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Abstract

A straight-line triangle representation (SLTR) of a planar graph is a
straight-line drawing such that all the faces including the outer face are
triangles. Such a drawing can be viewed as a tiling of a triangle with tri-
angles where the input graph is the skeletal structure. A characterization
based on flat angle assignments, i.e., selections of angles of the graph that
are of size π in the representation, has been presented in earlier work. The
drawback of this characterization of SLTRs is that we have no efficient al-
gorithm for testing whether a given graph admits a flat angle assignment
that fulfills the conditions.

In this paper we present a new characterization based on Schnyder
woods. For graphs with few Schnyder woods there exists a polynomial
algorithm to check whether the conditions of this characterization are
satisfied. However, there are planar 3-connected graphs on n vertices,
which have 3.209n Schnyder woods. We also present a translation of the
new characterization into a 2-commodity flow problem. Deciding whether
a 2-commodity flow problem has an integral solution is known to be NP-
complete. Hence, it is still open to decide whether the recognition of
graphs that admit a straight line triangle representation is polynomially
tractable.

1 Introduction

In this paper we study a representation of planar graphs in the classical setting,
i.e., vertices are represented by points in the Euclidean plane and edges are
represented by non-crossing continuous curves connecting the points. We aim
to classify the class of planar graphs that admit a straight-line representation
in which all faces are triangles. Haas et al. present a necessary and sufficient
condition for a graph to be a pseudo-triangulation [13], however this condition is
not sufficient for a graph to have a straight-line triangle representation [1]. There
have been investigations of the problem in the dual setting, i.e., in the setting
of side contact representations of planar graphs with triangles. A graph is a
Touching Triangle Graph (TTG) if it admits a representation where each vertex
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is represented as a triangle and each edge e is represented as a side contact of the
triangles that correspond to the end vertices of e. We call such a representation
proper if it determines a tiling of a triangle, where each tile corresponds to a
distinct vertex of the input graph. A straight-line representation of a graph
G in which all the faces are triangles, is a proper TTG of the weak dual of
G. Gansner, Hu and Kobourov show that outerplanar graphs, grid graphs and
hexagonal grid graphs are TTGs. They give a linear time algorithm to find a
TTG [11]. Fowler has given a necessary and sufficient condition for a special
type of outerplanar graphs to be proper TTG [9]. Kobourov, Mondal and
Nishat present construction algorithms for proper TTGs of 3-connected cubic
graphs and some grid graphs. They also present a decision algorithm for testing
whether a 3-connected planar graph is a proper TTG [14]. Gonçalves, Lévêque
and Pinlou consider a primal-dual contact representation by triangles, i.e., both
the faces as well as the vertices are represented by triangles. They show that
all 3-connected planar graphs admit such a representation [12].

Here is the formal introduction of the main character of this paper.

Definition 1 (Straight Line Triangle Representation) A plane drawing of
a graph such that

- all the edges are straight-line segments and
- all the faces, including the outer face, are non-degenerate triangles,

is called a Straight Line Triangle Representation (SLTR).

Figure 1: A graph and one of its SLTRs Figure 2: The cube graph.

To simplify the discussion we assume that the input graph is given with
a plane embedding and a selection of three vertices of the outer face that are
designated as corner vertices for the outer face. These three vertices are called
suspension vertices. If needed, an algorithm may try all triples of vertices as
suspensions.

Clearly every straight-line drawing of a triangulation is an SLTR. So the class
of planar graphs admitting an SLTR is rich. On the other hand, graphs admit-
ting an SLTR cannot have a cut vertex. Indeed, graphs admitting an SLTR are
essentially 3-connected, cf. [2, Proposition 1] and the following paragraph.

A plane graph G with suspensions s1, s2, and s3 is said to be internally 3-
connected when the addition of a new vertex v∞ in the outer face, that is made
adjacent to the three suspension vertices, yields a 3-connected graph. From [2,
Proposition 1] it follows that a graph that is not internally 3-connected but does
admit an SLTR is a subdivision of an internally 3-connected graph. Therefore,
we may assume that the graphs we consider, are internally 3-connected. Being
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well connected, however, is not sufficient as shown e.g., by the cube graph (see
Figure 2).

Results and Organization. In this paper we give a characterization of
SLTRs in terms of flat angle assignments and accompanying Schnyder label-
ings. Using this characterization we describe an algorithm to decide whether
a graph admits an SLTR. The runtime of the algorithm depends on the num-
ber of different Schnyder labelings that the input graph admits. In Section 2
we introduce the previous results on SLTRs as well as Schnyder labelings. In
Section 3 we obtain a characterization in terms of flat angle assignments and
Schnyder labelings. In Section 4 we describe how to decide whether a graph with
a unique Schnyder labeling has an SLTR. This method can be subsequently used
for different Schnyder woods. In Section 5 we describe an alternative algorith-
mic approach. We describe a 2-commodity network flow problem of which the
feasible integral flows are in bijection to compatible pairs of a flat angle assign-
ment and a Schnyder labeling, in other words the feasible integral flows are in
bijection to SLTRs.

2 Preliminaries

2.1 SLTRs

Let G be a plane, internally 3-connected graph, that has an SLTR. Let s1, s2 and
s3 be the three suspensions. Since G is internally 3-connected, every vertex has
at most one flat angle, i.e., at most one angle of size π in the SLTR. Therefore,
the flat angles can be viewed as a partial mapping of vertices to faces. Since
the outer angle of suspension vertices exceeds π, suspensions have no flat angle.
Since each face f (including the outer face) is a triangle, each face has precisely
three angles that are not flat. In other words, every face f has |f | − 3 incident
vertices that are assigned to f . This motivates the definition:

Definition 2 (FA Assignment) A flat angle assignment (FAA) is a mapping
from a subset U of the non-suspension vertices to faces such that
[Cv] Every vertex of U is assigned to at most one face,
[Cf ] For every face f , precisely |f | − 3 vertices of f are assigned to f .

If an FAA induces an SLTR it is a good flat angle assignment and we abbre-
viate it as a good-FAA. If an FAA induces an SLTR, then the flattened angles
in the SLTR are precisely the assigned angles in the FAA, and if an FAA comes
from an SLTR, the assigned angles in the FAA are precisely the flattened angles
in the STLR. To decide whether an FAA is a good-FAA, we introduce the notion
of combinatorial convex corner.

Definition 3 Given a plane graph G and an FAA ψ of G. Let γ be a cycle
in G. By int(γ) we denote the cycle and all the vertices, edges and faces of G
that are interior to γ or on γ. A vertex v of γ is a combinatorial convex corner
for γ with respect to ψ if
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[K1] v is a suspension vertex, or
[K2] v is not assigned and there is an edge e incident to v with e 6∈ int(γ), or
[K3] v is assigned to a face f , f 6∈ int(γ) and there exists an edge e incident

to v with e 6∈ int(γ).

The main result in [2] implies that an FAA is good, if and only if, every
simple cycle has at least three combinatorial convex corners.

Theorem 1 ([2]) An FAA is a good-FAA, if and only if, every simple cycle
has at least three combinatorial convex corners.

2.2 Schnyder Labelings

Schnyder woods were introduced by Walter Schnyder in the context of the order
dimension of planar graphs [15]. Schnyder woods were originally defined as
an orientation and 3-coloring of the interior edges of a triangulation. Felsner
generalized the theory to 3-connected planar graphs [5]. The theory of Schnyder
woods (and Schnyder labelings) has proven to be very useful in graph drawing.
We will show that it is also useful for the analysis of SLTRs.

Definition 4 (Schnyder Wood) Let G be a 3-connected plane graph with
three suspensions s1, s2, s3 in clockwise order on the boundary of the outer face.
A Schnyder wood is an orientation and labeling of the edges of G with the labels
1, 2, and 3 such that the following four conditions are satisfied1 (see Figure 3).
[W1] Each edge is either unidirected or bidirected. In the latter case the two

directions have distinct labels (see Figure 3).
[W2] At each suspension si there is a half-edge into the outer face with label i.
[W3] Each vertex v has outdegree one in each label. Around v in clockwise

order there is an outgoing edge of label 1, zero or more incoming edges
of label 3, an outgoing edge of label 2, zero or more incoming edges of
label 1, an outgoing edge of label 3 and zero or more incoming edges of
label 2.

[W4] There is no directed cycle in one color.

1

3

3

2

2

2

1
1

2 3
2

W1 W2 W3 L1 L2

Figure 3: The conditions of a Schnyder wood and a Schnyder labeling, it follows
from L1 and L2 that the labels (i, i, i−i, i+1) appear clockwise around an edge.

1The labels are considered in a cyclic structure, such that (i − 1) and (i + 1) are always
well defined.
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Definition 5 (Schnyder Labeling) Let G be a 3-connected plane graph with
three suspensions s1, s2, s3 in clockwise order on the boundary of the outer face.
A Schnyder labeling is a labeling of the angles of G with the labels 1, 2, and 3
such that the following two conditions are satisfied (see Figure 3).

[L1] The labels of an interior face form in clockwise order: a nonempty inter-
val of 1’s, a nonempty interval of 2’s and a nonempty interval of 3’s. At
the outer face these intervals are in counterclockwise order.

[L2] At suspension si the outer angles, divided by the half-edge, have labels
(i+ 1) and (i− 1) in clockwise order. The inner angles at si are labeled
i. Around each non-suspension vertex the labels form, in clockwise order,
a nonempty interval of 1’s, a nonempty interval of 2’s and a nonempty
interval of 3’s.

