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Abstract. On-line chain partition is a two-player game between Spoiler and Algo-
rithm. Spoiler presents a partially ordered set, point by point. Algorithm assigns
incoming points (immediately and irrevocably) to the chains which constitute a chain
partition of the order. The value of the game for orders of width w is a minimum num-
ber val(w) such that Algorithm has a strategy using at most val(w) chains on orders
of width at most w. We analyze the chain partition game for up-growing semi-orders.

Surprisingly, the golden ratio comes into play and the value of the game is ⌊ 1+
√

5

2
w⌋.

1. Introduction

On-line chain partitions of an order can be described as a two-person game between
Algorithm and Spoiler. The game is played in rounds. Spoiler presents an on-line order,
one point at a time. Algorithm responds by making an irrevocable assignment of the
new point to one of the chains of the chain partition. The performance of Algorithm’s
strategy is measured by comparing the number of chains used with the number of chains
of an optimal chain partition. By Dilworth’s Theorem the size of an optimal chain
partition equals the width of the order. The value of the game for orders of width w,
denoted by val(w), is the least integer n for which some Algorithm has a strategy using
at most n chains for every on-line order of width w. Alternatively, it is the largest integer
n for which Spoiler has a strategy that forces any Algorithm to use n chains on order of
width w.

The study of chain partition games goes back to the early 80’s when Kierstead [4]
(upper bound) and Szemerédi (lower bound published in [5]) proved the estimates for
on-line orders of width w:

(

w+1
2

)

6 val(w) 6 5w−1
4

. It took almost 30 years until these
bounds had been slightly improved. The story can be found in the survey [2].

The study of on-line chain partition on restricted classes of orders began in 1981
when Kierstead and Trotter [6] proved the following result: when Spoiler is restricted
to presenting interval orders of width w, the value of the game is 3w − 2. Among
other classes of orders that have been studied thereafter are (k+ k)-free orders and
semi-orders. Again we refer to [2] for details.

Up-growing on-line orders have been introduced by Felsner [3]. In this variant Spoiler’s
power is restricted by the condition that the new element has to be a maximal element
of the order presented so far. Felsner [3] showed that the value of the chain partition
game on up-growing orders is

(

w+1
2

)

. The case of up-growing interval orders was resolved
by Baier, Bosek and Micek [1]. The value of the game in this variant is 2w − 1.

This paper resolves the on-line chain partition problem for up-growing semi-orders.
An order P is called a semi-order if it has a unit interval representation, i.e., there
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exists a mapping I of points of the order into unit length intervals on a real line so that
x < y in P iff interval I(x) is entirely to the left of I(y). Alternatively semi-orders are
characterized as the (2+ 2) and (3+ 1)-free orders (see Fig. 2).

Considering on-line chain partitions of semi-orders note that the general (not up-
growing) case is easy to analyze: First, observe that the number of chains used by
Algorithm can be bounded by 2w − 1. Let x be the new point and consider the set
Inc(x) of points incomparable with x. Clearly, the only chains forbidden for x are those
used in Inc(x). Now width(Inc(x)) 6 w− 1 since the width of the whole order does not
exceed w. Moreover, height(Inc(x)) 6 2 as the presented order is (3+ 1)-free. Therefore,
| Inc(x)| 6 2(w − 1) = 2w − 2, proving that x can be assigned to at least one of 2w − 1
legal chains.

It turns out that there is no better strategy for Algorithm. In other words, Spoiler
may force Algorithm to use 2w − 1 chains on semi-orders of width w. A strategy for
Spoiler looks as follows:

(1) Present two antichains A and B, both consisting of w points in such a way that
A < B, i.e., all points from A are below all points from B. If Algorithm uses
2w − 1 or more chains, the construction is finished. Otherwise, suppose that k

chains (2 6 k 6 w) contain elements from A and B, namely let ai ∈ Ai, bi ∈ Bi for
1 6 i 6 k lie in the same chain.

