
The Complexity of Sorting

with Networks of Stacks and Queues

Stefan Felsner Martin Pergel⋆

Institut für Mathematik,
Technische Universität Berlin.

felsner@math.tu-berlin.de

Department of Applied Mathematics (KAM),
Charles University Prague.

perm@kam.mff.cuni.cz

Abstract. We consider a sorting problem on networks whose nodes are
storage elements of type stack or queue. A railway switchyard could be an
instance of such a network. Given is an input node where a permutation
of items 1 to n is delivered and an output node where they are expected in
sorted order. How many moves, where an item is transfered from one node
to an adjacent node, are needed in the worst case for the sorting? Among
others we have the following results: A characterization of networks where
the sorting complexity is Θ(n log n). A lower bound of Ω(n2−ǫ) for the
network consisting of only two stacks that can exchange items.

1 Introduction

In 1972 Tarjan published the article “Sorting Using Networks of Queues and
Stacks” [8]. Tarjan’s model consists of an acyclic directed graph, alternatively
called network or switchyard, with a designated input node s and output node t
and additional nodes representing storage buffers of type Q (queue) or S (stack).
Suppose a permutation i1, i2, . . . , in of items 1, . . . , n is entered at the source
node of the network, the question is whether they can be sorted, i.e., whether
there is a sequence of moves such that the items arrive at the output node in
the correct order. A move consists of choosing an edge e = (i, j) and transferring
the item that can be extracted at i through e and insert it into the storage at j.

The question could be answered for some special types of networks. The first
result being Knuth’s characterization of permutations that can be sorted with
a single stack as those avoiding the pattern 231, see [5, Exercises 2.2.1.2–6].
This line of research leads to the study of permutation classes, c.f. Bóna [3, 4].
A related line of research deals with token passing, in this model the nodes of
the network are allowed to hold only a single item, again characterizations of
sortable permutations are a central topic, e.g. Atkinson et al. [2]. Amato et al. [1]
study the problem of reversing a train with a spur line just large enough to hold
a single car. They have results for several cost models.

In this paper we shift the focus from existence to complexity. Quoting Tarjan:
“A circuit in the switchyard will allow us to sort any sequence”, thus when
looking at ‘cyclic’ networks we may ask the questions:

How many moves are needed in the worst case to sort a permutation of
n items in a given network?

⋆ Support of grant GAUK 154907 is gladly acknowledged.

We feel that the question is well motivated from a practical point of view, after
all switchyards are cyclic in general and a specific order of the wagons of a train
may be requested. Figure 1 shows a network with two stacks. The ability to use
the track connecting the two stacks in two directions transforms the classical
2-stack problem into a ‘cyclic’ 2-stack problem as investigated in Theorem 3.

stack 1stack 2

inout

Fig. 1. If the track between the stacks is directed we have 2 stacks in series, the
permutation 2435761 is unsortable, making the track bidirectional allows to sort every
input.

We were motivated to investigate the problem by discussions with König
and Lübbecke [6]. They ask for approximation algorithms for a problem in steel
processing where steel slabs are moved into a warehouse where they have to be
placed on a fixed number of stacks. The aim is to allow extraction of the slabs
in a prescribed order such that the amount of rearrangement (stack to stack
transfers) is minimized. The hardness of the optimization problem is shown
in [7].

In Section 2 we consider networks consisting of k communicating stacks, i.e.,
there is a directed edge between each ordered pair of stacks. We determine the
asymptotic worst case for the number of moves required to sort in such a network
for different choices of k. For k ≥ 3 constant the complexity is Θ(n log n), for
k ∼ log n it is Θ(n log n

log log n) and for k =
√

n it is exactly 3n − √n. In the case

k = 2 we complement the trivial upper bound of O(n2) with a lower bound of
Ω(n2−ǫ) for all ǫ > 0.

Section 3 deals with general networks. We identify two simple substructures
of networks that allow sorting with O(n log n) moves. Networks avoiding these
substructures are ‘almost acyclic’. We show that the sorting complexity on such
networks depends on the length of certain paths. In the conclusion we have
collected some open problems.

