a triangle such that the area of 4abc is equal to the sum
of the numbers of A. Then A admits a cartogram inside 4abc such that all
cells of A are represented by triangles and the boundary between those triangles
representing cells in the left column and those representing cells in the right
column is a polygonal path connecting point a to some point on the segment bc.

Proof. The proof is by induction on m. The case m = 1 is obvious. If m > 1
we define α =

∑
1≤i≤m−1 Ai,1 + Ai,2, β = Am,1 and γ = Am,2. Using Lemma 1

we find a point p in 4abc that partitions the triangle into triangles of areas α,
β and γ. We keep the triangles 4apc and 4abp as representatives for Am,1 and
Am,2 and construct the cartogram for the first m − 1 rows of A in the triangle
4pbc by induction. ut

To partition triangle 4z2j−2, z2j−3, z2j−1, for 1 ≤ j ≤ bm/2 + 1c (where
z−1 = (0, 2) and zm+1 = (S/2, 2) if needed), we appeal to Lemma 2 with A (in
the lemma) being the two columns from At whose sum is Dt

j . To make Lemma 2
applicable to cases like Dt

1 which represent only one column from At, we simply
add a column of zeros to A. Similarly, we can partition triangle4z2l−1, z2l−2, z2l,
for 1 ≤ l ≤ dm/2e.

This yields a table cartogram of the (m+1)×n table A+ that is obtained by
stacking At on Ab. Note, however, that all triangles representing cells from the
last row of At have a side that equals one of the edges of Z. Symmetrically, all
triangles representing cells from the first row of Ab have a side on Z. Hence, by
removing the edge of Z we glue two triangles of area λAk,j and (1− λ)Ak,j into
a 4-gon of area Ak,j . The 4-gons obtained by removing edges of Z are convex
because they have crossing diagonals. This completes the construction.

To complete the proof of the following theorem, in whichR is a w×h rectangle
with area S, we scale the above cartogram by a factor of h/2 vertically and a
factor of 2/h horizontally.

Theorem 1. Let A be a m× n table of non-negative numbers Ai,j. Let R be a
rectangle with width w, height h and area equal to the sum of the numbers of A.
Then there exists a cartogram of A in R such that every face in the cartogram
is convex. The construction requires O(mn) arithmetic operations.

Removing degeneracies. The construction of the proof of Theorem 1 creates
faces of degenerate shape, i.e., some faces may not be perfect quadrangles. We
modify this construction to avoid the degeneracies. Of course we have to make
a stronger assumption on the input: All entries Ai,j of the table are strictly
positive. The first part of the construction remains unaltered.

– Determine k and λ such that
∑

1≤i≤k−1 Si + λSk = S/2.

6



– Define At and Ab and the two-column sums Dt
j and Db

l for these tables.
– Compute the zig-zag in the rectangle R of height 2 and width S/2.

Let z0, z1, . . . , zn be the corner points of the zig-zag Z. For i even we define
z′i = zi + (0, v) and for i odd z′i = zi − (0, v), i.e., z′i is obtained by shifting zi
vertically a distance of v into R. We will choose this positive value v to obey
conditions (B1) and (B2) required by the construction. Let Z ′ be the zig-zag
with corners z′0, z

′
1, . . . , z

′
n. The segment z′i, zi is the leg at z′i. The union of all

the legs and Z ′ is the skeleton G′ of a partition of R into 5-gons. We refer to the
5-gons with corners zi−1, zi+1, z

′
i+1, z

′
i, z

′
i−1 as Fi. We abstain from introducing

extra notation for the two 4-gons at the ends of Z ′ and just think of them as
degenerate 5-gons.

Lemma 3. A 5-gon in R with vertices (x1, 0), (x3, 0), (x3, v), (x2, 2− v), (x1, v)
has the same area x3 − x1 as the triangle with corners (x1, 0), (x3, 0), (x2, 2).