(2) Present k−1 points x1, . . . , xk−1 in such a way that {a1, . . . , ai} 6 xi 6 {bi+1, . . . , bk}
and xi is incomparable to all the rest (the interval representation of the whole order
looks as in Fig. 1). It is easy to verify that in such setting Algorithm is forced to
use 2w − 1 chains.

a1
a2
a3

. .
.

. .
.ak

b1
b2
b3

. .
. bk

. .
.

. .
.

x1

x2

xk−1

Figure 1. Strategy for Spoiler forcing Algorithm to use 2w − 1 chains.

The contribution of this paper is the following theorem.

Theorem 1.1. The value of the on-line chain partition game for up-growing semi-orders

of width w is ⌊1+
√
5

2
· w⌋.

2. Up-growing Semi-orders

2.1. Outline. In this section we prove that the value of the on-line chain partition game

for up-growing semi-orders equals ⌊ϕ ·w⌋, where ϕ = 1+
√
5

2
is the golden number. First,

in Sect. 2.2 we collect some facts about semi-orders. Section 2.3 describes a strategy for
Spoiler which forces Algorithm to use at least ⌊ϕ ·w⌋ chains on a semi-order of width w.
This sets the lower bound for the value of the game. In Sect. 2.4 we propose a strategy
for Algorithm using at most ⌊ϕ · w⌋ chains on semi-orders of width at most w.
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The presence of the golden number ϕ in the result of a chain partition game may seem
surprising. In fact, it is the Fibonacci sequence (F0 = 0, F1 = 1 and Fi+2 = Fi + Fi+1)
which appears in the counting argument of the upper bound and serves as a discrete
counterpart of ϕ.

2.2. Basic Facts. For x, y ∈ P by x ‖P y we mean that x and y are incomparable in P.
Let x↓P = {y ∈ P : y < x}, called a down set of x in P, denote the set of predecessors
of x in P. Dually, let x↑P = {y ∈ P : y > x}, called an up set of x, denote the set of
successors of x in P. If the order P is unambiguous from the context we also write x↑
instead of x↑P and x↓ instead of x↓P. By X↓ we mean

⋃

x∈X x↓.
The maximum and the minimum elements of a chain γ are denoted respectively by

top(γ) and bottom(γ).
An order P is called an interval order if it has an interval representation, i.e., there

exists a mapping I of points of the order into intervals on a real line so that x < y in P

iff max I(x) < min I(y). Interval orders have several nice characterizations, see e.g. [7].
In our context the following two will be used repeatedly:

(1) P = (P,6) is an interval order iff the set of down sets (up sets) of elements of
P is linearly ordered with respect to inclusion, i.e., for p, q ∈ P either p↓ ⊆ q↓ or
p↓ ⊇ q↓. Note that this ordering of down sets corresponds to the order of left
endpoints in an interval representation.

(2) P = (P,6) is an interval order iff P is a (2+ 2)-free order, i.e., P does not contain
elements a, b, c, d ∈ P such that: a < b, c < d, a ‖ d and c ‖ b (see Fig. 2).

e

f

g

h

a

b d

c

Figure 2. (2 + 2) and (3+ 1) orders.

An interval order P is called a semi-order if it has a unit interval representation,
i.e., all intervals are of the same length. Semi-orders are also characterized in terms of
forbidden structures: an interval order P is a semi-order iff P is a (3+ 1)-free order,
i.e., P does not contain elements e, f, g, h ∈ P such that e < f < g and h ‖ e, f, g (see
Fig. 2).

2.3. The Lower Bound. Fix w and consider the system (Ik) of k linear inequalities

x0 + x1 + . . .+ xj−1 + 2xj − xj+1 6 w, j = 0, . . . , k. (Ik)

From the following two propositions it immediately follows that there exists a strategy
for Spoiler which forces Algorithm to use ⌊ϕ ·w⌋ chains on an up-growing semi-order of
width w. This is the lower bound needed for Theorem 1.1.

