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Abstract. A partial order P = (X, <p) is a semi-order if it is an interval order admitting an interval represen-
tation such that all the intervals are of unit length. The semi-order dimension of P is the smallest k for which

there exist k semi-order extensions of P which realize P. In [HKM] the question whether semi-order dimension is
a comparability invariant was posed. We prove that for £k = 2 this is the case.
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1. Introduction

A partial order P = (X, <p) is a semi-order if it is an interval order admitting an interval
representation such that all the intervals are of length 1, ie., I, = (sz,8, + 1). The semi-
order dimension of P, denoted dimg(P), is the smallest k¥ for which there exist k& semi-order
extensions of P which realize P. Since linear orders are semi-orders and semi-orders are interval
orders we trivially obtain that order dimension is an upper bound and interval dimension is a
lower bound for semi-order dimension. Rabinovich [Ra] has shown that order dimension and
semi-order dimension differ only by constant factors between 1 and 3. This might be one of the
reasons why semi-order dimension has for quite a while received little attention.

In [HKM] it was observed that all techniques developed to proof the comparability invariant
of dimension, interval dimension and some related notions of dimension fail to work in the case
of semi-order dimension.

The comparability graph of an order P = (X, <) is the undirected graph Gp = (X, E) with
{z,y} € E iff either x <p y or y <p z. In general there can be nonisomorphic orders P and
@ with Gp = Gg. A property ¢ of orders is a comparability invariant if it depends on the
comparability graph only, i.e., if P € ¢ and Gp = G¢ together imply @) € 1.

A subset of elements A of X is called autonomous in P, if the relation of elements in A to an
element outside A is independent of the element of A. More formally, if for any x ¢ A, whenever
x < a, ¢ > a or z|la holds for some a € A, then the same holds for all a € A. We say that
an order P' = (X, <') is obtained by a reversal from P = (X, <) if there is an autonomous set
A C X so that:

(1) If not both of z and y are in A, then z <’ y if and only if z < y.

(2) Ifz,y€ A, then xz <'yif and only if y < z.

The order obtained from P by reversing the autonomous subset A will be denoted by P|A.

The importance of the notion of autonomous sets is due to a theorem of Gallai [Ga]: Two
orders P and @ on a set X have the same comparability graph, exactly if there exists a finite
sequence P = Ry, Ry,..., R = @ of orders on X, such that R; is obtained by a reversal from
R, {fori=1,... k.
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Figure 1. The Chevron with a parallelogram representation.

As consequence of this theorem we obtain a simple scheme for proving the comparability
invariance of a property. We only have to show that if P has the property and P’ is obtained by
a reversal from P, then the property holds for P’ too. In the next section we use this scheme to
show that in the finite case semi-order dimension two is a comparability invariant. Recently we
learned that David Kelly has independently obtained this result with a different proof technique.

2. Flipping in semi-order dimension two

Let P be an order of semi-order dimension two and let S1,.S, be a realizer of P. In the proof
we will refer to a representation of P by parallelograms induced by representations of S; and Ss.
We think of this representation as being embedded in the Euclidean plane, so let L; be the line
y =0 and let Ly be the line y = 1. Now assume that the intervals (s., s, + 1) for z € X form a
semi-order representation of S; on Ly and that S, is represented by the intervals (¢,,t, + 1) for
z € X on Ly. The parallelogram p(x) corresponding to an element € X is the stripe joining
the intervals corresponding to z on Ly and Ly (see Figure 1). That is, p(z) is the convex hull
of the four points (s, 0), (sz + 1,0), (¢4, 1), (t, + 1,1). Note that the parallelograms represent
the order relation of P, i.e., z <p y exactly if p(z) is completely to the left of p(y) and z||y iff
p(z) Nply) # 0.

With an autonomous set A in P we associate the convex region C'(A) spanned by the parallel-
ograms p(z) with € A. The four corners of C'(A) in clockwise order are (I1,0), (I2,1), (r2,1) and
(r1,0), if for i = 1,2 we define I; as the leftmost and r; as the rightmost point corresponding to
the interval of an element of A in S;. That is I = mingc 4 s, and 71 = max,ca S, + 1, similarly,
lo =mingcat, and ro = maxzcat, + 1.