2 Communicating Stacks

In this section we analyze the sorting complexity for networks of k communi-
cating stacks. Such a network consists of input and output nodes s and t and k
additional nodes each representing an unbounded stack, i.e., a storage of last-in-
first-out type. There are edges (s, i), (i, j) and (j, t) for all i, j 6= s, t. Recall that
we assume that the input to the sorting network consists of some permutation
π of items numbered 1, 2, . . . , n.

2.1 The upper bound

Let us begin considering the case k = 3 and let S0, S1 and S2 be the three
stacks. The idea for the algorithm is to sort by recursive splitting. First the
input is distributed on the stacks such that S0 contains a block consisting of the
n/3 smallest items, the block on S1 consists the middle third of the items and
the block on S2 consists of the largest third of the items. The three blocks will
be sorted and sent to the output one after the other. To begin with the block
B0 from S0 is extracted. The smaller half of the items, i.e., those with a number
smaller than the median of B0, are moved to S2 and the larger half the items,
i.e., the remaining ones, are moved to S1. This makes new blocks B′

2 and B′
1 on

top of the blocks B2 and B1. Recursively first sort B′
2 and then B′

1. If a block
to be sorted in the recursive process is of size 1, then this item is sent to the
output.

For a more formal description we need to enhance each block B with infor-
mation about the items in it, in particular we need min(B) and max(B) to be
the smallest and largest numbers of items in B and stack(B) to be the index
of the stack of B, we use arithmetic modulo 3 on these indices. Here is a code
describing the recursion.

sort(B)

if |B| = 1 then output this item

else

i← stack(B)

m← ⌊min(B)+max(B)
2 ⌋

create a new block B− on Si−1

min(B−)← min(B) and max(B−)← m

create a new block B+ on Si+1

min(B+)← m + 1 and max(B+)← max(B)

for b ∈ B do

if b ≤ m then move b to B− else move b to B+

sort(B−)

sort(B+)

Correctness of the procedure follows from the fact that the algorithm always
acts on the block containing the smallest items that have not yet been moved
to the output. For the complexity note that when an element is moved, then it
is transfered from a block B to a block whose size is only half of the size of B.
Hence after log2 n move operations the element is in a block of size 1 and will
be output.

The procedure is easily generalized to the case of networks with k > 3 com-
municating stacks. In that case a block can be split into k − 1 parts and the
total number of moves between stacks is bounded by n logk−1(n). Note that in
this analysis we have already included the cost of moving items from the input

to their initial blocks. Adding one unit per item for the move to the output we
obtain a bound of n(logk−1(n)+1) for the total number of moves. The following
simple observation allows to improve this slightly. Whenever, sort(B) is called
the smallest element of the block can be moved directly to the output. Doing
this saves at least one move for every recursive call. The number of recursive
calls equals the number of inner nodes of a full (k − 1)-ary tree with n leaves,
i.e., it is n−1

k−2 .

Theorem 1. Every permutation π of 1, . . . , n can be sorted in a network of
k ≥ 3 communicating stacks with at most n logk−1(n) + n− n−1

k−2 moves.

Let us look at two particular values.
If k = log(n) + 1 the cost per item is a = loglog(n)(n) = log n

log log n .

If k =
√

n + 1 the cost per item is a = log√n(n), i.e., (
√

n)a = n and

a = 2. From the theorem we get the upper bound 3n − √n for the number of
moves. This number of moves is also enough if we have one stack less, i.e., for
k =
√

n: Split the elements into
√

n blocks of size
√

n, when processing a block
the smallest goes to the output and the others are intermediately placed in the√

n− 1 other stacks. Hence
√

n items are moved only twice and all others three
times. Note that an additional smallest element 0 can be processed with two
additional moves. When it arrives it is immediately moved to the output.

For completeness some word about the case k = 2. In this case sorting can be
accomplished by keeping all items together in one block which is moved hence
and forth between the two stacks. In each transfer of the block the smallest
remaining element is directly moved to the output. Hence the size of the block
is decreasing and the overall complexity is at most

(

n+1
2

)

.

2.2 Lower Bounds

For the lower bound we only consider permutations with the least element last.
This property implies that all elements have to be inserted into the stacks before
the first element can be moved to the output. This restriction is natural when
the stacks model the store at some transportation hub. Following König and
Lübbecke we refer to the restriction as the midnight constraint.