Schnyder labelings are in bijection to Schnyder woods [6, Theorem 2.3]. A
Schnyder wood can be obtained from a Schnyder labeling by labeling the edge
outgoing from v with label i if it separates an angle at v that is labeled i − 1
from an angle labeled i + 1. On the other hand a Schnyder labeling can be
obtained from a Schnyder wood by labeling all angles clockwise between the
outgoing edge with label i−1 and the outgoing edge with label i with label i+1
(see Figure 4).
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Figure 4: A Schnyder labeling and a Schnyder wood that are in bijection.

A Schnyder wood consists of three spanning trees, rooted in the suspen-
sions [6, Corollary 2.5]. The trees define paths from a vertex to each root.
The paths from a given vertex v to the three roots are disjoint, except for v.
Therefore, we can speak about the number of interior faces between the path
to suspension si−1 and the path to suspension si+1. Associate to each vertex v
a triple (v1, v2, v3) where vi counts the number of interior faces enclosed by the
edge (si−1, si+1), the outgoing (i+ 1)-colored path from v to si+1 and the out-
going (i−1)-colored path from v to si−1 in the Schnyder wood. For each vertex
v1 + v2 + v3 = |F | − 1. A compact straight-line drawing can be obtained using
this vector. Let α1 = (0, 1), α2 = (1, 0) and α3 = (0, 0). A drawing obtained
by face-counting is a mapping µ of the vertices to a 2-dimensional space. Two
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vertices that are adjacent are connected by a straight-line segment.

µ : v → v1α1 + v2α2 + v3α3

Given a planar graph G and a Schnyder wood of G, the drawing D of G obtained
by face-counting is plane and convex [5, Theorem 3].

We state a nice property of this drawing [3, Figure 11 and Lemma 3]. A
drawing and an example of a face with the property below, are depicted in
Figure 5.

Property 1 The vertices of an interior face are placed on the boundary of a
triangle with sides on lines ci(αi−1 − αi+1) for some constant ci. There are no
vertices in the (open) interior of the bounding triangle for the face. The angles
in a face, at the vertices on the line ci(αi−1−αi+1) have label i in the Schnyder
labeling.
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Figure 5: A Schnyder wood and a drawing obtained by face-counting. In the
middle an example of a triangle as in Property 1.

3 Schnyder Labelings and FAAs

In this section we present a new characterization of SLTRs. This characteriza-
tion is based on Schnyder woods and FAAs. In an SLTR every face is a triangle
and the not assigned angles of a face are its corners. We also call the angles
in a graph that are not assigned by some FAA combinatorial corners or simply
corners, for this FAA. Given a Schnyder labeling of a 3-connected plane graph,
the labels of the corners of every face are a subset of {1, 2, 3}.

Definition 6 (Corner compatibility) A pair (Schnyder labeling σ, FAA ψ)
is corner compatible if
[C1] The Schnyder labeling σ and the FAA ψ use the same suspensions.
[C2] Every inner face has a corner in ψ that is labeled 1 in σ, a corner in ψ

that is labeled 2 in σ and a corner in ψ that is labeled 3 in σ.
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The remainder of this section is dedicated to proving that every SLTR has
(at least) a corner compatible pair and every corner compatible pair induces an
SLTR. Note that there exist graphs that have more than one Schnyder labeling
such that at least one Schnyder labeling belongs to a corner compatible pair
and at least one Schnyder labeling does not belong to a corner compatible pair.
An example of such a graph is given in Figure 6.

1 1

1

1 1

11

2

2

2 2

2

2

2

2

1

3

3

3

3 3

3

3

3
3

v

1 1

1

1 1

11

2

2

2 2

2

2

2

2

1

3

3

3

3 3

3

3

3
3

2 1

2 2

Figure 6: Two Schnyder labelings of the same graph. The Schnyder labeling on
the left belongs to a corner compatible pair, a compatible good-FAA is given
by the arrows. The Schnyder labeling on the right does not belong to a corner
compatible pair. An FAA of this graph has to assign each inner vertex, but
vertex v has a unique label in each of its incident faces and therefore, cannot be
assigned.

Theorem 2 Let G be a suspended, internally 3-connected graph. Then G has
an SLTR if and only if there is a corner compatible pair consisting of an FAA ψ
and a Schnyder labeling σ.

Showing that having a corner compatible pair is sufficient for having an
SLTR is fairly easy. The structure of the drawing obtained by face-counting
(see Section 2.2) can be used efficiently to show that every simple cycle has at
least three combinatorial convex corners.

Lemma 1 Let G be a suspended, internally 3-connected graph. If an FAA ψ
and a Schnyder labeling σ are corner compatible, then every simple cycle has at
least three combinatorial convex corners with respect to ψ.

Proof: Let γ be a simple cycle and Fint be the set of interior faces of G. Let
α1, α2, α3 ∈ R2 be three independent vectors, e.g., (0, 0), (0, 1) and (1, 0), and
let D be the drawing of G obtained by face-counting using these vectors. An
example of such a drawing is given in Figure 5. Consider the outline cycle γ
in D. We sweep over D with the line (αi−1 − αi+1), starting at the suspension
si (see Figure 7). Let Mi be the set of vertices of γ that are met first by these
sweeplines (respectively).
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Observation 1. All vertices of a face f with label i inside f are met by the
sweepline (αi−1 − αi+1) at the same time. This follows from Property 1: ‘The
vertices of an interior face are placed on the boundary of a triangle with sides
on lines ci(αi−1 − αi+1) for some constant ci’ (see Figure 7).

Observation 2. For a vertex v ∈Mi, all the angles of v that lie inside γ are
labeled i. The three sweeplines divide the angles of a vertex (see Figure 8). The
angles that lie completely on the opposite side of suspension si with respect to
the line with direction (αi−1 − αi+1) through v are all labeled i.

It follows from Observation 2 that the sets M1,M2 and M3 are disjoint. The
Schnyder labeling and the FAA are corner compatible, therefore, every face has
a corner of label i. Hence, in each set Mi there is a vertex which is not assigned
inside of γ. By convexity of the drawing such a vertex has a neighbor outside
of γ. A vertex in γ that is not assigned inside γ and has a neighbor outside is
a combinatorial convex corner for γ. As the sets Mi are disjoint, each outline
cycle has at least three combinatorial convex corners.

Hence, using Theorem 1 we obtain that ψ induces an SLTR of G. �

Together with Theorem 1 this proves that the FAA is a good-FAA. By
definition we know that a good-FAA induces an SLTR in which the flat angles
are prescribed by the good-FAA ψ.

1 1 1

2
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3

3
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3

Figure 7: A triangle surrounding a
face and the sweeplines.

3

2

1

Figure 8: The separation of the labels
of the angles around a vertex: the an-
gles that lie completely in the arc with
label i, are labeled i.

In the following we will show that for every SLTR there exists a Schnyder
labeling such that the FAA from this SLTR and the Schnyder labeling are corner
compatible. Let G be a suspended, internally 3-connected graph that admits
an SLTR. Let R be an SLTR of G and ψ the FAA induced by R.

First we introduce two geometric objects that will be useful. Examples are
shown in Figure 9.

Definition 7 (Separating (Subdivided) Triangle) A separating (subdivided)
triangle is a triangle in the drawing, formed by some set of edges and three cor-
ners such that:
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• Every boundary vertex of the triangle that is not a corner is assigned
(either inside or outside the triangle), and,

• There is a vertex, which is not one of the corners, that has no neighbor
strictly outside of the triangle and there is a vertex, which is not one of
the corners, that has no neighbor strictly inside the triangle.

Note that this triangle may partly be on the boundary of the drawing.

Definition 8 (Dividing Segment) A dividing segment is a set of edges that
lie on a line such that the union of these edges cuts the drawing into two
nonempty parts. Moreover, every interior vertex v on this segment is assigned
to a face that contains two edges of the dividing segment on its boundary (the
two edges have v as an endpoint).

p

q

(d)(a)

p

(c)

q

(b)

Figure 9: Examples of separating triangles, colored grey in (a) and (b), and of
dividing segments, between p and q, colored grey in (c) and (d).

In order to show that for every SLTR and FAA belonging to this SLTR,
there exists a Schnyder labeling such that the FAA and the Schnyder labeling are
corner compatible, we assume that it is not the case and aim for a contradiction.
Let G be a counterexample with the minimum number of vertices and, subject
to this condition, as few edges as possible. Let R be an SLTR of G, ψ the FAA
belonging to R and s1, s2, s3 the suspensions. We will first show some properties
of R.

Lemma 2 R has no separating (subdivided) triangle.

Proof: Suppose to the contrary that R has a separating (subdivided) triangle
(a, b, c). Let R1 be the part of R that contains everything outside of the sepa-
rating (subdivided) triangle, and the boundary of the separating (subdivided)
triangle. Let R2 be the part of R that contains the inside and the boundary
of the separating (subdivided) triangle (see Figure 10). The vertices on the
boundary of the separating (subdivided) triangle that have degree two in Ri,
are replaced by an edge between their two neighbors in Ri. R1 and R2 are
SLTRs with less vertices than G. Therefore, they cannot be counterexamples.
Hence, there exists a Schnyder labeling that is corner compatible with the FAAs
of R1 and R2. For R2 the vertices a, b, c are the suspensions, the labels of the
suspensions are chosen to coincide with their labels in the now empty triangle
in R1 (renaming the labels does not change the Schnyder labeling). The FAAs
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for the smaller graphs are a subset of ψ, the FAA of G. The Schnyder labelings
combined give a Schnyder labeling σ of G. It follows, from the fact that in R1

and R2 the Schnyder labelings and FAAs are corner compatible, that ψ and σ
are corner compatible, which contradicts the assumption that G does not admit
a compatible pair. Hence, R has no separating (subdivided) triangle. �
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Figure 10: Splitting when R has a separating (subdivided) triangle.