Proposition 2.1. If (x0, x1, . . . , xk, xk+1) is an integral solution of (Ik) with x0 > x1 >

. . . > xk > xk+1 = 0 then there is a strategy for Spoiler to present an up-growing semi-

order of width w and force Algorithm to use at least w + x0 chains.
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Proposition 2.2. For each w there is an integer k and an integral solution of (Ik) with
x0 = ⌊(ϕ− 1) · w⌋ > x1 > . . . > xk > xk+1 = 0.

Proof of Proposition 2.1. Fix w, k > 0 and an integer solution (x0, . . . , xk) of (Ik) with
x0 > x1 > . . . > xk > xk+1 = 0. The strategy for Spoiler induced by (x0, . . . , xk) presents
an up-growing semi-order P = (P,6) of width w. The height of P is at most 3. The
points of P are presented in bundles so that the actual presentation sequence has the
following structure

P = (A, C0, B1, C1, B2, C2, . . . , Ck, Bk+1).

The set A is exactly the set of minimal elements ofP. Points of height 2 lie in C0∪
⋃k+1

i=1 Bi

and all points from
⋃k

i=1Ci are of height 3.
Throughout the construction Spoiler maintains auxiliary sets D1, . . . , Dk. Initially

Di = ∅ for every i. During the construction the following invariant will be kept:

Di ⊆ Bi and Di does not contain top of any chain used by Algorithm. (1)

Now, we describe the phases of the construction. The proof that the construction has
all desired properties will follow thereafter.

Spoiler starts the construction by presenting an antichain A of size w. Algorithm has
to use w different chains.

Phase j (0 6 j 6 k). In the j-th phase Spoiler builds xj−xj+1 forcing paths. The points
constituting these paths will go into the set Cj.

The first point q0 of a forcing path dominates A ∪
⋃

i6j Bi. Now, suppose that the
first i+1 points of the path have been presented and let qi be the last of these points. If
Algorithm assigned qi to a new chain or to a chain whose top is in A, then qi is the last
point of the forcing path. Otherwise, qi was assigned to some chain with a top b ∈ Bs.
In this case Spoiler updates Ds := Ds ∪ {b} and then introduces qi+1 > A ∪ B1 ∪ . . . ∪
Bs−1 ∪Ds.

Note that the invariant (1) is kept, i.e., Di does not contain any chain top. Algorithm
has to assign qi+1 to a new chain or to a chain with top in A∪B1∪. . .∪Bs−1. This means
that if qi+1 is assigned to a chain with a top from Bs′ then s′ < s. Thus, consecutive
points q0, q1, . . . of a forcing path (excluding the last one) are assigned to chains with
tops from the Bi’s with decreasing indices. This proves that the path is finite.

The intuition is that with each forcing path Spoiler forces Algorithm to produce a
skip chain, i.e., a chain of height 2 with its bottom in A and its top in Cj (avoiding all
the Bi’s), or to use a brand new chain.

Assume that Spoiler constructed all the forcing paths and consider the set Aj ⊆ A of
bottom points of skip chains with tops in Cj. Clearly, |Aj | 6 xj − xj+1. Now, Spoiler
introduces a set Bj+1 consisting of xj − xj+1 points such that Aj ∪ Bj↓ ⊆ Bj+1↓ and
|Bj+1↓| = x0 − xj+1 (put B0 = ∅). This means that if |Aj | < xj − xj+1 or Aj ∩ Bj↓ 6= ∅
then Spoiler completes Bj+1↓ with arbitrarily chosen points from A− (Aj ∪ Bj↓). This
is possible as |Bj↓|+ |Aj | 6 (x0 − xj) + (xj − xj+1) = x0 − xj+1 6 w = |A|, by (Ik).

To prove that the construction actually works and thus concludes the proof of Propo-
sition 2.1 we have to verify the following three facts.

Fact 2.3. P is a semi-order.
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Fact 2.4. The width of P is w.

Fact 2.5. Algorithm has to use at least w + x0 chains to cover P.

Proof of Fact 2.3. We proceed in two steps, first we show that P is an interval order and
then that it is (3+ 1)-free.