Proof. First note that changing the value of x2 (shear) preserves the area of the
5-gon and of the triangle. Hence we may assume that x2 = x3. Now let P be
the parallelogram with corners (x1, 0), (x1, v), (x2, 2), (x2, 2−v). Both, the 5-gon
and the triangle can be partitioned into the triangle (x1, 0), (x2, 2 − v), (x3, 0)
and a triangle that makes a half of P . ut

Some of the 5-gons Fi may not be convex. However, concave corners can
only be at z′i+1 or z′i−1. To get rid of concave corners we deal with corners at
z′1, z

′
2, . . . , z

′
n−1 in this order. At each z′i we may slightly shift z′i horizontally

and bend the leg to rebalance the areas. This can be done so that the concave
corner at z′i is resolved. We then say that z′i has been convexified. Fig. 5 shows
an example of the process.

v

2− 2v

δ

τ
(x, 0)

(x′, 2− v)

z′
i

zi−1 zi+1

z′
i+1

zi

z′
i−1

Fi

Fi−1 Fi+1

z′
i−1

z′
i+1

Fig. 5. Before and after convexifying z′i. The dashed lines represent the original Z′.

The vertex z′i has a concave corner in at most one of Fi−1 and Fi+1 In the
first case we move z′i to the right in the second case we move z′i to the left. By
symmetry, we only detail the second case, i.e, z′i has a concave corner in Fi+1.

Shifting z′i horizontally keeps the area of Fi invariant, only the areas of Fi−1

and Fi+1 are affected by the shift. By shifting z′i a distance of δ to the left while
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keeping zi at its place the increase in area of Fi+1 is δ(2− v)/2. To balance the
increase we move zi, the other end of the leg, to the right by an amount τ , where
τv/2 = δ(2− v)/2. To make sure that the corners at z′i after shifting are convex
we choose δ and τ so that the line connecting the new positions of zi and z′i
contains the midpoint of z′i−1 and z′i+1. If the new position of zi is (x, 0) and
(x′, 2− v) is the midpoint of z′i−1 and z′i+1 then v/(τ + δ) = 2/(x− x′).

We do not want the shift of zi to introduce a crossing. We ensure this with
a bound on v. For all j, let Tj = Area(Fj) and recall that this is the distance
between zj−1 and zj+1 before shifting. If τ ≤ Ti+1, then the leg z′i, zi does not
intersect leg z′i+2, zi+2. The absolute value of the slope of the leg z′i, zi after
convexifying z′i is less than v/τ . The slope of the leg is also between the slopes
of z′i, z

′
i−1 and z′i, z

′
i+1. The absolute value of these slopes is larger than (2 −

2v)/(S/2) which is the minimum possible slope of a segment of Z ′ in R. Define
T = minj Tj . Hence, if v/T < (2−2v)/(S/2) = 4(1−v)/S, then τ < T . We thus
have an inequality that we want to be true for v:

v ≤ 4T

S + 4T
. (B1)

Observe that convexifying z′i+1 may require a shift of z′i+1 by δ′ (and a compen-
sating shift of zi+1 by τ ′) after z′i has been convexified. However, if v ≤ 1/4, then
balancing area and (B1) imply 1

4T > vτ ′ = δ′(2 − v) ≥ δ′ 74 whence δ′ ≤ T/7.
This shows that z′i+1 stays on the right side of the old midpoint of z′i−1 and z′i+1

so that the corners at z′i stay convex.
The next step of the construction is to place equidistant points on each of

the legs. The segments between two consecutive points on the leg z′i, zi will
serve as sides for quadrangles of the quadrangular subdivision of Fi−1 and Fi+1.
Specifically, a leg z′i, zi with i odd is subdivided into k − 1 segments of equal
length and a leg z′i, zi with i even is subdivided into m − k segments. Recall
that k is the number of rows in At. For the partition of Fi into 4-gons with
the prescribed areas we proceed inductively as in Lemma 2. We again need a
partition lemma, whose proof is in Appendix A.

pj+1

p0 q0

qj+1
qjpj

α

β γ
p

r

(b)(a)

Fig. 6. (a) The α, β and γ partition of F . (b) A final partition of Fi.