Lemma 3 R has no dividing segment.

Remark. This also implies that there is no degree-2 suspension.

Proof: Suppose to the contrary that there is a dividing segment with p and
q as endpoints. If one of p and q is a suspension, then R has a separating
(subdivided) triangle (see Figure 9 (c)). Moreover, if each side of the dividing
segment contains a suspension of degree more than two, then again R has a
separating (subdivided) triangle (see Figure 9 (d)). Therefore, we may assume
that the dividing segment separates a degree-2 suspension s1, and p and q
are not suspensions. There are two cases. The dividing segment consists of
one edge pq (Case 1) or there is at least one vertex on the dividing segment
between p and q (Case 2).

Case 1. If p or q is a degree-3 vertex there must be a separating (subdivided)
triangle, as pq is an edge (see Figure 11 (a)). This contradicts Lemma 2. So
both p and q have at least degree 4. Recall that the suspension that is separated,
s1, has degree 2 and that G is internally 3-connected. Therefore, all neighbors
of p and q, other than s1, are on the same side of the dividing segment. We
claim that one of the edges ps1 or qs1 can be contracted such that the resulting
graph has an SLTR with the same assignment as G, except for p and q (see
Figure 11 (b)). This does not come for free as s2, q, p (or s3, p, q) becomes a
straight-line segment. Contracting one of the edges ps1 or qs1 could result in a
degeneracy. To obtain a degeneracy in both cases, there have to be two cycles
containing p and q which both have precisely three combinatorial convex corners
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(see Figure 11 (c)). Only then does contracting ps1 as well as contracting qs1
induce a simple cycle with at most two combinatorial convex corners.

2

23

3

s1

1
1

1

2 1

z
wv23

1

2

1 1

p

q

(b)

p

q

(c)

q

p′(a)

p

q

Figure 11: (a) A separating (subdivided) triangle when p has degree 3, there
cannot be edges or vertices in the grey area. (b) Contracting and decontracting
the edge ps1. (c) The paths that induce a degeneracy after contracting ps1
or qs1; the angle at z with the red arc is strictly smaller than π.

Let v and w be the third corners of these cycles (see Figure 11 (c)). There
exists a path from q to v and similarly a path from p to w. These paths belong
to the cycles. To induce a degeneracy when ps1 or qs1 is contracted, such a path
cannot contain a corner besides its endpoints. Hence, it is a straight-line path
in the SLTR or ‘steeper’, i.e., it has concave angles in the interior of the cycles
p, q, v or p, q, w. Let z be the vertex where the two paths cross. As z should
not be a corner for either of the paths, it must be assigned inside both cycles.
This implies that the angle at z that is interior to the cycles and between the
paths to p and q is at least of size π in the SLTR. This is a contradiction to the
assumption that R is an SLTR (see Figure 11 (c)).

Therefore, we can contract at least one of these edges, say qs1. Let G′ be
obtained from G by contracting qs1 and deleting ps1. The assignment ψ′ is
obtained by removing the assignment of q from ψ. The vertex p is assigned
to the outer face. As G′ has less vertices than G, it is not a counterexample.
Therefore, G′ has a Schnyder labeling that is corner compatible with ψ′. This
labeling is extended to a labeling of G by adding the labels 1, 2, and 3 clockwise
in the face s1, q, p giving the angle at s1 label 1 (see Figure 11 (b)). It is
immediate that this Schnyder labeling is corner compatible with ψ.

Case 2. Let x be the first neighbor of p on the dividing segment. The graph
G′ is obtained by contracting the edge ps1. No edges are deleted (see Figure 12).
The assignment of G′ is obtained from ψ by deleting the assignments of x and p.
Every simple cycle in G′ has an equivalent simple cycle in G. No edge of which
x is an endpoint is deleted. Therefore, if x is a combinatorial convex corner for
the equivalent outline cycle in G then it is also a combinatorial convex corner
for the outline cycle in G′. It follows that G′ has an SLTR. As G′ is smaller than
G, it has a Schnyder labeling that is corner compatible with ψ′. This labeling
is extended to a labeling of G by adding the label 1 to the angle at s1 and 3 to
the new angle at p. This Schnyder labeling is corner compatible with ψ. �

The following lemma shows a property of a corner compatible pair that turns
out to be useful later on.
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Figure 12: Two examples of contracting ps1 and extending the labeling along
the decontraction.

Lemma 4 Let G be a suspended internally 3-connected planar graph with a
corner compatible pair ψ and σ, an FAA and a Schnyder labeling, respectively.
Let v be a neighbor of a suspension. If v is assigned in ψ to a face that contains
this suspension then the label of the assigned angle of v is unique among the
labels of the angles of v.

Proof: Without loss of generality, let v be a neighbor of s1 and such that v is
assigned to the left face of the edge vs1, this face is denoted by f . Then the
assigned angle of v has label 2 (see Figure 13). The face f has both v and s1 on
its boundary, and the other neighbor of v in f is denoted by w. The edge vs1
has two angles labeled 1 (at s1) and an angle labeled 2, the assigned angle at
v. In a Schnyder labeling all three labels must occur around an edge, hence,
the fourth angle around vs1 has label 3. Since ψ and σ are corner compatible,
there must be a corner in f with label 2. Hence, the angle of w in f must also
have label 2. Around the edge vw there are now two angles labeled 2, hence,
the other angles have labels 1 (at w) and 3 (at v). From L2 (of Definition 5 it
follows that around v the label 2 appears only once, precisely at the assigned
angle. �

s1

v

f
w

32

1 1

3

1
2

Figure 13: The label at the assigned angle is unique around the vertex v.

Lemma 5 In a minimal counterexample R, no neighbor xi of a suspension si
is assigned to a face incident to the edge sixi.

Remark. In particular this implies that the three suspensions form a triangle.
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Proof: Suppose to the contrary that there is a neighbor x of s1 which is assigned
to a face incident to the edge s1x. We again construct a smaller graph G′, show
that it has an SLTR and that we can extend its Schnyder labeling to a Schnyder
labeling of G. Ideally we contract the edge s1x to obtain G′, however, this is
not always possible (e.g., it is not possible when the contraction results in a
degeneracy or when z has degree 3 as then the resulting graph is not internally
3-connected).

Consider the drawing R. Let z be the vertex that is the third corner of the
face which has x and s1 as corners. Note that, if there are two vertices z, z′

connected by a straight-line path to s1 as well as x, then there is a separating
(subdivided) triangle (see Figure 14 (a)).

We may assume that z is a neighbor of s1. Suppose not, then there must
be another vertex x′, between z and s1 and assigned to the face with corners
s1, z and x. Let z′ be the third corner of the face with corners x′ and s1 (see
Figure 14 (b)). Either z′ is a neighbor of s1 or we find x′′, and so on. As we
are moving over the neighbors of s1, this process must end. Hence, we find the
desired x and z, both neighbors of s1.

x z

z′

s1

z′
x

x′

s1

z

Figure 14: (a) There are no two vertices (z and z′) with a straight-line path to
x and to s1. (b) When z is not a neighbor of s1, then there must exist a vertex
x′ and z′.

Here is a summary of how we obtain G′ in different cases, the cases are
depicted in Figure 15.

1. If x and z are neighbors:

(a) And if z is assigned to the other face bounded by xz, then the edge
xz is contracted.

(b) Otherwise, if z has degree 3, then z is removed and an appropriate
edge is added.

(c) Otherwise, if xs1 can be contracted, it is contracted.

(d) Otherwise, the edge zs1 is deleted.

2. If x and z are not neighbors, then the edge xs1 is contracted.

Note that x may be a boundary vertex of G.
Similarly as before, the resulting graph G′ is shown to have an SLTR, and

as it has less vertices than G, it admits a corner compatible pair. The obtained
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(1a) (1b) (1c)

(2)

p

(1d)

x
z

x
z

x
z

x
z

x z

Figure 15: How to obtain G′ in the different cases. The solid red edges represent
the edge that is to be contracted, the red vertex represents the vertex that is to
be removed and the dashed red edge represents the edge to be deleted.

Schnyder labeling is shown to be extendable to G, and this results in a corner
compatible pair for G, contradiction. We will now go into the different cases in
more detail.

Let xz be an edge and thus (s1, z, x) forms a triangle.