In order to prove that P is an interval order we show that the down sets of points
from P are linearly ordered with respect to inclusion. Indeed,

(i) A↓ = ∅,
(ii) B1↓ ⊆ B2↓ ⊆ . . . ⊆ Bk↓ ⊆ A,
(iii) C0↓ = A,
(iv) if c ∈ Cj is the starting point of a forcing path, then c↓ = A ∪ (B1 ∪ . . . ∪ Bj),
(v) if c ∈ Cj is not a starting point, then there is an s with c↓ = A∪(B1∪. . .∪Bs−1∪D

t
s).

The set Dt
s from the last line refers to the respective set Ds at the moment when c is

introduced. Recalling that Ds can only grow over time and Ds ⊆ Bs we can conclude
that the down sets of elements of c are linearly ordered with respect to inclusion. Hence
P is an interval order.

To see that P is a semi-order suppose that P contains a (3+ 1)-configuration d ‖

a, b, c with a < b < c. Since P has height at most 3 and A <
⋃k

i=0Ci, the only option is

that a ∈ A, b, d ∈
⋃k+1

i=1 Bi and c ∈
⋃k

i=1Ci (C0 is excluded as it is incomparable to the
Bi’s). Let i, j be such that b ∈ Bi and d ∈ Bj . Then it is easy to see that a < d if i 6 j

(as in this case a ∈ b↓ ⊆ d↓) and d < c otherwise (as c being an element of a forcing
path with c > b ∈ Bi implies c > B1 ∪ . . . ∪ Bi−1 ⊇ Bj). This contradiction to d ‖ a, c

shows that P is (3+ 1)-free so it is a semi-order. �

Proof of Fact 2.4. To prove that width(P) = w consider any antichain X in P. We will
show that |X| 6 w. Let m ∈ X be the point with a maximal down set among points in
X . We distinguish between three cases:

Ifm ∈ A, thenX ⊆ A and |X| 6 |A| = w. Ifm ∈ Bi, thenX ⊆ B1∪. . .∪Bi∪(A−Bi↓)
and |X| 6 (x0 − x1) + . . .+ (xi−1 − xi) + (w − (x0 − xi)) = w.

If m ∈ C0, then X ⊆
⋃

iBi and |X| 6 |C0| + |B1| + . . . + |Bk+1| = (x0 − x1) + (x0 −
x1) + . . .+ (xk − xk+1) = x0 + x0 − x1 6 w by (Ik).

The last and most interesting case is when m ∈ Cj for j > 0. We may write m↓ =
A ∪ (B1 ∪ . . . ∪ Bj−1 ∪ Dt

j) where again Dt
j is the set Dj at the moment when m was

inserted. When m is the starting point of a forcing path we have Dt
j = ∅. Clearly,

X ⊆ Y ∪ (
⋃

iBi −m↓) where Y = {c ∈
⋃

i Ci : c↓ ⊆ m↓}.
Since the starting points of forcing paths in Y were introduced in phases 0 to j − 1,

their total number is (x0−x1)+(x1−x2)+ . . .+(xj−1−xj) = x0−xj . The introduction
of each c ∈ Y being not a starting point of a forcing path is preceded by an extension
of some Di for 1 6 i 6 j. Therefore the number of non-starting points in Y is bounded
by |D1| + . . . + |Dj−1| +

∣

∣Dt
j

∣

∣. To simplify this expression we first prove the following
bound:

|Di| 6 xi.

For the proof of the inequality note that the set Di is enlarged only if a point from
a forcing path is assigned to a chain with a top from Bi. This can only happen for
forcing paths presented in phases following phase i. Each forcing path can contribute at
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most one point to Di. There are (xi − xi+1) + . . .+ (xk − xk+1) forcing paths in phases
presented after phase i. Since xk+1 = 0 this is not greater than xi, as claimed.