The idea for the lower bounds is to define an encoding for a sorting procedure.
Different input permutations shall require differently encoded sorting procedures.
Hence the number of different encodings of sorting procedures for n items must
be at least n!. In the computations we use Stirling’s formula n! ≈ (n

e)n
√

2πn to
approximate n!.

A move of an item from stack i to stack j will be encoded as a pair (i, j). A
move from the input to stack i or from this stack to the output will be encoded as
(i, i). A sorting procedure is a sequence of moves, hence, a list of such pairs. Since
we have k2 pairs there are k2t possible sequences that potentially encode a sorting
with t moves. The inequality k2t ≥ n! > (n

e)n yields 2t ≥ n logk(n)−O(n), i.e.,

for n large t has to get arbitrarily close to n log(n)
2 log(k) .

For k ≥ 3 we thus obtain upper and lower bounds differing only by the small

factor 2 log(k)
log(k−1) , that is by a factor ≤ 3.2.

Theorem 2. The worst case complexity for sorting n elements in a network of
k ≥ 3 communicating stacks is at least n

2 logk(n)−O(n).

For k =
√

n we can point to a specific permutation that maximizes the
number of moves required. Consider the permutation π = 1, 2, 3, . . . , n, 0. The
element 0 at the end enforces the midnight constraint. Consider the position of
the n items in the stacks right after inserting element 0. For a consecutive pair
a below b on any of these stacks we either have a < b and b has to be displaced
before a can be output or we have a > b and if b 6= 0 it has been moved after the
arrival of a. Hence, there is a stack to stack move for all elements except 0 and the
lowest of each stack. This gives a total of at least 3(n+1)−√n−1 = 3n−√n+2
moves. Together with the sorting described in the previous subsection we have
the proposition.

Proposition 1. The worst case complexity for sorting n + 1 elements in a net-
work of

√
n communicating stacks is precisely 3n−√n + 2.

2.3 Two Communicating Stacks

Again we assume the midnight constraint, i.e., the largest element comes last.
Consider the position of the n elements in the two stacks at midnight, i.e., right
before the first element is moved out. Imagine the two stacks horizontally sticked
together top to top, this shows a permutation of all the elements, this is the
midnight permutation σ of the process. Remarkably the pair (π, σ) uniquely
describes a sorting π → id on the two stacks network. A good way of visualizing
the process is to keep the stacks sticked together linearly from the beginning and
to think of an operating head moving left and right over this linear structure,
push and pop operations always take place at the position of the head. Figure 2
shows an example.

To encode the sorting process we describe the movement of the head between
consecutive in- resp. out-moves. Such a movement is readily described by a di-
rection a ∈ {ℓ, r} indicating whether the head moves left or right and a distance
b for the move, clearly with 0 ≤ b ≤ n−1. In total we have 2n such pairs (ai, bi),
i = 1, .., 2n. Actually, there are only 2n − 2 movements of the head but such
details disappear in the asymptotic analysis, hence, we will continue ignoring
them. The total complexity of the sorting is t = 2n+

∑

i bi. For a fixed t we may
consider (bi)i as a composition of the number t − 2n with 2n parts. Therefore,
there are at most 22n

(

t
2n

)

choices of 2n pairs (ai, bi) respecting the sum con-
straint. Sorting codes of different permutations have to be different, therefore, t
has to be large enough for 22n

(

t
2n

)

≥ n!.

If t satisfies 22n
(

t
2n

)

≥ n! then 22n t2n

(2n)! ≥ n!, hence, 22nt2n ≥
(

n
e

)n(

2n
e

)2n

and t2n ≥
(

n
e

)3n
. Taking the 2nth root yields t ≥ c n3/2. This is already well

above the Θ(n log(n)) complexity obtained for k ≥ 3 stacks. With an additional
idea we will squeeze more out of this approach.