Case 1a. The graph G′ is obtained by deleting the edge s1z and contracting
xz, the new vertex is called x′ (see Figure 16). The assignment ψ′ of G′ is
obtained from ψ by deleting the assignment of z. Every simple cycle c′ in G′

has an equivalent simple cycle in G. The combinatorial convex corners of such
an equivalent cycle that are not x or z, must also be combinatorial convex
corners of c′. If one of x and z is a corner, then x′ is a corner for c′. Suppose
x and z are both corners of the equivalent cycle c. Note that c is not just the
face z, x, s1, as c′ is a simple cycle for which c is the equivalent cycle. Therefore,
at least for one of x and z another angle at this vertex must be interior to c (c
cannot have a cutvertex). Suppose an angle of z not in z, x, s1 belongs to the
interior of c. Then z cannot see x through this angle, hence, c must connect z to
x in a way that goes around the assigned angle of z (c cannot have a cutvertex,
connecting through the other side would ensure that s1 is a cutvertex). But
then c has to have at least four combinatorial convex corners in G. A similar
argument shows that if an angle of x not in z, x, s1 belongs to the interior of
c then c must also have at least four combinatorial convex corners. It follows
that every simple cycle in G′ has at least three combinatorial convex corners.
Therefore, G′ has an SLTR. Since G′ has less vertices than G, it cannot be a
counterexample. Take a Schnyder labeling σ′ of G′ that is corner compatible
with ψ′. From Lemma 4 it follows that the assigned angle at x′ has a unique
label for this vertex.

We reverse the contraction of xz (see Figure 16). The angles of s1, x, z in
fs1,z,x are 1,2,3 in clockwise order starting at s1. At x all labels occur. The
assigned angle of z gets label 1, then all labels occur around z. In the face fs1,z,x
all labels occur and the relabeled angle at z is not a corner. Further nothing has
changed with respect to σ′. Therefore, the obtained Schnyder labeling is corner
compatible with ψ. This contradicts the assumption that G is a counterexample.
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* *
x

z

s1 s1

x′

1 11 1 1

3

3

1

23 3
2 2

1 1

23 2

Figure 16: Contracting the edge xz. The label at the corner with a ∗ is 1 or 3,
in both cases the label 1 can be chosen for the assigned angle of z.

Case 1b. Let z have degree 3. Suppose z is assigned, then it is not assigned
to one of the faces bounded by xz (due to Case 1a). Suppose z is assigned
along the face to s1 as in Figure 17 (a), then there is a separating (subdivided)
triangle, as z has degree 3 and the lower face bounded by xz must be a triangle.
This contradicts Lemma 2. Therefore, we may assume that z is not assigned.

s1

w
2

3
2

2
1
x

1 1

3

3
1 32 3 2

w

1
1

2
x

1
2

3

x

z

w

(b)

3

1 1

2 3 2

1
1

(c)(a)

Figure 17: Deleting z when w is assigned to the face with s1 or when w has
degree 3.

The third neighbor of z, denoted by w, is assigned (otherwise there is be a
separating (subdivided) triangle, containing z in its interior). In this case we
obtain G′ by deleting z and adding an appropriate edge. When w is assigned to
the face with s1z (see Figure 17 (b,c)) or when w has degree 3 (see Figure 18),
we proceed as follows. After z is deleted, the edge xw or s1w, depending on the
assignment of w, is added. The assignment ψ′ is obtained from ψ by deleting
the assignment of w. It is immediate that G′ has an SLTR, take the drawing of
G, erase z and add the appropriate edge to obtain an SLTR of G′. Therefore,
there must be a Schnyder labeling of G′ that is corner compatible with ψ′, the
labelings are depicted in Figure 17 (c) and Figure 18 (c).

Note that, if w and s1 are not neighbors, the labeling at w is the same as
depicted in the figures. Adding z is equivalent to subdividing the newly added
edge of w and connecting z to the other of x and s1. The labels at the ends
of the subdivided edge do not change. At x or s1 the label of the new angles
are the same as the label of the bigger angle in G′. The labels around z follow.
There is one new assignment, that is the assignment of w. The angle of z along
the assignment gets the same label as that angle of w. Therefore, in the incident
face all labels occur as corners. The obtained Schnyder labeling of G is corner
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1
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1
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Figure 18: Deleting z when w is assigned to the face with s1 or when w has
degree 3.

compatible with ψ. This contradicts the assumption that G is a counterexample.
If w is assigned to the face with zx and w has degree at least 4, the above

procedure does not necessarily work. Consider the drawing in Figure 18 (c).
Suppose w has degree at least 4. Then the labeling shown is not the only
possibility, namely the labels of the face x,w, p could be rotated one step coun-
terclockwise. Then w has a unique label in this face after introducing z. As w
is assigned, this Schnyder labeling is not corner compatible with ψ. Hence, we
have to take different measures. The procedure is depicted in Figure 19.

s1 s1

x

z

w

z

xw

1 1
11

1

1
1

2
2

2
2

2

1

2 3

2

1

3 3

1

1

21
2

(a) (b)

3

3

3
3

3

23

1

Figure 19: The vertex z is mapped to its projection as seen by w.

Instead of removing z, we map z onto the edge xs1. To be precise, in the
SLTR of G, z is mapped to its projection onto the edge xs1 as seen from w. This
is possible since z is not assigned, i.e., all the angles of z are strictly smaller
than π, and both x and w have a straight-line path to s1. Therefore, there
is no obstruction between z and its projection. The edge s1x is removed, the
resulting graph is denoted by G′. The assignment ψ′ of G′ is ψ together with
the new assignment of z to the same face as where x is assigned. That G′ has
an SLTR follows from the construction.

Since G′ has the same number of vertices as G but fewer edges than G
(namely one edge less), G′ is not a counterexample. A Schnyder labeling in
G′ that is corner compatible with ψ′, yields a Schnyder labeling of G that is
corner compatible with ψ (see Figure 19). Hence, we have obtained a Schnyder
labeling of G that is corner compatible with ψ, this contradicts the assumption.

This concludes the proof for the case that z has degree 3.
Case 1c. Due to Case 1a and Case 1b we may assume that z is not assigned to

a face bounded by xz and z has degree at least 4. G′ is obtained by contracting
the edge s1x and deleting the edge xz (see Figure 20). Here we use that z has
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Figure 20: Contracting the edge between a suspension s1 and a neighbor x
which is assigned to a face along the edge s1x when xz is an edge.

degree at least 4 in G and hence, degree at least 3 in G′. The assignment of flat
angles ψ′ for G′ is taken over from the assignment ψ of G. The assignment of
x is removed.

Every simple cycle in G′ has an equivalent simple cycle in G. When x is a
combinatorial convex corner of the equivalent cycle, then s1 is its replacement
in G′. Suppose z is a corner of the outline cycle in G but not in G′. Then
all neighbors of z except x are interior to or on the outline cycle. Suppose
this outline cycle has only two combinatorial convex corners in G′. Confer
Figure 21 (a). The path from s1 to p has at least one interior vertex, as z has
degree at least 4. If all these vertices are assigned on the outside then the outline
cycle looks as in Figure 21, and it is a separating (subdivided) triangle in G. If
the path is concave, as in Figure 21 (b), then this does not hold. In particular
in this situation we say that s1x cannot be contracted (this is processed by
Case 1d). Obviously, if the path is strictly convex then the outline cycle has at
least 4 combinatorial convex corners in G.

p p

x
z

(a)

x
z

(b)

z

(c)

x

s1 s1 s1

Figure 21: If the path between s1 and p is a straight-line segment, then there is
a separating (subdivided) triangle (a). If the path is concave, then the edge s1x
is called non-contractable (b). If this holds, then the neighbor of z clockwise
before x must see s1 without being obstructed by a neighbor of z, indicated by
the dashed red line (c). This ensures that there is no such visibility between x
and the clockwise first neighbor of z after s1.

We proceed with the case where there is no outline cycle of which z is the
third combinatorial convex corner in G, but z is not a combinatorial convex
corner in G′ for this cycle. This is equivalent to saying that s1x is contractable.
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In this case, every simple cycle in G′ has at least three combinatorial convex
corners and, therefore, G′ has an SLTR.

As G is a minimal counterexample, we find a Schnyder labeling σ′ of G′ such
that ψ′ and σ′ are corner compatible. A Schnyder labeling can be extended along
the reverse of a contraction that involves a suspension (see Figure 20). The face
bounded by s1, x and z is a 3-face and it follows from the Schnyder labeling
that all three labels occur. Secondly, the assigned angle at x does not have a
unique label for this face. The corner compatible pair ψ′ and σ′ is extendible
to a corner compatible pair for G, which contradicts the assumption.

Case 1d. We may assume that z is not assigned to a face bounded by xz, z
has degree at least 4 and s1x is not contractable. Since s1x is not contractable,
we know that there must be a cycle c with z on its boundary, such that all
neighbors of z besides x are on or inside c and c has precisely three combinatorial
convex corners, of which z is one. Confer Figure 21 (b), we know that the path
between s1 and p is strictly concave with respect to the interior of the cycle
c. From this it follows that p can see s1 without being obstructed by any of
the neighbors of z. Since z is not assigned to a face incident to xz and z is a
combinatorial convex corner for c, which includes all neighbors of z except x,
we can conclude that z is not assigned.

We obtain G′ by deleting the edge s1z. The assignment ψ′ is equal to
ψ except for the assignment of vertex z to the face with s1, x and z on its
boundary (see Figure 22 (b) and (c)). Suppose in G′ under ψ′ there is an
outline cycle γ′ that has at most two combinatorial convex corners. Then γ′

must contain z and z is a corner for the equivalent outline cycle γ in G. If γ′

contains all neighbors of z in G′ then γ has at least four combinatorial convex
corners or z is not a combinatorial convex corner for γ. This follows from the
fact that in G, the clockwise first neighbor of z after s1 cannot see x because the
clockwise last neighbor of z before x must obstruct its view (see Figure 21 (c)).
Therefore, between these two neighbors there must be a combinatorial convex
corner on γ. Suppose γ′ contains the assigned angle of z in G′ and z is a
combinatorial convex corner for the equivalent outline cycle γ in G. Then the
equivalent outline cycle in G has at least 4 combinatorial convex corners, since
the paths from z to s1 bounding this cycle must both be strictly convex with
respect to this cycle (see Figure 22 (a))

We conclude that G′ has an SLTR and since G′ has fewer edges than G,
it is not a counterexample. We obtain a Schnyder labeling σ′ which is corner
compatible with ψ′. But this can be changed into a Schnyder labeling in G
which is corner compatible with ψ (see Figure 22 (b)).