Collecting pieces from above we get |Y | 6 (x0 − xj) + |D1| + . . . + |Dj−1| + |Dt
i| 6

(x0 − xj) + x1 + . . .+ xj−1 +
∣

∣Dt
j

∣

∣.
Recall that

⋃

i Bi −m↓ = (Bj −Dt
j) ∪ Bj+1 ∪ . . . Bk+1. All this finally yields:

|X| 6 |Y |+
∣

∣

∣

⋃

i
Bi −m↓

∣

∣

∣

= [(x0 − xj) + x1 + . . .+ xj−1 +
∣

∣Dt
j

∣

∣]

+ [(xj−1 − xj −
∣

∣Dt
j

∣

∣) + (xj − xj+1) + . . .+ (xk − xk+1)]

= x0 + x1 + . . .+ xj−1 + (xj−1 − xj)

From (Ik) we know that this last expression is not greater than w. �

Proof of Fact 2.5. We will prove that Algorithm is forced to use at least w + x0 chains
on P. First, we show that

all points in A−Bk+1↓ are tops of the chains to which they are assigned.

For the proof of this statement first consider points in P dominating A−Bk+1↓. These
are exactly the points in

⋃

i Ci. Recall that if Algorithm produced a skip chain and
assigned c ∈

⋃

Ci to a chain whose top was equal to a ∈ A then c ends a forcing path.
If this forcing path was played in phase j, then Spoiler later presented Bj+1 in such a
way that Bj+1 > a and therefore a ∈ Bj+1↓ ⊆ Bk+1↓ so a 6∈ A−Bk+1↓ and we are done.

Consider the set E of end points of forcing paths presented in the game. The key fact
is that all points in (A − Bk+1↓) ∪

⋃

i Bi ∪ E are covered with distinct chains. Indeed,
we have shown that chains in A − Bk+1↓ are tops of the chains. End points of forcing
paths are, by definition, in a chain that is not used in

⋃

i Bi. Recall that

(i) |A−Bk+1↓| = w − x0,
(ii) |B1|+ . . .+ |Bk+1| = (x0 − x1) + . . .+ (xk − xk+1) = x0,
(iii) |E| = (x0 − x1) + (x1 − x2) + . . .+ (xk − xk+1) = x0.

Hence |A− Bk+1↓|+
∑

i |Bi|+ |E| = w+x0 which gives the lower bound on the number
of chains used by Algorithm. �

�

Proof of Proposition 2.2. We will show that for any w there is a solution of (Ik) with
x0 = ⌊(ϕ− 1) · w⌋. Consider the following sequence:

x0 = ⌊(ϕ− 1) · w⌋,

xj+1 = ⌊(ϕ− 1) · (w − x0 − . . .− xj)⌋.

Note that for any 0 6 a 6 x we have ⌊(ϕ− 1)(x− a)⌋ 6 (ϕ− 1)x− (ϕ− 1)a < (ϕ− 1)x
and thus ⌊(ϕ−1)(x−a)⌋ 6 ⌊(ϕ−1)x⌋. It implies that the sequence of xj ’s is decreasing.
Moreover, it eventually gets to zero since the partial sum x0 + . . .+ xj is getting larger.
In particular there is a k such that x0 > . . . > xk > xk+1 = 0. It is easy to verify that
the sequence is a solution of (Ik), indeed

xj 6 (ϕ− 1)(w − x0 − . . .− xj−1) =
ϕ

ϕ+1
(w − x0 − . . .− xj−1).
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Multiplying this by ϕ+1, moving the term ϕxj to the right hand side, adding x0+. . .+xj

on both sides and −w + w on the right side we get

x0 + . . .+ xj−1 + 2xj 6 (ϕ− 1)(w − x0 − . . .− xj) + w.

The left side is an integer, therefore we may take the floor of the right side without
affecting the truth. This results in an inequality from the system (Ik):

x0 + . . .+ xj−1 + 2xj 6 ⌊(ϕ− 1)(w − x0 − . . .− xj)⌋+ w = xj+1 + w.