The idea is that if π is effectively sortable via the midnight permutation σ
and σ′ is close to σ, then the cost of sorting π via σ′ will not be much higher,

3
8
5
4
6
7
2
1

π

1
2
3
4
5
6
7
8

id

3 4 2 1 5 7 86σ =

in() pushL

in() pushR

in() pushR

in() pushL

popR pushL in() pushL

in() pushR

popL pushR popL pushR in() pushL

in() pushL

popL out()
popL out() popL pushR

popL out()
popR out()
popR out()
popR out()
popR out()
popR out()

Fig. 2. Sorting the input permutation π = 38546721 via σ = 34215678. Time corre-
sponds to the vertical axis, movements of the head are horizontal arrows. The four
extra moves where an element has to switch between stacks are indicated by squares.
On the right we give the sequence of stack operations for sorting π via σ.

hence, an effectively sortable π has many effective sortings. To make this precise
we begin with a notion of closeness: Given a parameter 0 < α < 1 we say that
σ and σ′ are α-close if they have the same elements in the interval between
positions ⌊p nα⌋ and ⌊(p + 1) nα⌋ − 1 for each p ≥ 0. The concept is illustrated
in Figure 3. For later use we note that the equivalence classes of α-closeness are

of size (nα)!
n/nα

= (nα)!
n1−α

≥ (nα

e)
n
.

σ

σ
′ . . .

. . .

Fig. 3. A typical pair of α-close permutations, each of the n
1−α blocks of length n

α is
permuted independently.

Lemma 1. If sorting π with midnight permutation σ requires at most c n1+α

moves and σ′ is α-close to σ, then the sorting of π with midnight permutation
σ′ requires at most (c + 4) n1+α moves.

Proof. By exchanging σ and σ′ the distance of each of the 2n movements of the
head can increase by no more than 2nα. This adds up to no more than 4n1+α.

Being interested mainly in the exponent 1 + α of the sorting complexity we

may thus assume that every permutation has (nα)!
n1−α

different sortings of this

complexity. For the required number t of moves we need 22n
(

t
2n

)

/(nα)! n1−α ≥ n!.
This allows to estimate t as follows:

22n t2n

(2n)!
≥ n!

(nα

e

)n

=⇒ 22n t2n ≥
(n

e

)n(2n

e

)2n(nα

e

)n

=⇒ t2n ≥
(n3+α

e4

)n

=⇒ t ≥ 1

e2
n

3+α
2

Any t satisfying the last inequality is in Ω(n1+α), i.e., the additional moves
for replacing a midnight permutation σ by an α-close σ′ can be afforded. The
bound for t holds for every α < 1 we thus obtain:

Theorem 3. The worst case complexity for sorting n elements in a network of
two communicating stacks is at least Ω(n2−ǫ) for all ǫ > 0.

3 General Networks

To avoid trivialities we assume that every node of a given network is contained
in some directed s− t path and that a stack-node never has a loop. In the first
part of this section We identify two simple substructures S1, and S2 of networks
that allow sorting with O(n log n) moves.

Networks avoiding the substructures S1 and S2 will be called almost acyclic.
They have strongly connected components of very restricted type only. For such
networks with a path containing r components that do not consist of a single
node without loop we prove that sorting is possible in O(n1+ 1

r) moves. If every
s− t path intersects at most r strong components, then there is a lower bound
of Ω(n1+ 1

2r).

3.1 Strong Substructures

We first describe the two substructures allowing fast sorting. They are:

(S1) Three stacks S1, S2 and S3 and paths p1 : S1 → S2, p2 : S2 → S3 and
p3 : S3 → S1.

(S2) A queue Q, an a second node T , either stack or queue, with paths p1 :
Q→ T , p2 : T → Q and in the case where T is a queue an additional path
q : Q → Q that avoids T , q may be a loop. In the case where T is a stack
the concatenation of p1 and p2 can replace q.

The analysis for case S1 is an obvious reduction to the situation with three
communicating stacks analyzed in Section 2. Move all items from s to one of
the stacks and then use the splitting scheme from Subsection 2.1. When an item
has to be moved from a block on stack Si to a block on stack Sj we move them
along an appropriate concatenation of the paths p1, p2, p3. This yields a sorting
with cn log n moves, where c depends on the length of the paths pi.

A sorting strategy for case S2 also uses blocks and splitting. The block B
that has to be processed will be in the front of Q. Small elements from B are
moved via q to the back of Q where the block B− is created. Large elements are
parked in the block B+ on T . When the processing of B is complete the content
of T is also moved to the back of Q. The start is with a single block consisting of
all elements on B. A round is a period of time in which every element is moved
into a new block. The size of the blocks is essentially halved in each round.
When blocks have size 1 we have a completely sorted list on Q and are done.
The complexity is c n times the number of rounds, i.e., c n log n.