This concludes the proof in the case that x and z are neighbors.
Case 2. When xz is not an edge, there is at least one vertex p, between

z and x. Such a vertex is assigned to the face containing x, p, z and s1 (see
Figure 23). Let p be such a vertex closest to x. We obtain G′ by contracting
s1x. The assignments of p and x are removed from ψ to obtain the assignment
ψ′ for G′.

Every simple cycle in G′ has an equivalent simple cycle in G. If x is a
combinatorial convex corner for the equivalent outline cycle, then s1 or p is its
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Figure 22: If z was a convex corner for the grey cycle in G, then this cycle has
at least 4 combinatorial convex corners since both paths from z to s1 are strictly
convex with respect to the cycle (a). Deleting the edge s1z (b).
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Figure 23: Contracting the edge between a suspension s1 and a neighbor x
which is assigned to a face along the edge s1x when xz is not an edge.

replacement for the cycle in G′. The assignment has changed for the vertex p.
Whenever p is a combinatorial convex corner of an outline cycle in G then it
must have had a neighbor outside. No edge incident to p has been removed,
therefore, p also has a neighbor outside of the outline cycle in G′. As p is no
longer assigned, it is a combinatorial convex corner for the outline cycle in G′

as well. It follows that every simple cycle in G′ has at least three combinatorial
convex corners and this implies that G′ has an SLTR prescribed by ψ′.

As G is a minimal counterexample, we find a Schnyder labeling σ′ of G′ such
that ψ′ and σ′ are corner compatible. We have to check whether all three labels
occur on corners of the face containing x, p, z and s1, call this face f . In σ′

the angle of p in f ′ has label 2 (or 3) since it is clockwise first (or last) around
the edge ps1. In G the same holds for the angle of x in f . Hence, the corner
compatible pair ψ′ and σ′ is extendable to a corner compatible pair for G.

In all cases we have obtained a contradiction to the assumption that G is a
minimal counterexample, this concludes the proof of the lemma. �

Now we are ready to show that there cannot be a counterexample G that
has an SLTR but no Schnyder labeling that is corner compatible with the FAA
belonging to the SLTR.

Lemma 6 Let G be a suspended, internally 3-connected graph that admits an
SLTR and let ψ be the corresponding FAA. Then there exists a Schnyder label-
ing σ of G such that ψ and σ are corner compatible.
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Proof: Suppose the lemma does not hold and let G be a counterexample with
the minimum number of vertices and, subject to this condition, as few edges as
possible. Let R be an SLTR of G, ψ the FAA belonging to R and s1, s2 and s3
the suspensions. We aim for a contradiction by constructing a smaller graph
G′, from G, such that:
• G′ has an SLTR based on the FAA from G, and,
• The corner compatible pair of G′ gives a Schnyder labeling for G, and,
• The obtained Schnyder labeling is corner compatible with ψ.
This contradicts the assumption that G is a minimal counterexample.
From Lemma 2, Lemma 3 and Lemma 5 it follows that

[B1] R has no separating (subdivided) triangle.
[B2] R has no dividing segment. This implies that there is no degree two

suspension.
[B3] No neighbor xi of a suspension si is assigned to a face incident to the

edge sixi. In particular this implies that the three suspensions form a
triangle.

From B3 it follows that the outer face is a triangle and the neighboring faces
of the outer face are also triangles (see Figure 24 on the left). The third vertex
of the inner face along the edge sisi+1 plays an important role. We denote this
vertex q (it is not important which i is considered).

First we show that if (for some i) the vertex q is not assigned (has no flat
angle) then G cannot be a minimal counterexample. Then we show that if q
is assigned for each i, we can change G into another graph G′ which has some
vertex q′ that is assigned to a face along the edge siq

′ (as in Lemma 5). Finally
we show that a Schnyder labeling σ′ of G′ can be changed into a Schnyder
labeling σ of G in such a way that if σ′ and ψ′ are corner compatible then σ
and ψ are corner compatible.

s1s1

q

s3s2s3 s2

1

2

1

1

2 3
2

1
23

Figure 24: Creating a graph with fewer edges.

Let f be the inner face bounded by the edge s1s2. Let q be the third vertex
of this face. Assume that q is not assigned. We remove the edge s1s2 and assign
q to the outer face to obtain G′ and an FAA ψ′. No simple cycle in G′ contains
the assigned angle of q in its interior. If both s1 and s2 are in the outline cycle
γ′, then q is not a combinatorial convex corner for the equivalent outline cycle
γ in G, as it must lie in the strict interior. Therefore, the combinatorial convex
corners of γ are also combinatorial convex corners for γ′. Thus, every outline
cycle has at least three combinatorial convex corners and G′ has an SLTR for
which the stretched angles are prescribed by ψ′. We have obtained a graph
with fewer edges. Therefore, G′ is not a counterexample. Let σ′ be a Schnyder
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labeling of G′ such that σ′ and ψ′ are corner compatible. It is obvious how this
implies the existence of a Schnyder labeling σ of G such that σ and ψ are corner
compatible (see Figure 24).

Suppose that for every pair of suspensions, the common neighbor q is as-
signed. Every suspension has at least one neighbor that is not assigned. This
follows from the fact that G is not a triangle, and G\si must have at least three
angles larger than π in the outer face. One of these angles does not belong to
a suspension and this vertex must be a not assigned neighbor of si. Without
loss of generality, let q be the common neighbor of s1 and s2, and let pk be
the clockwise first neighbor of s1, seen from q, which is not assigned (e.g., p3 in
Figure 25).

We will construct a graph G′ from G, in which pk is assigned to a face
bounded by the edge s1pk. Then, we will use Lemma 5 to obtain a Schnyder
labeling σ′ for G′, which is corner compatible with ψ′, the assignment of G′.
This Schnyder labeling can be changed into a Schnyder labeling of G, which is
corner compatible with ψ.

Let p1 be the neighbor of s1 clockwise first after q. We obtain a new graph by
deleting the edge qs1 and adding the edge p1s2, we denote this change by a flip.
This change is possible even in the drawing of the SLTR, as s1, s2, p1 and q form
a convex 4-gon with a diagonal (see Figure 25 (a)). Convexity makes changing
the diagonal possible in the current drawing (see Figure 25 (b)). Hence, the new
graph has an SLTR. If p1 is assigned, the step is repeated (see Figure 25 (c)).
Since s1 must have a neighbor that is not assigned, we meet it eventually. Let
pk be the first such vertex that is not assigned, and p1, . . . , pk the set of vertices
processed. The graph obtained after flipping the edge qs1 to p1s2 and the edges
pis1 to pi+1s2, for i = 1, . . . , k − 1, is denoted by G∗ and its assignment by ψ∗.
As all the steps are possible even in the drawing of the SLTR of G, therefore,
the assignment ψ∗ is a Good FAA.

(b) (c)(a)

p2

s1

q

s2

p3

p1

s2

p1

s1

p3

q

p2

p1

p2

q

s1

s2

p3

Figure 25: Flipping edges.

In the last change the edge pks2 is added. Now, this edge is removed2

2The reason that we do not use the argument as in Figure 24 is that in order to do the
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and pk is assigned to the face with s1, s2, pk−1 and pk on its boundary (see
Figure 26 (a)). Let the obtained graph be G′. The graph G′ comes with the
assignment ψ′ and we have to argue that this again is a good FAA. Let γ′ be a
simple cycle in G′ and γ∗ the equivalent outline cycle in G∗. If γ′ does not have
pk on its boundary, then it has the same combinatorial convex corners as γ∗. So
suppose pk is on the boundary of γ′, and not a combinatorial convex corner. If
γ′ has the assigned angle of pk in its interior, but not all neighbors of pk, then
γ∗ has at least four combinatorial convex corners in G∗, namely s1, s2, pk and
one on the boundary path between pk and s2. Therefore, γ′ has at least three
combinatorial convex corners. Suppose γ′ encloses all neighbors of pk, but not
its assigned angle. In the SLTR of G∗ the angle at pk is a concave corner for γ∗,
therefore, there must be at least three other combinatorial convex corners for
γ∗. These are the combinatorial convex corners of γ′. We conclude that every
simple cycle has at least three combinatorial convex corners and, therefore, ψ′

is a good FAA.
As G′ has a vertex pk that is assigned to a face bounded by the edge s1pk,

it cannot be a counterexample, due to Lemma 5. Therefore, there is a Schnyder
labeling σ′ such that ψ′ and σ′ are corner compatible. It remains to show that
σ′ can be changed into a Schnyder labeling of G which is corner compatible with
ψ.

(a) (b)

pk 3

s1s1
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Figure 26: A labeling of G∗ obtained from a labeling of G′.

The reason why the Schnyder labeling can be changed without violating
corner compatibility depends highly on the property that an assigned angle
does not have a unique label for this face in a corner compatible pair. The
Schnyder labeling σ′ is unique for the faces incident to s1 or s2 and a flipped
edge (see Figure 26 (b)). The first step is to add the edge pks2 to obtain G∗.
The labeling is extended trivially, see Figure 26 (b).