Lemma 4. Consider a convex 5-gon F as shown in Fig. 6(a). Let α, β, γ be
positive numbers with α + β + γ = Area(F ). If α > Area(2p0, q0, qj , pj), β >
Area(4pj , r, pj+1), γ > Area(4qj , qj+1, r), then there exists p ∈ F such that
α = Area(Dp0, q0, qj , p, pj), β = Area(2pj , p, r, pj+1), γ = Area(2qj , qj+1, r, p).
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To ensure that the conditions for Lemma 4 are satisfied throughout the in-
ductive partition of the regions Fi we need to bound v. Let M = mini,j Ai,j

be the minimum value in the table. Recall that S/2 is the width of R, and the
y-distance of pj and pj+1 is at most v. Hence, vS/2 is a generous upper bound
on Area(4pj , r, pj+1), Area(4qj , qj+1, r), and Area(2p0, q0, qj , pj). We ensure
that these areas are less than β, γ, and α respectively by requiring

v <
2M

S
(B2)

Theorem 2. Let A be a m× n table of non-negative numbers Ai,j. Let R be a
rectangle of width w and height h such that w · h =

∑
i,j Ai,j. Then there exists

a non-degenerate cartogram of A in R such that every face in the cartogram is
convex. The construction requires O(mn) arithmetic operations.

Proof. The steps of the construction are:

– Construct the table cartogram with degeneracies.
– Compute the bounds and fix an appropriate value for v, compute the skeleton

G′ and its regions Fi, and convexify the legs in order of increasing index.
– Subdivide each of the regions Fi into convex 4-gons (and two triangles).
– Remove the edges of the zig-zag to get the cells of the middle row as unions

of two triangles.

All can be done with O(mn) arithmetic operations. Regarding the degeneracies,
however, there is an issue that remains. To break A into At and Ab, we split row
k so that the last row of At is a λ-fraction of row k from A while the rest of this
row becomes the first row of Ab. Degeneracies occur if λ = 1. However, rather
than splitting row k in this case, we can treat cells of row k as generic cells and
assign a section of a leg to each of them. The construction is almost as before.
Two details have to be changed. The first partition of each Fi into three pieces
now produces two 4-gons and a 5-gon, before (see Fig. 6(b)) we had two triangles
and a 5-gon in this step. The other change is that we don’t remove zig-zag edges
belonging to Z ′ to merge triangles to 4-gons at the end of the construction. ut

Instead of just knowing that there are no degeneracies, it would be nice to
have a lower bound on the feature size, that is the minimum side-length of a
4-gon in the table cartogram. The segments subdividing the legs have length at
least v/m. Because these leg segments have length at most v and vS/2 < M (by
(B2)), the opposite edges in a generic 4-gon (the blue edges in Fig. 6(b)) have
length at least v. However, the triangles whose composition creates the 4-gons
representing cells of row k can have area smaller than M . These triangles may
have area λ̂M where λ̂ = min{λ, 1 − λ}. This may lead to a very small feature
size. To improve on this, another degree of freedom in the construction can be
used. Instead of breaking each cell Ak,j into a λ and a 1−λ fraction, we can use
individual values λj to define At

k,j = λjAk,j . The choice of the values λj must
satisfy two conditions: (1)

∑
j λjAk,j = λSk = λ

∑
j Ak,j and (2) if λi = 0 and

λj = 1 then |i − j| > 1. By choosing most of the λj to be 0 or 1, and avoiding
degeneracies as explained in the proof, we may be able to obtain a substantial
improvement in feature size.
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3 Generalizations

We can generalize many of our previous results in several ways. A more complete
version of this section, including proofs, appears in Appendix B.

We generalize the notion of “area” by specifying the weight of a region as an
integral over some density function w : R → R+. The density function should be
positive, meaning that the integrals over triangular regions with nonempty inte-
riors exist and are positive. The following generalizes Lemma 1 for any positive
density function, allowing us to compute cartograms on weighted R2.

Lemma 5 (Weighted Triangle Lemma). Let 4abc be a triangle and w :
4abc → R+ be a positive density function on 4abc. Let Area(4abc) be the w-
weighted area of the triangle 4abc. Given three non-negative real numbers α, β,
γ, where α + β + γ = Area(4abc), there exists a unique point p inside 4abc
such that Area(4pbc) = α, Area(4apc) = β, and Area(4abp) = γ.

We now discuss some scenarios where the outerface of the cartogram has a
more general shape. The following theorem considers the case when the outerface
is a convex quadrangle 2pqrs. In such a case, we use a binary search to find the
zigzag path that starts at q and ends at r or s.