Note that the parallelogram representation of an order of semi-order dimension two is a
representation by unit-parallelograms, i.e., by parallelograms of width one. In this article we use
the term parallelogram as equivalent to unit-parallelogram.

Let P be an order with an autonomous subset A and a parallelogram representation x —
p(z). The first naive idea for obtaining a parallelogram representation of P|A is to flip the
representation of A relative to C(A) and leave the rest of the representation unchanged. That
is, for z ¢ A we let p'(x) = p(z), while for z € A we take p'(z) as the parallelogram spanned by
(lh+r1 —s:, —1,0),(lh + 71 —84,0), (la + 79 — t, — 1,1),(la + 72 — t4, 1) (see Figure 2).

In general this flipping will not lead to a representation of P|A. Already in the cases of dimen-
sion or interval dimension the analogous idea fails. However, in these two cases geometric proofs
for comparability invariance are known. In these proofs the given representation is first modified
so that the flip in the new representation gives a representation of P|A, see e.g. [HKM]. The
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Figure 2. Flipping the set A = {a, b, c}.

problem with semi-order dimension is that semi-orders are not invariant under the modifications
used.

To indicate the role taken by the flipping procedure we now give a brief outline of our proof
for the comparability invariance of semi-order dimension two. Let A be an autonomous set in
P = (X, <) and let B be the set of all elements z € X with p(z) C C(A), obviously A C B.

Claim 1. The set B is autonomous in P.

Claim 2. If we flip the representation of B relative to C(B) = C(A) and leave the rest of the
representation unchanged we obtain a representation of P, = P|B.

Claim 3. If A; = B\ A then A; is autonomous and P|A = P;|A4;.

We then repeat the process with P; and A; replacing P and A. The claim is that, after a
finite number of steps, we end up with a P; such that A; = (), i.e., with a representation of P|A.
This can be proven by showing that a function measuring the size of A; is decreasing. Assuming
that the representation P; is such that no two parallelograms share a common corner it can be
shown that Area(C(A;;+1)) <Area(C(4;)) and |A4;12] < |A4|.

The rigorous proof, as given in the next section, is based on the ideas indicated above. How-
ever, the proof will be indirect and will require some more technicalities.

3. The main theorem
Theorem 3.1. Semi-order dimension two is a comparability invariant.

Suppose the theorem is false. It follows, that there exist pairs (P, A), where P = (X, <) is an
order with dimg(P) = 2 and A is an autonomous set of P such that dimg(P|A4) > 3. Among all
such pairs (P, A) we choose one with |A| minimal.

Let P be realized by semi-orders S; and S>. We assume that S; and S> are represented by
unit length intervals so that no two intervals share a common endpoint. For z € X let (sg, s, +1)
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Figure 3. If A ={a,b,c,d,e} then A* = {a,c,d,e} and B = {a,c¢,d, e, z}.

and (tz,t, + 1) be the intervals of z in Sy and S», also let p(z) denote the parallelogram of 2 € X
induced by the representations of S; on L; and Sy on L.

An element a € A is called isolated if a||a’ for all a' € A\ {a}. We call an autonomous set
proper if it contains no isolated elements. With A* = A\ {a : a is isolated in A} we denote the
largest proper subset of an autonomous set A. The next trivial observation is stated as a lemma
for ease of referencing.

Lemma 3.2. If A is autonomous in P, then A* is autonomous and P|A = P|A*.
We are ready now to state our key lemma.

Lemma 3.3. Let A be a autonomous set in P and let x € X such that p(x)NC(A*) # 0. Then
(1) p(z) C C(A*) or
(2) p(x) intersects with every width one parallelogram q contained in C(A*).

Proof. Assume p(z) ¢ C(A*). Then there is a corner ¢ of p(x) with ¢ ¢ C(A*). By symmetry
we may suppose that ¢ is the upper right corner of p(z) and that this corner is to the right of
the upper right corner of C'(4*), i.e., t, +1 > ro.

We first show that z||a for some a € A* and hence for all @ € A. If t, < ry, then z is
incomparable to a2, the element of A* with tq2 + 1 =ro. Otherwise, if t; > r2, then s, <r; and
p(x) intersects with p(a}) if a; € A* is the element with s,1 + 1 =ry.