Let q, p1, . . . , pk be the set of processed vertices (see Figure 25). By defini-
tion, the vertices q, p1, . . . , pk−1 all have an assigned angle in G′. Two consec-
utive vertices in this sequence, pi−1 and pi, are not necessarily neighbors, but

reverse flipping, we need two angles labeled 1 at pk around the edge towards pk−1. If we
would push pk to the boundary between s1 and s2 then this is not guaranteed.
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they are the corners of the face containing pi−1, pi and s2. Hence, the vertices
on the path from pi−1 to pi on the boundary of this face, are all assigned to this
face (see Figure 27 (a)).

Let p0 = q. We consecutively do the reverse flip: for i = k, . . . , 1, the edge
pis2 is removed and the edge pi−1s1 is added. Note that the degree of the vertex
pi is at least 4 in step i as G is 3-connected and pi has one neighbor more in G∗

than in G. Therefore, the angle clockwise before the edge to s1 and the angle
clockwise after the path to pi−1 are not the same angle. Along the steps, the
following invariant is maintained.

Invariant: At step i the vertex pi has labels 2,3,1,1, clockwise, around the
edges to s1 and s2 and towards pi−1 (see Figure 27 (a)).

We also maintain that the Schnyder labeling is corner compatible with the
FAA.

In the base case the invariant holds, as shown in Figure 26 (b). There is no
other way to assign the three labels of pk in G′ than the option given in the
figure. The addition of the edge pks2 also does not yield other options.

In step i we delete the edge pis2 and add the edge pi−1s1. Before the reverse
flip, the labels at pi satisfy the invariant and the Schnyder labeling is corner
compatible with the assignment. The angles at pi−1, clockwise around the edge
towards pi, have labels 2 and 3 (see Figure 27 (a)). The label 3 follows from the
fact that the edge goes to s2 and the label 2 follows from the fact that either
there is another angle labeled 3 (Figure 27 (a)) or there are two angles labeled 1
at pi along this edge (Figure 27 (b)).
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Figure 27: Labeling between pi and pi−1 and the changing of a labeling along
a reverse flipping of pis2 to pi−1s1.

Now we change from pis2 to pi−1s1 as shown in Figure 27 (b). For most of
the angles there is a unique choice for the label in order to maintain a Schnyder
labeling, these labels are given in Figure 27 (b) on the right. To maintain the
invariant the angle with the question mark has to get label 1. We have to show
that this is a valid choice. If this angle is already labeled 1 it is trivially a valid
choice. Suppose not, then this must be the assigned angle of pi−1. This follows
from the fact that the neighboring angles of an assigned angle, at a vertex,
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cannot all three have the same label, this would violate corner compatibility
in the face to which the angle is assigned (see Figure 28 (a), the face with a
question mark does not have a corner with label 2.).

Suppose the angle labeled with a question mark in the rightmost drawing of
Figure 27 is not labeled 1. As the labeling is a Schnyder labeling, the only other
option is label 2. Consider Figure 28 (b), j = 2. From the rule around an edge
of a Schnyder labeling, it follows that k = 1. Then it follows that l = 2 as this
face must have a corner with label 2. Changing labeling of the assigned angle
to 1 again gives a Schnyder labeling. Moreover, as this is an assigned angle, this
Schnyder labeling is also corner compatible with the FAA.

?
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(a) s1
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2
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31
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Figure 28: Changing label j.

Hence, we have changed from pis2 to pi−1s1, the invariant now holds for pi−1
and the Schnyder labeling is corner compatible with the FAA. By induction,
we obtain a Schnyder labeling of G which is corner compatible with ψ which
contradicts the assumption that G is a counterexample.

Therefore, there does not exist a counterexample. This proves the theorem.
�

We have now seen all the ingredients needed to prove Theorem 2. For con-
venience of the reader we repeat the statement of the theorem.

Theorem 2 Let G be a suspended, internally 3-connected graph. Then G has
an SLTR if and only if there is a corner compatible pair consisting of an FAA ψ
and a Schnyder labeling σ.

Proof: Let G have a corner compatible pair. Lemma 1 shows that this FAA is
a good-FAA and it follows that G has an SLTR which agrees with this FAA.

Let G have an SLTR. By Lemma 6 there must be a Schnyder labeling that
is corner compatible with the FAA that is determined by this SLTR. �

This characterization has not yet led to a ‘fast’ recognition algorithm. How-
ever, for particular graph classes, namely those graphs with ‘few’ Schnyder
woods, the characterization does give a recognition algorithm that runs in poly-
nomial time. This will be discussed in the next section.

4 Graphs with few Schnyder labelings

Given an internally 3-connected, suspended, graph G and a Schnyder labeling σ.
We will build a bipartite graph B(G,σ), such that, a one-sided-perfect matching
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in this graph, is a good-FAA of G. An example of such a bipartite graph is
given in Figure 29.

For each interior face f of G, let fi be the number of angles with label i.
The first vertex class, W1 of B(G,σ) consists of fi− 1 copies of f , for each face f
and for each color i, we say that such a copy of f in W1 is produced by color i.
The second vertex class W2 of B(G,σ) contains the interior vertices of G. There
is an edge uv, for u ∈ W1, v ∈ W2, if and only if, u is copy of f produced by
color i and vertex v has an angle with color i in f .
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Figure 29: A graph G with a Schnyder labeling σ and the bipartite graph B(G,σ).

A matching M of B(G,σ) is called one-sided-perfect if W1 ∩M = W1, i.e., all
the elements of W1 are matched. Another interpretation of the matching M is
that it assigns a vertex of G to a face of G, in such a way, that every vertex is
assigned to at most one face.

Lemma 7 Let G be an internally 3-connected, suspended, graph G and σ a
Schnyder labeling of G. Let M be a one-sided-perfect matching of B(G,σ). Let
ψ0 be the assignment of non-suspension vertices of G, which are on the boundary
of G, to the outer face. Then ψ0 together with M is a good-FAA of G.

Proof: Consider the matching M as an assignment of vertices of G to faces of
G. Every vertex is assigned to at most one face, therefore, Cv holds. Moreover,
an interior face f of G, has precisely fi − 1 vertices assigned to it, for every
color i. Therefore, an interior face f , has precisely |f |−3 vertices assigned to it.
In ψ0 the outer face has all but the three suspensions assigned to it, therefore,
Cf must also hold. Let ψ be the FAA of G that contains ψ0 and M .

An edge uv in B(G,σ), for u ∈ W1, v ∈ W2, implies that u is copy of f
produced by color i and vertex v has an angle with color i in f . A face f has
precisely fi− 1 vertices assigned to it, for every color i. Therefore, it must hold
that for every color i there is a vertex with an angle labeled i in f , which is not
assigned to f . Therefore, ψ is corner compatible with σ, and from Lemma 6 it
follows that ψ is a good-FAA. �

On the other hand, due to Hall’s marriage theorem, we can certify the situ-
ation where there is no FAA that is corner compatible with a certain Schnyder
labeling σ. The certificate is a subset U ⊆ W1, such that, |U | > |N(U)| in
B(G,σ), where N(U) is the set of neighbors of U .
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Graphs with few Schnyder labelings Felsner and Zickfeld have defined the
class of 3-connected planar graphs that have a unique Schnyder labeling [8, 17].
These are the graphs that can be obtained from a triangle using a sequence
of operations chosen from a set of six operations. For this class there is a
polynomial time algorithm that outputs a good-FAA or a certificate that shows
that there is no FAA that is good. The algorithm is based on finding a maximum
cardinality matching in B(G,σ).

If a graph has only polynomially many Schnyder labelings, then the above
can be repeated for every Schnyder labeling, until a good-FAA is found, or
the output is a set {Uj}j , such that Uj violates Hall’s marriage condition in
the graph B(G,σj) where σj is the j-th Schnyder labeling. There exist planar
3-connected graphs on n vertices, which have 3.209n Schnyder labelings [8].
Therefore, an algorithm checking for a compatible assignment among all Schny-
der labelings does not have polynomial complexity in general.

5 A Flow Network for Corner Compatible Pairs

In this section, we design a two-commodity directed network NG for a given
internally 3-connected, suspended graph G. An integral feasible flow in this
network corresponds to an SLTR of G. Moreover an SLTR corresponds to (at
least one) integral feasible flow. We first introduce a one-commodity network for
which an integral feasible flow encodes a Schnyder labeling. Then we introduce
a one-commodity network for which an integral feasible flow encodes an FAA.
In the end the two networks are combined in such a way that an integral feasible
flow encodes a corner compatible pair. We have not been able to avoid using
two commodities in the combined network. Solving the integral feasible flow
problem for two-commodity networks is known to be NP-complete [4].

Every network considered is directed, i.e., arcs can only be traversed in one
direction. Unless stated otherwise, an arc will have capacity 1.

Encoding a Schnyder labeling. We consider the primal-dual graph G+G∗

of G (see Figure 30). Here G∗ is the weak dual of G together with a half-edge
into the outer face for each edge that is incident to the outer face. The graph
G+G∗ is bipartite: one vertex class consists of the edges of G, the other vertex
class contains the vertices and inner faces of G. Two vertices, x, e, in G + G∗

are connected if x is a vertex that is an end of the edge e in G, or if x is a face
that is bounded by e in G. For each edge on the boundary, a half-edge into the
outer face is added. A half-edge has only one endpoint. Adding a vertex v∞ in
the unbounded face, and extending all half-edges to end in this vertex, is called
the closure of G+G∗.