Hence (x0, . . . , xk) is indeed a solution of (Ik), concluding the proof of Proposition 2.2.
�

2.4. The Upper Bound. Consider a semi-order P = (P,6) with P = (a, b, c, d, e)
and the chain partition Γ : P \ {e} → N as shown in Fig. 3. Point e may be covered

a b c

d e

1 2 3

1

b
a

c e
d

Figure 3. Order P with its unit interval representation and the chain
partition Γ of points a, b, c, d.

with a new chain (say, with number 4) or with one of the chains already used. In
the latter case Algorithm may choose between 2 and 3. We say that chain α is valid

for a new point x extending an already partitioned order P if x dominates all points
from α in P. We claim that among the valid chains 2 and 3 defining Γ(e) = 3 is the
better choice. Indeed, any future point p presented by Spoiler and dominating c will
also dominate b (otherwise, P would have a (2+ 2) configuration which is forbidden in
interval orders). On the other hand, Spoiler may play q greater than b but remaining
incomparable to c (see Fig. 4). Hence, using the chain of c for e leaves more options for

a b c

d

1 2 3

1
q

b
a

c e
d

q

e p

Figure 4. Point q may be presented by Spoiler in the future, point p can not.

the future. Whenever the chains of two points x and y are valid and x↑ ( y↑ then it
seems safer to use the chain of x. Our Algorithm ALG will go along this intuition.

Suppose that Spoiler introduces a semi-order P = (P,6) with a presentation order
P = (p1, . . . , pn). We refer to the chains used by ALG as ALG-chains or just chains.
With Px we denote the order consisting of all points presented prior to x. We say that
a chain α is valid for point x if top(α) in Px is below x in P. The options of ALG are to
put x into some valid chain or into a new chain. We are ready to describe Algorithm’s
strategy. Let x be a new point presented by Spoiler.
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Algorithm ALG: If there is a valid chain for x, then put x into a valid chain α such
that top(α)↑ ⊆ top(β)↑ in Px for all valid chains β. Otherwise, if there is no valid
chain, use a new chain for x.

ALG is a greedy algorithm, i.e., it uses a new chain only when it is left with no other
option. Note also that ALG has some freedom in choosing a chain for a new point x as
there may be many tops of valid chains for x with the same minimum up set in Px.

The bound on the performance of ALG on width w is stated in the following propo-
sition. This is the upper bound part for Theorem 1.1.

Proposition 2.6. ALG uses at most ϕ·w chains on any up-growing semi-order of width

at most w.

Suppose Spoiler presents a semi-order P = (P,6) with the presentation order P =
(p1, . . . , pn) and width(P) 6 w. We may assume that ALG uses a new chain for the last
point pn. If this were not the case Spoiler could stop the game earlier and the number
of chains used by ALG would remain the same.

We partition P into layers. These layers will in some way reflect the preferences of
ALG during the game. The point p ∈ P is significant if p dominates at least one maximal
point of Pp. By the linearity of down sets of an interval order P this is equivalent to the
fact that p has the largest down set at the moment of its presentation. Let e1, . . . , em−1

be the significant points of P, sorted with respect to the presentation order (If P has no
significant points then P is an antichain and the thesis is trivial). These points define
the partition of P into layers as follows (put e0↓ = ∅):

Di = ei↓ − ei−1↓, for 1 6 i < m,

Dm = P − em−1↓.

Thus, Di (for 1 6 i < m) is exactly the set of maximal points of Pei covered by ei. Here
is a list of helpful and easy properties of the Di’s.

Fact 2.7.

(i) d1↑ ) d2↑ ) . . . ) dm↑, for all di ∈ Di.

(ii) Dm is exactly the set of maximal points of P. In particular, pn ∈ Dm.

(iii) Di is an antichain, for every i.

(iv) If di ∈ Di, p ∈ P and di < p then D1 ∪ . . . ∪Di−1 ⊆ p↓.
(v) If di ∈ Di, p ∈ P and di ≮ p then p↓ ⊆ D1 ∪ . . . ∪Di.

(vi) If di ∈ Di, p ∈ P and p is presented prior to di then p↓ ⊆ D1 ∪ . . . ∪Di−1.

Proof. (i) From ei ∈ di↑ but ei 6∈ dj↑ for all j > i and the linear order on the up-sets of
elements we obtain di↑ ) dj↑.

(ii) The last significant point em−1 has the largest down set in P. This means that all
points outside em−1↓, namely Dm = P − em−1↓, have empty up sets.