Theorem 3. Let A be a m× n table of non-negative numbers. Let 2pqrs be an
arbitrary convex quadrilateral with area equal to the sum, S, of the numbers of
A. Then there exists a cartogram of A in 2pqrs (with degeneracies).

Next, we show how to compute a table cartogram inside a circle. A circular
triangle 4©abc is a region in the plane bounded by three circular arcs (called
arms) that pairwise meet at the points a, b, and c (called vertices), such that for
every vertex v ∈ {a, b, c} and for every point x on the arc that is not incident to
v, one can draw a circular arc between v and x inside 4©abc that does not cross
the boundary of 4©abc. An arm is convex if the straight line joining any two
points on the arm is interior to the region bounded by the triangle. Otherwise,
the arm is concave. We distinguish four types of circular triangles, see Figs. 7(a–
d). We generalize Lemma 1 for circular triangles, i.e., given a circular triangle,
one can split it into three other circular triangles with prescribed areas, and find
the following generalization of Theorem 1.

(e)(a) (b) (c) (d)

a

b
c

a

b
c

a

c

a

b
c

b

a
b

c

Fig. 7. (a–d) A circular triangle of Type i, 1 ≤ i ≤ 4, i.e., a circular triangle with i
concave arms. (e) A region bounded by circular arcs, but not a circular triangle.
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Theorem 4. Let A be a m × n table of non-negative numbers. Let C be an
arbitrary circle with area equal to the sum of the numbers of A. Then there
exists a cartogram of A in C where every face is a circular triangle.

We now show that one can compute a cartogram of a table on the surface of a
sphere. There are several well studied area preserving map projection techniques.
Here we use Lambert’s cylindrical equal-area projection. The construction used
is shown in Fig. 8.

Theorem 5. Every m × n table of non-negative numbers admits a cartogram
on a sphere.

(a) (b) (c) (d)

(e) (f) (g) (h)

3 4 1

2 36

1.5 4 1 1.5

1 36 1

Fig. 8. Cylindrical cartogram construction. (a–d) n is even, (e–h) n is odd. Note that
when n is even, the faces are convex quadrilaterals. However, when n is odd, the faces
with areas from the leftmost column of A may be concave hexagons.

4 Conclusions and Future Work

We have presented a simple constructive algorithm that realizes any table inside
a rectangle in which each cell is represented by a convex quadrilateral with its
prescribed weight. If all weights are strictly positive, then we can also obtain
non-degenerate realizations. This method can be further extended to realize any
table inside an arbitrary convex quadrilateral, inside a circle using circular arcs,
or even on a sphere. From a practical point of view, the cartograms obtained by
our method may not be visually pleasing, but by using additional straightforward
heuristics that improve the visual quality while keeping the areas the same, we
can obtain cartograms of practical relevance, as shown in Figs. 1 and 3. Our
theoretical solution plays a vital role in this context, since heuristics used directly
may get stuck, being unable to obtain the correct areas. Whether there exists a
method that can gradually change the areas to provably obtain the correct areas
remains an interesting open problem. It would also be interesting to examine
table cartograms for other types of tables, such as triangular or hexagonal grids.
From a theoretical point of view, finding algorithms for table cartograms on a
sphere with less distortion, and generalizing our result to 3D table cartograms
(inside a box) are further interesting open problems.
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A Proofs

In this section we include additional details that are omitted in the main text
due to space constraints.

The following lemma is a consequence of properties of barycentric coordi-
nates, but we include a proof for completeness.

Lemma 1 (Triangle Lemma). Let 4abc be a triangle and let α, β, γ be
non-negative numbers, where α+ β+ γ=Area(4abc). Then we can find a point
p in 4abc, where Area(4pbc) = α, Area(4apc) = β, Area(4abp) = γ, in O(1)
arithmetic operations.

Proof. Let `a be the line such that a triangle with side bc and a corner on `a has
area α. This line intersects segments ab and ac. Let `b be the line such that a
triangle with side ac and a corner on `b has area β. This line intersects segments
ab and bc. Let qa be the intersection point of line `a with segment ab and let qb
be the the intersection point with line `b. Assume that the order of points on
segment ab is a, qa, qb, b, then the triangles 4qabc and 4aqbc cover the triangle
4abc so that Area(4abc) < α + β. This contradiction shows that the order of
points on segment ab is a, qb, qa, b. Hence `a and `b intersect in a point p inside
of 4abc. This point p has the desired properties.