Let G = (V,E) be a graph and α : V → N be a function. An α-orientation
of G is an orientation of G where the outdegree of each vertex v equals α(v).
This notion was introduced by Felsner [7]. This paper shows that for any fixed
α the set of α-orientations of a planar graph forms a distributive lattice. The
paper also gives several interesting examples of structures on planar graphs that
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can be encoded as α-orientations for certain α. Of particular interest to us is
the following:

Theorem 3 ([7]) Let G be a suspended graph, the following structures are in
bijection:

- The Schnyder woods of G,
- The Schnyder woods of the (weak) dual G∗ of G,
- The αs-orientations of the closure of G + G∗, where αs(v) = 3, αs(e) =

1, αs(v∞) = 0 for each primal and each dual vertex v and each edge e.

(a) (c)(b)

Figure 30: The primal-dual graph of K4, a Schnyder labeling of K4 and a
Schnyder labeling of its dual drawn in K4 +K∗4 .

Felsner [7] remarks that the decision whether a graph G has an α-orientation
for a given α can be modelled as a flow-problem. Regarding the computational
complexity the following is known: Torsten Ueckerdt [16] has shown that for
arbitrary α computing an α-orientation of a planar graph can be reduced to a
planar directed single source shortest path problem which can be solved in near
linear time O(n log2(n)/ log log(n). Éric Fusy [10] studied algorithms for com-
puting α-orientations for specific functions α. He shows that an αs-orientation
of G+G∗ can be computed in linear time.

We now come to the description of a network for which an integral feasible
flow encodes a Schnyder wood and thus, also a Schnyder labeling. Our emphasis
is not on fast computations, the aim is to have a flow-problem that can be
combined in a 2-commodity problem with a flow-problem that encodes an FAA.

Each vertex in G + G∗ that represents an edge of G has degree 4 in G +
G∗. Moreover, in the primal-dual graph, considering both the primal and dual
Schnyder wood, each edge-vertex has three incoming arcs and one outgoing
arc. In other words, the edge is bidirected in the primal Schnyder wood and
unidirected in the dual Schnyder wood or the other way around. This follows
immediately from the relation with Schnyder labelings. A Schnyder labeling of
G is mapped to a Schnyder labeling of the dual of G by “moving” the label
from the angle at the vertex to the angle at the face. From the labeling around
an edge-vertex in the primal-dual graph, it follows that in one of the Schnyder
woods the edge is bidirected and in the other it is unidirected. We exploit this
property.

26



Every edge-vertex in the primal-dual graph has outdegree 1 in the orientation
that represents the primal and dual Schnyder wood. For each vertex and each
face of G in G+G∗, all but three of its incident edges are oriented inwards. In
other words, a vertex-vertex or face-vertex v in can absorb deg(v)− 3 incoming
arcs from its incident edges. This orientation can be encoded as a flow in a
network. The half-edges on the boundary of the graph are always oriented
towards the outer face. Therefore, only the interior edges are considered. The
network contains a source and a sink, a node for every interior edge, a node for
every vertex and a node for every interior face of G (see Figure 31).

v

fuv
uv

f ′uv

u

Source Sink
−3

−3

−3

−3

d(u)

d(v)

|fuv|
|f ′uv|

Figure 31: The paths in the Schnyder wood network through the edge uv.

From the source there is an arc to every edge-node. From an edge-node there
is an arc to the nodes representing its endpoints and the nodes representing the
faces it bounds. From a face-node and a vertex-node there is an arc to the sink.
The arcs to the sink do not have capacity 1, but the capacity is the degree of the
vertex or face minus 3. The suspensions are special as they have one outgoing
half-edge into the unbounded face. Therefore, the capacity of the arc that goes
from a suspension to the sink, is the degree of the suspension minus 2.

The demand of the network is equal to the number of edges of G. The
boundary edges of G are always bidirected in the primal graph, hence, their
orientation is known beforehand. A 3-orientation can be obtained from an
integral feasible flow: the unit of flow through the edge represents its outgoing
arc. All other edges of G + G∗ are oriented towards to the edge-vertex. As
the flow is integral, this implies that each edge-vertex in G+G∗ has outdegree
precisely 1. It is immediate that every Schnyder wood yields an integral feasible
flow in the network as well.

Encoding an FAA. An FAA is an assignment of vertices to faces. This can
also be seen as a labeling of the angles of G. An angle is either flat or it is
convex. If an angle is flat, this is an assignment of the vertex to the face. If
the angle is convex, it is a corner for the face. Hence, we want a labeling such
that each face gets precisely three corners and each vertex gets at most one flat
angle.

The network has a source and a sink, a node for each inner angle, a node
for each non-suspension vertex, and a node for each inner face (see Figure 32).
There is an arc from the source to each angle. From an angle there is an arc
to the incident vertex and to the incident face. From each vertex there is an
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arc to the sink, with capacity 1, representing the assignment. From each face
f there is an arc to the sink with capacity 3, representing the three corners. A
unit of flow using a vertex encodes an assignment and a unit of flow using a face
encodes a corner.

u

f(u, f)
SinkSource

3

Figure 32: The paths in the FAA network that go through the angle (u, f).
Angles are depicted as triangles.

The demand of the network is the number of inner angles of G, as each angle
has to be either a corner or a flat angle. An integral feasible flow selects a label
for each angle in such a way that the conditions of an FAA (Cv and Cf ) are
satisfied. Therefore, there is a one-to-one correspondence between flat angle
assignments and integral feasible flows in this network.

The Combined Network. In this section we explain how to build a com-
bined network for which a feasible integral flow encodes a corner compatible
pair. Unfortunately, this will be a 2-commodity network. The flow represent-
ing the Schnyder wood and the flow representing the corners will be of type 1
(source 1 to sink 1). The flow representing the assignment will be of type 2.
The combined network for a graph G is denoted by NG. An example of a graph
and the network belonging to this graph is given in the Appendix, Figure 36.
An integral feasible flow in this network is depicted in Figure 37. We abuse
notation and denote a path(s) which can be followed by the flow and which
then represents part of the Schnyder wood (or a corner, or part of the flat
angle assignment) by Schnyder wood flow (corner flow and assignment flow,
respectively).

Recall that in the network that encodes a Schnyder wood, every interior face
f gets |f |−3 units of flow from the edges. However, there are |f | outgoing edges.
Therefore, there is “space” to add the 3 units of corner flow to the Schnyder
wood network. Moreover, the unused edges will be the outgoing arcs of f in the
dual Schnyder wood. The Schnyder labeling belonging to this Schnyder wood,
labels all angles between two (consecutive) outgoing edges of a face with the
same label. To encode the corner compatibility, we need to ensure that between
every two outgoing edges of a face there is a corner selected.

We encode corner compatibility with a cyclic structure around a face-node.
We use Figure 33 to introduce this structure. Recall that the network is directed,
i.e., all arcs can only be used in one direction. For a Schnyder wood flow through
a vertex nothing has changed, i.e., such a path will look as in Figure 31.

A Schnyder wood flow through a face ftuvw is depicted in red in Figure 33.
On such a path there is one extra node compared to the network in Figure 31.
This extra node is denoted by “small square”. This node ensures that the arc
into the face can be used by Schnyder wood flow as well as corner flow, but not
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Figure 33: The subnetwork of a face ftuvw is depicted. In red a Schnyder wood
path, in blue a corner path and in green an assignment path.

both at the same time.
The corner flow comes into the subnetwork via an angle (see the blue path

in Figure 33). Angles are drawn as triangles in the figures. An angle consists
of three arcs. The first arc ensures that the angle is either assigned or a corner,
but not both. The second arc has no special task. The third arc ensures that
no two corners with the same label are selected.

The corner flow uses all three arcs in the triangle through which it enters
the subnetwork of the face. Then it proceeds to the first small square, or it
proceeds to the third arc of the next angle. It has to go into the face via a small
square. The fact that the network is saturated is used to prove that an integral
flow encodes a corner compatible pair. Informally, every small square has to
be used. Every third arc of an angle, can only be used by one unit of integral
flow. So a small square can only be “skipped” by corner flow if it is used by
the Schnyder wood flow, which in turn means that the clockwise next angle has
the same label. This implies that there is a a corner selected between every two
“available” small squares, as otherwise the network would not be saturated.

The assignment flow uses the first arc of an angle (see the green path in
Figure 33, detailed view in Figure 34). From this arc it goes into a dummy
vertex. This is denoted by dummy vertex as it is not the vertex-node that is
used by Schnyder wood flow. From the dummy vertex there is an arc to the
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sink. The dummy vertices ensure that at most one angle of a vertex is assigned.

(v, f1)Source∗ 2

Source 2

v∗ Sink 2

(v, fk)

...

∑
f∈F (int) |f | − 3

Figure 34: Possible assignment paths for a vertex v. The node that ensures that at

most one of the angles of v is assigned is denoted by v∗ or by “dummy of v”.

The network that represents an FAA is splitted. To ensure that the corner
flow and the assignment flow together form an FAA, we introduce some extra
nodes. A face-bag is added for each inner face. From source 1 there is an arc of
capacity 3 into each face-bag. From the face-bag there is an arc to each of the
angles of the face.