Note that the argument preceding Theorem 2 applies to arbitrary networks
with a constant number k of nodes and thus yields a general lower bound of
order Ω(n log n) for the worst case sorting complexity.

Proposition 2. The sorting complexity on networks with a constant number k
of nodes that contain a substructure of type S1 or S2 is Θ(n log n).

3.2 Almost Acyclic Networks

Networks avoiding the substructures S1 and S2 are called almost acyclic. Their
strong components are either trivial, i.e., consisting of a single node without
loop, or they consist of a simple cycle of queues, this may also be a single queue
with a loop, or they consist of two communicating stacks.

Let us consider a network with an s− t path containing k nontrivial strong
components. Let C1, . . . , Ck be the order of the components on the path. In
the following description of a sorting procedure we again use the terminology of
blocks. At the beginning all items form a single block on C1. When a component
is empty it may receive a new block from the preceding component. A block sent
from Ci to Ci+1 always consists of (approximately) ai items, where ai = n1− i

k .
When component Ci is non-empty and Ci+1 is allowed to receive a block, then
Ci looks at all items it holds and sends the ai smallest. The numbers are set up
such that Ck will send singletons to the output. Since at every moment of time,
when two components Ci and Cj with i < j are non-empty, all items on Ci are
larger than any item on Cj it follows that the process yields the sorted sequence
at the output.

Every block received by Ci is of size ai−1 = n
1
k ai and every block sent by Ci

is of size ai. Therefore, each element is ‘looked at’ at most n
1
k times within the

component. The number of moves of an element in a component is proportional
to the number of looks at it. This makes a cost of O(n1+ 1

k) per component.

This makes a total of O(k n1+ 1
k) moves. For k constant this is O(n1+ 1

k) while
for k ∼ log n it is O(n log n).

Theorem 4. Almost acyclic networks with an s− t path containing k nontrivial
strong components can sort with O(k n1+ 1

k) moves.

In Subsection 3.3 we deal with a special class of almost acyclic networks where
the result of the theorem is best possible. First, however, we go for a general
lower bound. Again, the method of choice is to use an appropriate encoding.

We start considering a network consisting of a linearly arranged sequence of
k strong components. Collapsing the strong components this reduces to a single
s− t path with k nodes. To encode a sorting consisting of t moves we first break
the sequence at transition moves, i.e. moves where an element is transfered from
one component to the next. We assume that the sorting is normalized in the
sense that between a transition move bringing an item from Ci to Ci+1 and
the next transition move there are only moves within Ci and Ci+1. From the
structure of the strong components it follows that for each component all that
matters is the direction of the movement and the number of elements moved.
Hence, we can encode the transition move with the index i of the component
and the action on Ci and Ci+1 by two bits b, b′ and two numbers x and y. There
is a total of kn transition moves, hence, we get a sequence of kn encoding tuples
(ij , bj , b

′
j , xj , yj). For the bits and the leading indices there are at most (4 k)kn

choices. The numbers satisfy
∑

j xj + yj < t, hence, there are at most
(

t
2kn

)

possibilities for them.
The computation that follows is similar to what we did in Subsection 2.2.

Requiring that t is large enough such that all input permutations consisting of
n items can be sorted implies an inequality:

(4 k)kn

(

t

2kn

)

≥ n! =⇒ (4 k)kn t2kn

(2kn)!
≥ n! =⇒

(2
√

k t)2kn ≥
(n

e

)n(2kn

e

)2kn

=⇒ t2kn ≥
(n

e

)(2k+1)n

kkn =⇒ t ≥ c n
(2k+1)

2k .

Consider an arbitrary almost acyclic network with a constant number k of
strong components. There is ‘only’ a constant, say kk, number of s − t path in
the network. Therefore, in a sorting of n items there is a path taken by linearly
many of the items. Applying the previous consideration to this path we conclude:

Theorem 5. An almost acyclic network containing a constant number k of
strong components requires Ω(n1+ 1

2k) moves for sorting.

In the following subsection we consider two special cases of almost acyclic
networks. In both cases we can improve upon the lower bound of the theorem.