(iii) This follows from (ii) and the fact that Di is the set of maximal points of Pei.
(iv) Suppose i > 1 since for i = 1 the claim is obvious. Clearly, di 6< ei−1. But if

di > ei−1 then ei−1↓ ( di↓. Therefore di is the next significant point after ei−1 or ei was
presented before di. Both cases are impossible as Di ⊆ ei↓, thus di ‖ ei−1. Now, if di < p

then by the linearity of down sets we obtain D1 ∪ . . . ∪Di−1 = ei−1↓ ( p↓.
(v) Suppose that p > d for some d ∈ Dj, j > i. Then (iv) guarantees that Di ⊆ p↓.

This implies di < p, contradicting the assumptions.
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(vi) If i = m then the thesis is trivial as Dm is the set of maximal points of P. Thus,
suppose i < m. Recall that ei is the first presented point which dominates every point
from Di. Now as p is presented prior to di and di precedes ej for j > i, we get that p

cannot dominate any point from Dj . �

With the next fact we prove that ALG always chooses a chain whose top is in the
highest of the layers which contain tops of valid chains.

Fact 2.8. Let di ∈ Di, dj ∈ Dj, i < j and di, dj < x. If di is an ALG-top in Px and

ALG uses its chain on x then dj is not an ALG-top in Px.

Proof. At the moment when Spoiler presents x, both di and dj are already introduced
(P is up-growing). Since ej−1 was presented before dj , di ∈ ej−1↓ and dj 6< ej−1 we
conclude that di↑ ) dj↑ in Px. Hence if both di and dj are valid tops for x then ALG
has a preference for using the chain of dj for x. �

Before we proceed with the proof we introduce the concept of a predecessor and a
successor of a point with respect to some fixed chain partition. Let C be the chain
partition of P = (P,6). For p ∈ P with p ∈ C for a chain C ∈ C we define:

(i) The predecessor of p in C is the point preceding p in C (if p is the least point in C

then the predecessor of p does not exist).
(ii) The successor of p in C is the point succeeding p in C (if p is the largest point in

C then the successor of p does not exist).

We fix an optimal chain partition O of P. Since width(P) 6 w this partition consists
of at most w chains. With respect to this partition we denote the predecessor and
the successor of p ∈ P by o−(p) and o+(p), respectively. Analogously, we refer to the
predecessor and the successor of p with respect to the the chain partition constructed
by ALG as alg−(p) and alg+(p).

We arrive at the key concept of the proof: the alternating paths. Each such path
starts at the bottom of an ALG-chain. We propose to understand it as a chain of events
originating from the starting bottom. By counting the number of such paths we will get
a bound on the number of chains used by ALG.

For each ALG-chain α define an alternating path q = (q0, . . .) as follows:

(i) q0 is the bottom point of α,
(ii) q2i+1 = o−(q2i), if o

−(q2i) does exist,
(iii) q2i+2 = alg+(q2i+1), if alg

+(q2i+1) does exist.

We claim that for each path q all the q2i’s are pairwise distinct and so are all the
q2i+1’s. Indeed, note that q0 6= q2i for i > 0 as q2i = alg+(q2i−1) is not a bottom of an
ALG-chain, while q0 is defined as a bottom. Now suppose that the claim does not
hold and consider the least i such that qi = qj for some j > i where i and j have the
same parity. If i and j are even we get qi−1 = alg−(qi) = alg−(qj) = qj−1 and if they
are odd we get qi−1 = o+(qi) = o+(qj) = qj−1. In both cases this contradicts the choice
of i. This fact implies that the alternating paths are finite. Note that an alternating
path q = (q0, . . . , ql) is uniquely determined by any qi ∈ q together with the information
whether qi is an odd or a even element. Altogether we have proven the following fact:

Fact 2.9. For an alternating path q = (q0, . . . , ql) all the qi’s with the same parity of

indices are pairwise distinct, i.e. q2i 6= q2j and q2i+1 6= q2j+1 for i 6= j. Moreover, each
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p ∈ P occurs in at most two alternating paths: once with an odd index and once with an

even index.