The assignments are encoded by type 2 flow. To ensure that the correct
number of assignments is made, there is a dummy source added before source 2.
The arc from the dummy source to source 2 has capacity equal to the number
of assignments needed. Note that, in the network that encodes only an FAA,
this is not necessary, as the demand of network and the sum of the capacities
of the arcs to the sinks are equal.

The Demands. Let Eint be the set of interior edges and Fint the set of interior
faces of the graph. To represent a Schnyder wood there should be a Schnyder
wood flow of value |Eint|. To make sure every face has three corners there
should be a corner flow of value 3|Fint|. The number of flat angles needed is∑
f∈Fint

(|f | − 3). A union of a type 1 (from source 1 to sink 1) and a type 2
(from source 2 to sink 2) flow φ = (φ1, φ2) in this network is called feasible if

• value(φ1) = |Eint|+ 3|Fint| and

• value(φ2) =
∑
f∈Fint

(|f | − 3).

Remark. If the sources and sinks were unified, we would obtain a one-commodity
network. However, in such a case, the assignment flow and corner flow could
switch places. That is, from a face-bag, a unit of flow can go to the sink via
a vertex (it behaves as corner flow and then as assignment flow). Or from the
unified source it goes via the assignment source to an angle and then via the
face to the sink (it behaves as assignment flow and then as corner flow). This
implies that a solution might not be corner compatible.

Another option is to not control the flow before going into an angle (i.e., from
the source it goes immediately to an angle) and define it as an assignment if it
leaves through a vertex and as a corner if it leaves through a face. In this case,
the Schnyder wood flow and the corner flow cannot be controlled. An integral
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feasible flow could have a face with too much Schnyder wood flow and too little
corners and another one with the opposite. In other words the property Cf of
the FAA and the property of the flow given by the Schnyder wood might be
violated.

Theorem 4 Let G be an internally 3-connected, suspended graph. Then G has
an SLTR if and only if there is an integral feasible flow ψ = (ψ1, ψ2) in NG.

Proof: Let G be an internally 3-connected suspended graph and suppose φ =
(φ1, φ2) is an integral feasible flow in NG. First we will show that from the
feasible flow we can extract a Schnyder wood σ and an FAA ψ for G and then
that this is a corner compatible pair. From φ1 we have to extract the Schnyder
wood flow and the corner flow.

The total amount of flow from source 1 to sink 1 is bounded from above by
the sum of the capacities of vertex-to-sink and face-to-sink arcs. Recall that the
arc from a suspension vertex si to the sink, has capacity deg(si)− 2. The total
amount of flow between source 1 and sink 1 adds up to the value of φ1, since,
φ is a feasible flow. From the following calculation it follows that every feasible
flow saturates all the arcs to sink 1.∑

f∈Fint

deg(f) +
∑
v∈V

(deg(v)− 3) + 3 = |Eint|+ 3|Fint|

The capacities of the arcs leaving source 1, also add up to the value of φ1.
Recall that the arcs leaving source 1 are the arcs to the edges, |Eint|, and the arcs
to the face-bags, 3|Fint|. It follows that through each face-bag 3 units of flow
are routed and the only way to reach the sink is through this face. Therefore,
each face f has at most deg(f)− 3 of Schnyder wood flow routed through it.

As the arcs from the vertices to sink 1 are saturated, there must be deg(v)−3
units of type 1 flow through a non-suspension v and there must be deg(si)− 2
units of type 1 flow through si. The rest of the flow that is routed through the
edges must go via a face, and since every face hast at most deg(f)− 3 units of
flow of this type routed through, it must be precisely this amount.

|Eint| −
∑
v∈V

(deg(v)− 3)− 3 =
∑
f∈Fint

deg(f)− 3|Fint| =
∑
f∈Fint

(deg(f)− 3)

To extract a Schnyder wood from φ1, the Schnyder wood flow must be of
value |Eint|, i.e., the number of interior edges. Moreover, it must be such that:
• precisely

∑
v∈V deg(v)− 3 edges are appointed to a vertex,

• precisely
∑
f∈Fint

deg(f)− 3 edges are appointed to a face, and,
• one more edge is appointed to each suspension.
The calculations above show that this is exactly the case, hence, we can

extract the Schnyder labeling σ.

The number of interior angles is equal to the amount of corner flow plus the
amount of assignment flow. Therefore, the first arc of each angle (i.e., the first
arc drawn inside the triangles) must be saturated as well.
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Integrality of the flow now implies that each angle in the graph is either
a corner or an assigned angle. The corner flow ensures that each face has
precisely three corners. The flow of type 2 ensures that each vertex has at most
one assigned angle. This gives us an FAA ψ.

Left to show is that σ and ψ are corner compatible.
Consider the subnetwork at a face f . Its three corners cannot use the small

squares that are used by the flow that represents the Schnyder wood. There are
precisely three small squares which are not used by the flow that represents the
Schnyder wood, we call these three small squares available. We trace the units
of flow backwards from the face to the available small squares. When it leaves a
small square (backwards) it goes to the first angle (triangle) counterclockwise.
It can move to the next counterclockwise angle but we claim that this only
occurs when the small square between them is not available. In other words,
between every two available small squares there is an angle through which a
unit of flow comes into the subnetwork.

Claim 1 Let Q1, Q2 and Q3 be the available small squares in the subnetwork
of f in clockwise order. The unit of flow that leaves the subnetwork via small
square Qi, enters the subnetwork at an angle between Qi−1 and Qi (clockwise).

Suppose not, without loss of generality, let there be a unit of flow leaving via Q3

which does not enter between Q2 and Q3. Suppose the flow leaving via Q3 enters
the network at angle α which is between Q1 and Q2. Consider the clockwise
last angle before Q2. The third arc in this angle is used by the flow which goes
through Q3, hence, there is no possibility to enter Q2. This contradicts the fact
that the network is saturated (as no flow is routed through Q2, see Figure 35).
The same argument applies when the angle α is between Q3 and Q1. This
proves Claim 1. 4

Claim 2 All angles between two consecutive available small squares are la-
beled with the same label in σ.

This follows immediately from the definition of the Schnyder labeling in the
dual graph. Between the outgoing edges of label i and i+ 1 of a face, all angles
are labeled i − 1. The available small squares are located on the place of the
outgoing edges of the face in the Schnyder wood. 4

Claim 1 and Claim 2 together prove that σ and ψ are corner compatible.

On the other hand, suppose G admits an SLTR. By Theorem 2 there is a
Schnyder labeling which satisfies the rule of the corners for the FAA that belongs
to this SLTR (note that this is not necessarily unique). Consider a complying
Schnyder labeling and the FAA.

Set up the network NG. Start with the empty flow and add the following
units of flow:
• For each interior edge with labels i+ 1, i, i, i− 1 in clockwise order at its

ends: add a unit of flow from source 1, to this edge, to the neighbor in
NG which is between the two labels i in G, and then to sink 1.
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Figure 35: Suppose the red arrows are part of the Schnyder wood flow, the blue
arrows of the corner flow. The top small square is skipped by a unit of corner
flow and can no longer be saturated.

• For each interior face f , for each corner α of f : add a unit of flow that
goes from source 1, into the face-bag of f , then to the angle α, to the
first clockwise available small square, into f and then to sink 1.

• For each flat angle β: add a unit of flow that goes from the dummy source
to source 2, to angle β to the appropriate dummy vertex, to sink 2.

It is easy to check that the flows add up to the appropriate values and that
no capacity constraint is violated. This concludes the proof. �

6 Conclusion

We have given a new characterization of graphs that admit straight-line triangle
representation in terms of flat angle assignments and Schnyder labelings. For
graphs that have a unique Schnyder labeling (these graphs are identified by
Felsner and Zickfeld[8]), the problem of deciding whether the graph has an SLTR
can be translated into a matching problem in a bipartite graph. For graphs with
very few Schnyder labelings the problem also becomes polynomially tractable.
However there are planar 3-connected graphs on n vertices, which have 3.209n

Schnyder labelings [8].
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With the new characterization the drawing problem can be translated into
a flow optimization problem. However, finding an integral feasible flow in a
two-commodity network is known to be NP-complete. An interesting question
is whether for this particular network a feasible solution always implies the
existence of an integral feasible solution.

Unfortunately, we have to leave the following question unanswered: Is the
recognition of graphs that have an SLTR (good-FAA) in P?
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A Flow Network Example
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Every dummy vertex v∗ to Sink 2 (1)
Every vertex v to Sink 1 (deg(v)− 3)
Every face f to Sink 1 (|f |)
Source 2 to every angle (≤ 1)
Every bag to every of its angles (≤ 1)
Source 1 to every bag (3)
Source 1 to every edge (1)
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Figure 36: Example of the inner network belonging to the graph on the bottom
right. On the bottom left the descriptions of the arcs that are not drawn. The
grey disk below a vertex represents the dummy vertex.
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Source 1 to every interior edge (1)
Source 1 to every bag (3)

Source 2 to every angle (≤ 1)
Every bag to every of its angles (≤ 1)

Every interior vertex v to Sink 1 (deg(v)− 3)

Every dummy vertex v∗ to Sink 2 (1)
Every suspension s to Sink 1 (deg(s)− 2)
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Figure 37: A feasible flow in the inner network belonging to the graph on the
bottom right. The flow results in the Schnyder wood and the assignment given
in the graph on the bottom right, the vertex e is assigned to the face I. On
the bottom left the descriptions of the arcs that are not drawn. The grey disk
below a vertex represents the dummy vertex.
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