3.3 Sequences of Looped Queues and Doublestacks

In this subsection we consider almost acyclic networks consisting of a single s− t
path of k strong components. We investigate two particular instances:

(1) Each strong component is a cycle of queues or a single queue with a loop.

(2) Each strong component is a doublestack, i.e., a pair of communicating stacks.

Let NQk be the first of these instances, and let Zi, i = 1, .., k, denote the ith
cycle of queues along the path. The input permutation is π = n, n − 1, . . . 2, 1.
It will be shown that a sorting of π in NQk requires at least Ω(n1+ 1

k) moves.

Consider a sorting procedure and associate a vector q(x) ∈ N
k with every

number x ∈ {1, .., n}. The component qi(x) of this vector records the number of
rounds item x makes on Zi during the sorting. To account for the move of the
element from Zi to Zi+1 the actual value of qi(x) is one more than the number
of rounds. Hence, in the case where each Zi consists of a single queue with a
loop, the total number of moves of the sorting is exactly

∑

i,x qi(x).
Observe that during a sorting for every given pair of numbers x < y there

is an i such that y is overtaken by x in Zi, i.e., x arrives later in Zi but leaves
earlier, in particular qi(x) < qi(y). This implies that the vectors q(x) are pairwise
different.

Lemma 2. There is a constant ck depending only on k such that

n
∑

x=1

k
∑

i=1

qi(x) ≥ ck n1+ 1
k

for every set of n pairwise different vectors q(x) ∈ N
k.

Before proving the lemma we shall point to its consequence. We get a lower
bound matching the upper bound from Theorem 4:

Proposition 3. Sorting the reverse permutation π on the network NQk con-
sisting of k cycles of queues along a path requires Ω(n1+ 1

k) moves.

Proof of the lemma. A set Q of n different positive vectors minimizing the sum
has to be packed in the sense that there is a k-dimensional simplex ∆0

k(r) spanned
by 0 and the k vectors r ei such that all integral points in the open interior of
∆0

k(r) belong to Q and no point outside of ∆0
k(r) belongs to Q.

Every q ∈ Q is the maximal corner of a unit-cube Cq contained in ∆0
k(r),

therefore,
rk

k!
= Volk(∆0

k(r)) ≥ n =⇒ r ≥ k

e
n

1
k .

¿From
∑

i qi ≥
∫

Cq
(
∑

i xi) dx for every q ∈ Q we get

∑

q∈Q

∑

i

qi ≥
∫

∆0
k
(r)

(
∑

i

xi) dx =

∫ r
√

k

t=0

t · Volk−1(∆k−1(t)) dt,

where ∆k−1(t) is the (k− 1)-dimensional simplex spanned by the k vectors t ei,
i.e., ∆k−1(t) is a regular simplex with sidelength

√
2t. The volume of the regular

k-dimensional simplex with sidelength one is
√

k+1√
2

k
k!

, hence, Volk−1(∆k−1(t)) =
√

k
(k−1)! tk−1. Using this in the above integral and substituting for r yields the final

inequalities:

∑

q∈Q

∑

i

qi ≥
k
√

k

(k + 1)!

(r√
k

)k+1

≥ k
√

k

(k + 1)!

kk+1

(e
√

k)k+1
n

k+1
k = ck n1+ 1

k .

Let NSk be an almost acyclic networks consisting of a single s− t path of k
doublestacks. A lower bound for the number of moves required to sort on NSk

was given in Theorem 5. To improve upon this bound we use terminology and
the idea from the proof of Theorem 3. We assume that the input permutation
has the least element last, i.e., the midnight constraint is enforced. Consider
the arrangement of items on doublestack i at midnight, this is a sequence σi.
The concatenation of these sequences is a permutation σ split into k pieces
σ = (σ1, σ2, . . . , σk), in the following we refer to such a permutation as splitted
(midnight) permutation. Two splitted permutations σ and σ′ are α-close if for
all i: σi and σ′

i contain the same items and they are α-close in the old sense, i.e.,
they contain the same items in their buckets of length nα. Equivalence classes

of α closeness are of size at least (nα)!
n/nα−k

. Since k is a constant we may still

estimate this size as (nα

e)n.