Note that p can be computed with O(1) arithmetic operations. ut

6.725 0.989 0.673 5.304 5.687 19.378 0.626 1.328

3.831 1.568 0.814 3.046 9.884 12.702 1.316 6.548

2.701 0.564 1.826 12.831 6.484 11.537 3.574 1.053

2.764 5.029 2.853 5.989 4.339 1.853 5.774 8.792

37.254 2.059 3.751 2.916 6.346 4.625 8.001 0.898

6.392 25.146 4.533 2.967 4.780 9.688 18.801 9.535
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Fig. 9. The population data table for USA in millions in 2010 and a table cartogram
of USA according to the population of the states in 2010, using the grid map of [9].

Lemma 4 Consider a convex 5-gon F as shown in Fig. 6(a). If α, β and γ
are positive numbers with α + β + γ = Area(F ). If α > Area(2p0, q0, qj , pj)
and β > Area(4pj , r, pj+1) and γ > Area(4qj , qj+1, r), then there is a point
p ∈ F such that α = Area(Dp0, q0, qj , p, pj) and β = Area(2pj , p, r, pj+1) and
γ = Area(2qj , qj+1, r, p).

Proof. The assumptions imply that if p exists it has to be in the interior of the
triangle 4pj , r, qj). The existence follows from Lemma 1. ut
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B Generalizations

One direction for generalizations is to generalize the notion of “area”. This can
be done by specifying the weight of a region as an integral over some density
function w : R → R+. The density function should have the property that the
integrals over triangular regions with nonempty interiors exist and are positive.
We call such a density function positive.

The following lemma can be proved (even for higher dimensions) using the
Knaster-Kuratowski-Mazurkiewicz lemma [15]. It can also be deduced in the
context of barycentric coordinate systems [3].

Lemma 5 (Weighted Triangle Lemma). Let 4abc be a triangle and w :
4abc → R+ be a positive density function on 4abc. Let Area(4abc) be the w-
weighted area of the triangle 4abc. Given three non-negative real numbers α, β,
γ, where α + β + γ = Area(4abc), there exists a unique point p inside 4abc
such that Area(4pbc) = α, Area(4apc) = β, and Area(4abp) = γ.

Proof. Let ρ be a ray starting at a and intersecting the segment bc. Since w is a
positive density function, Areaw(4xbc) is strictly decreasing as x moves from a
along ρ. Hence there is a unique point x(ρ) on ρ such that Areaw(4x(ρ)bc) = α.
The points x(ρ) for all different ρ trace a simple curve Ca in 4abc that separates
a from bc. This curve has a point on ab and a point on ac. Similarly, we get a curve
Cb that intersects every ray from b to ac at a point x with Areaw(4axc) = β.

Let qa and qb be the intersection points of Ca and Cb with segment ab.
Assume that the order of points on segment ab is a, qa, qb, b, then the triangles
4qabc and 4aqbc cover the triangle 4abc so that Areaw(4abc) < α + β. This
contradiction shows that the order of points on segment ab is a, qb, qa, b. Hence
Ca and Cb intersect at a point p inside of 4abc. This point p has the desired
properties.

Assume that p and p′ are two points with the desired properties. Then there is
a pair y, z among a, b, c such that 4(pyz) ⊂ 4(p′yz) and hence Areaw(4pyz) <
Areaw(4p′yz). This contradiction proves uniqueness. ut

B.1 Cartogram in an arbitrary convex quadrilateral

We show that every table can be represented as a cartogram in any arbitrary
convex quadrilateral with area equal to the sum of the numbers in the table.

Theorem 3. Let A be a table with m rows and n columns of non-negative
numbers. Let 2pqrs be an arbitrary convex quadrilateral with area equal to the
sum, S, of the numbers of A. Then there exists a cartogram of A in 2pqrs (with
degeneracies).