Let ag be an element of A* with s,, = l3. Since A* is proper there is an element a; € A*
comparable to ag, necessarily ag < a1. Therefore, t,, +1 < to, < ro —1 < t, and in Sy the
element ag is less than z. Hence in S; we have ag £ z, i.e., $; < 84, +1 =13 + 1. This shows
that the line segment connecting s, and t, intersects every width one parallelogram contained in
C(A). A

Let A be a autonomous set in P and B = {z : p(z) C C(A*) }. The definition is illustrated
in Figure 3.

Lemma 3.4. The set B is autonomous in P and a parallelogram representation p, of P|B is
obtained by flipping the representation of B relative to C(B) = C(A*).

Proof. If z ¢ B and x < b for some b € B, then by Lemma 3.3. p(z) NC(A*) = 0. Alsoxz < b
implies that p(z) is to the left of p(b). This proves that p(x) is completely to the left of C'(A*)
and hence x < b for all b € B.

If x € B and x > b for some b € B, then symmetric to the previous case we obtain x > b for
allb € B.
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If z ¢ B and z|b, then § # p(z) N p(b) C p(x) N C(A*). Lemma 3.3. implies p(z) N p(b) # 0
for all b € B, i.e., z||b for all b € B. This concludes the proof that B is autonomous.

The above argument can be summarized by saying that the relation (left, right, intersecting)
of p(z), z ¢ B, to all possible width one parallelograms ¢ C C(A4*) is the same. If we flip B in
C(A*) the new parallelogram p; (b) assigned to b € B is again contained in C(A*). Therefore,
the flipping will not change the relation of b € B to any z ¢ B. For x,y ¢ B the parallelograms
remain unchanged, i.e., p(z) = pi(z) and p(y) = pi(y), hence their relation in the order P;
defined by p; remains the same as in P. If b,¢ € B, then p;(b) is to the left of p;(c) exactly if
p(c) is to the left of p(b). Altogether this shows that P, = P|B. A

Lemma 3.5. If Ay = B\ A* then A is autonomous in P|B and P|A = P|B|A;.

Proof. If © ¢ B then, since B is autonomous, the relation of z with any a € A; is shared by
all b € B and hence by allb € A;. If z € B but x € A; then z € A* and, since A* is autonomous,
z|la for all a € A;. This shows that A; is autonomous.

Since all elements of A* are incomparable to all elements of A; the order relation on B is
the parallel composition of the order relations on A* and A;. Therefore, P|A*|4; = P|B and
P|A* = P|B|A;. Together with Lemma 3.2. this completes the proof. A

Remove isolated elements from A; to obtain A} and note that P|A = P|B|A}. Let C'(A})
be the convex region spanned by the parallelograms p;(z) with € A} and define By = {x :
pi(z) C C(Af)}. By Lemma 3.4. a parallelogram representation p, of P|B|Bj is obtained by
flipping the representation of By in C(A}) = C(By). Now let Ay = B; \ A}, Lemma 3.5. shows
that A, is autonomous in P|B|B; and P|A = P|B|B;|As.

Our assumptions about P together with the lemmas imply that dimg(P|B|Bi) = 2 and
dimg(P|B|B1|A%) = 3. Therefore (P|B|By, A3) was a candidate pair at the beginning of the
proof. The choice of (P, A) reveals |A| < |A%]. With the next lemma we obtain a contradiction
which completing the proof of the theorem.

Lemma 3.6. If p is a parallelogram representation of P such that no two parallelograms have
a corner in common then |A| < |A*|.

Proof. First, note that C(A3) C C(A}) G C(A*), where the strict inequality is a consequence
of the assumption about the corners of the parallelograms.

We now claim that A5 C A*. Let x € A%. Note that p;(xz) C C(A4}) C C(A*) and hence also
p(z) C C(A*), ie., z € B= A*U A,. By definition = ¢ A;}. Therefore, either € A* or z is an
isolated element of A;. If x is an isolated element of Aq, then it is also an isolated element of A,
and therefore ¢ ¢ A%. This contradiction proves the claim.

Consider a; € A*, the element defining the lower left corner of C(A4*), then p(a}) ¢ C(A}),
hence, a; ¢ Aj. A

The extension of parallelogram representations to higher semi-order dimensions is obvious,
however, we see no analog of Lemma 3.3. in this case. Hence the general open problem remains:
Is semi-order dimension a comparability invariance? A second interesting question is whether
orders of semi-order dimension two can be recognized efficiently.
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