Lemma 3. If sorting π on NSk with splitted midnight permutation σ requires
at most c n1+α moves and σ′ is α-close to σ, then there is a sorting of π with
splitted midnight permutation σ′ that requires at most (c + 4 + k) n1+α moves.

Proof. The sorting with σ′ reproduces the original sorting with σ as close as
possible, i.e, the sequence of moves where elements are sent to the next dou-
blestack are identical, moreover, if x is an element belonging to piece σj , then
then position of x in the sequence of each doublestack i with i 6= j is exactly the
same in both sortings. Hence, all additional moves that are associated with x
occur when x is inserted or removed from doublestack j. These additional moves
are of two types:

• The head is passing an element y that belongs to the block of x, i.e., to the
interval of length nα on σj containing x. There are at most 2nα such moves
associated with the insertion of x into doublestack j and again 2nα moves
associated with the removal.

• The head is passing an element z belonging to a piece σi with i 6= j. For
this to happen it must be that in one of the two sortings x is left of z and
in the other it is right of z, i.e., the position of z is in the range spanned by
elements the block of x. This kind of move is assigned to z. While sitting on
doublestack i element z can cause at most nα such moves. Altogether there
are at most k nα such moves assigned to z.

Summing over all x and z we can bound the number of additional moves by
n (4 + k) nα.

Given the lemma we can redo the computation preceding Theorem 5:

(4 k)kn

(

t

2kn

)

≥ n!(
nα

e
)n =⇒ t ≥ c n1+ 1+α

2k .

The choice of α is restricted by the condition that there is additional work
of order n1+α. Hence we need 1 + α ≤ 1 + 1+α

2k , i.e., the best we can do is to
choose α = 1

2k−1 . This yields the proposition:

Proposition 4. Sorting n elements on the network NSk consisting of k dou-

blestacks along a path requires at least Ω(n1+ 1
2k−1) moves in the worst case.

Conclusion

We have analyzed the sorting complexity of networks of stacks and queues. In
most cases we could prove upper and lower bounds that are at least reasonably
close. Some questions are left open or raised by our results. To us the single most
intriguing problem is the following:

• Is it possible to sort on two communicating stacks with o(n2) moves?

One of the aspects where networks of queues and networks of stacks differ is
that in the former case we could get lower bounds by analyzing a specific input
permutation while in the second case we had to rely on counting arguments. It
would be interesting to get hand on explicit permutations that are hard to sort
on a given network of stacks, e.g., on NSk.

A related line of questions is opened if we fix an input permutation and ask
for the optimal sorting on a given network. As mentioned in the introduction
some instances of the problem have been shown to be computationally hard by
König et al. [7]. Again the case of the network consisting of two stacks seems to
be challenging.

• Is it hard to compute an optimal sorting for an input permutation π on a
network of two communicating stacks?

• Is it possible to approximate the sorting complexity of π on a network of
two communicating stacks in polynomial time?

References

1. N. Amato, M. Blum, S. Irani and R. Rubinfeld, Reversing trains: a turn of the

century sorting problem, J. Alg., 10 (1989), 413–428.
2. M. D. Atkinson, M. J. Livesy, and D. Tulley, Permutations generated by token

passing in graphs, Theor. Comput. Sci., 178 (1997), 103–118.
3. M. Bóna, A survey of stack-sorting disciplines, Electr. J. Combin., 9(2) (2003), A1,

16 pages.
4. M. Bóna, Combinatorics of Permutations, Chapman & Hall, 2004.
5. D. E. Knuth, The Art of Computer Programming, Vol. 1, Addison-Wesley, 1968.

Third ed., updated and revised 1997.
6. F. G. König and M. E. Lübbecke, Sorting with Complete Networks of Stacks,

TU Berlin, Mathematik, Preprint 036-2007.
7. F. G. König, M. E. Lübbecke, R. H. Möhring, G. Schäfer, and I. Spenke,

Solutions to real-world instances of Pspace-complete stacking, in Proceedings ESA
’07, vol. 4698 of Lecture Notes Comput. Sci., Springer-Verlag, 2007, 729–740.

8. R. Tarjan, Sorting using networks of queues and stacks, J. Assoc. Comput. Mach.,
19 (1972), 341–346.