Proof. If 2pqrs is a convex quadrilateral that is not a rectangle, we use binary
search to find the zigzag path that starts at q and ends at r or s and realizes
the required areas for the intermediate triangles. By continuity, such a zigzag
path always exists. Note that such a zigzag path does not necessarily split A
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into two equal halves, rather, the row k of A that determines At and Ab satisfies∑
1≤i≤k−1 Si + λSk = αS for some α ∈ (0, 1], which we determine by binary

search. Figs. 10(a–c) illustrates such a binary search.
When α is found, we can continue as in the proof of Theorem 1. ut

(a) (b) (c)

p

q

s

r

p
s

p
s

q r q r

Fig. 10. Finding a division of A such that Z starts at q and ends at r. (a–c) Some
steps of the binary search. (a) For some split of the table, Z ends before reaching r,
and hence we need to update the split. (b) Z ends after r. (c) The final step of the
search, where the endpoint of Z hits r.

B.2 Table Cartograms in a Circle

In this section we show that any table A of size m× n of non-negative weights
admits a cartogram inside a circle with area equal to the sum of the numbers
of A, and every edge in the cartogram is represented as a circular arc. To prove
the existence of such a cartogram, we modify the proof of Lemma 5.

A circular triangle 4©abc is a region in the plane bounded by three circular
arcs (called arms) that pairwise meet at the points a, b, and c (called vertices),
such that for every vertex v ∈ {a, b, c} and for every point x on the arc that is
not incident to v, one can draw a circular arc between v and x inside 4©abc that
does not cross the boundary of 4©abc. Figs. 7(a–d) are circular triangles, but
Fig. 7(e) is not a circular triangle since no circular arc connects vertex b to the
shaded part of arc ac. By definition, a circle is a circular triangle, where all three
arms are the arcs of a single circle. An arm of a circular triangle is convex if the
straight line joining any two points on the arm is interior to the region bounded
by the triangle. Otherwise, the arm is concave. Depending on the number of
convex arms, we distinguish four types of circular triangles. Figs. 7(a–d) shows
these four types of circular triangles.

Lemma 6 (Arc-Triangle Lemma). Let 4©abc be an arbitrary circular triangle
of Type i, where i ∈ {0, 1, 2, 3}. Given three non-negative real numbers α, β, γ,
where α + β + γ = Area(4©abc), there exists a point p inside 4©abc such that
Area(4©pbc) = α, Area(4©apc) = β, and Area(4©abp) = γ, and every circular
triangle among 4©pbc,4©apc and 4©abp is of Type i for some i ∈ {0, 1, 2, 3}.

Proof. For every vertex v ∈ 4©abc, we first define a set Sv of geodesic rays that
start at v, end at the arm that does not contain v, and satisfy the following
properties.
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Ca

(c) (d)

a

c

a

b
c

b c

(e)

a

b

(b)

a

b
c

c

(a)

a

b

Fig. 11. (a–d) A circular triangle with no concave arm (Type 0), one concave arm
(Type 1), two concave arms (Type 2), and three concave arms (Type 3). (e) A region
bounded by circular arcs, but not a circular triangle. (f–i) The sets of geodesic rays.
(j) Illustrating Cx.

(a) Each ray of Sv is a circular arc that splits 4©abc into two circular triangles
that we call the left or right circular triangle depending on the side of ray
the triangle lies in.

(b) For each point x in 4©abc, there exists a ray in Sv that passes through x.
(c) Consider the rays in Sv in clockwise order. Then the area of the left circular

triangle increases continuously and monotonically from 0 to Area(4©abc).

Figs. 11(a–d) illustrate Sa, Sb and Sc for different types of circular triangles. The
proof is now similar to the proof of Lemma 5. We first find the trace Ca of a
point x inside 4©abc such that Area(4©xbc) = α, as shown in Fig. 11(e). Note
that the arms bx and cx of 4©xbc are determined by the rays of Sb and Sc that
pass through x. Therefore, each ray in Sa can be intersected by Ca at most once.
We define Cb with respect to Sb analogously. In a similar way to the proof of
Lemma 5, we can prove that Ca and Cb intersect at a single point p such that
Area(4©pbc) = α, Area(4©apc) = β, and Area(4©abp) = γ. It is straightforward
to verify that each of 4©pbc, 4©apc, and 4©abp must be a circular triangle of Type
i, for some i ∈ {0, 1, 2, 3}. ut

Let G be an arbitrary plane 3-tree such the internal faces of G are as-
signed non-negative weights. Given a circular triangle 4©abc of Type i, where
i ∈ {0, 1, 2, 3} such that Area(4©abc) is equal to the sum of the face weights of
G, one can use Lemma 6 to obtain a drawing of G inside 4©abc where the faces
are drawn as circular triangles respecting the prescribed face weights.

Lemma 7. Let G be an arbitrary plane 3-tree such the internal faces of G are
assigned non-negative weights. Let 4©abc be a circular triangle of Type i, where
i ∈ {0, 1, 2, 3} and Area(4©abc) is equal to the sum of the face weights of G.
Then there exists a drawing of G inside 4©abc such that each face of G is drawn
as a circular triangle of type 0, 1, 2 or 3 with area equal to its prescribed weight.

We are now ready prove the main result of this section.

Theorem 6. Let A be a table with m rows and n columns of non-negative num-
bers. Let C be an arbitrary circle with area equal to the sum of the numbers of A.
Then there exists a cartogram of A in C where every face is a circular triangle.
If all numbers in A are positive then the cartogram is perfect.
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Proof. Similar to the proof of Theorem 3, we first find the largest index k such
that the sum of the numbers in rows 1, 2, . . . , k − 1 is less than S/2. We may
choose λ ∈ (0, 1] such that

∑
1≤i≤k−1 Si + λSk = S/2. We then define the

tables At and Ab with respect to row k. We next find a zigzag path in G that
divides the circle into circular triangles of Type 0. Finally, we use Lemma 6 to
compute the cartograms of the columns of At and Ab that correspond to those
circular triangles, and remove the segments on the zigzag path to merge the cells
corresponding to the row k of A. ut

B.3 Table Cartogram on a Sphere

In this section we show that one can compute a cartogram of a table on the
surface of a sphere. The idea is to first construct a cartogram1 of the table on a
cylinder, and then use the map projection techniques that preserve area [10, 17]
to find a cartogram on the sphere. There are several well studied area preserving
map projection techniques such as Lambert’s cylindrical equal-area projection,
Lambert azimuthal equal-area projection, or Hammer-Aitoff Equal-Area Projec-
tion. Here we use Lambert’s cylindrical equal-area projection.

Lemma 8. Let A be a m×n table of non-negative numbers. Let H be a cylinder
with surface area equal to the sum of the numbers of A. Then there exists a
cartogram of A on H.

Proof. The case when n = 1 is straightforward. Therefore, we assume that n ≥ 2.
Let h be the height and r be the radius of H. If n is even, then we first compute
a cartogram on a rectangle H of height h and width 2πr in a similar way as
in the proof of Theorem 3. However, the vertices on the left side of H may not
match the vertices on the right side of H when we wrap H into a cylinder. So
we merge the leftmost and rightmost triangles formed by the zigzag path in H
and find the cartogram of columns 1 and n of At in the resulting triangle using
Lemma 2. This process is shown in Figs. 8(a–d).

If n is odd, we equally divide the leftmost column into two columns and
move one of these columns to the right of A, as shown in Figs. 8(e–f). We then
compute the cartogram, as in the case when n is even, and remove the segments
that separate the divided leftmost column of At, and the (infinitesimal) segments
that separate the divided leftmost column of Ab, as in Fig. 8(g–h).

In both of these cases, we can compute a perfect cartogram if all numbers in A
are positive, as in Theorem 3. When n is even, the faces are convex quadrilaterals.
However, when n is odd, the faces with areas from the leftmost column of A may
be concave hexagons, as shown in Fig. 8(h). ut

We now use Lambert’s cylindrical equal-area projection to find a cartogram
of A on the sphere.

Theorem 7. Every m × n table of non-negative numbers admits a cartogram
on a sphere.

1 This cartogram may have non-convex faces.

17



A major problem of using an equal area projection to compute cartograms
on a sphere is the distortion of shapes. Therefore, it is worth investigating new
algorithms that can produce aesthetically pleasing cartograms on a sphere.
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