For an alternating path q = (q0, . . . , ql) we call the q2i’s the up-points of q and the
q2i+1’s the down-points of q. An alternating path q = (q0, . . . , ql) is an up-path if its last
point is an up-point, otherwise, q is a down-path. Note that an up-path connects the
bottom of an ALG-chain with the bottom of an O-chain, hence, there are at most w

up-paths (see Fact 2.12). The goal is to bound the number of down-paths.
From our perspective the important layers in the partition of P = D1 ∪ . . . ∪Dm will

be those containing at least one end point of a down-path. Define

I = { i : there is a down-path ending in Di } = { i0 < i1 < . . . < is } .

Note that m 6∈ I being an end point of a down-path has a non-empty up set, while up
sets of all points in Dm are empty (see Fact 2.7.(ii)). This means

is < m. (2)

From the definition of I we immediately obtain:

Fact 2.10. There is an ALG-top in every Dij , for 0 6 j 6 s.

The next fact basically states that Di0 ∪ . . .∪Dm induce an order of height at most 3.

Fact 2.11. Di0+1 ∪ . . . ∪Dm−1 is an antichain.

Proof. In order to get contradiction suppose that there are d, d′ ∈ Di0+1 ∪ . . . ∪ Dm−1

and that d < d′. As d′ dominates a point from a layer higher than Di0 , we get from
Fact 2.7(iv) that Di0 ⊆ d′↓. On the other hand, since d′ 6∈ Dm there must be some
point d′′ > d′ (see Fact 2.7(ii)). Fix some t ∈ Di0 that remains an ALG-top throughout
the game (such t exists by Fact 2.10). Recall that pn, the last point presented by
Spoiler, is incomparable with t as otherwise pn would not be assigned to a new ALG-
chain. Together this shows that pn and t < d′ < d′′ form a (3+ 1)-configuration. This
is impossible since P is a semi-order. �

We now introduce variables that count the number of paths with respect to their end
points. Define

xU the total number of up-paths,
xj the number of down-paths ending in

⋃

i>ij
Di, for j = 0, . . . , s,

xs+1 = 0.

In terms of these variables the number of chains used by ALG can be expressed as

xU + x0.

Fact 2.12. xU 6 w.

Proof. Consider the set U of end points of up-paths. By Fact 2.9 these end points are
pairwise distinct and |U | = xU . As each point in U is a bottom point of its chain in O
these points belong to different chains in O. Therefore, xU = |U | 6 |O| 6 w. �

Throughout the rest of the paper our efforts are targeted on bounding the number x0

of down-paths. In the following two lemmas we will present a system of inequalities
involving x0 and the other xi’s. From these inequalities we will derive the desired
constraints on the value of x0.
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Lemma 2.13. x0 + x0 − x1 6 w.

Lemma 2.14. x0 + x1 + . . .+ xj + (xj − xj+1) 6 w, for j = 1, . . . , s.

We need some preparations for the proofs of the lemmas. In the counting arguments
on which the proofs are based we will be often showing that certain sets are disjoint.
Below we introduce a criterion that will help us do the bookkeeping.

Point p ∈ P is a good point if o−(p) exists and o−(p) is an ALG-top at the moment
when p is presented, i.e., o−(p) is a top of its ALG-chain in Pp. Simple enough, point p
is considered bad if it is not good.

Fact 2.15 states that the penultimate point of a down-path is always good. Fact 2.16
says that if a down-path ends in Dij then it contains j + 1 bad up-points. Fact 2.17 is
a technical statement used in the proof of Lemma 2.14.

Fact 2.15. The penultimate point of a down-path is a good point and lies in Dm.

Proof. Let q = (q0, . . . , ql−1, ql) be a down-path. We have ql = o−(ql−1) and since q ends
with ql = o−(ql−1) this point must be an ALG-top in P. This shows that ql−1 is good.

To prove that ql−1 ∈ Dm we are going to prove an equivalent condition that the up
set of ql−1 is empty (see Fact 2.7(ii)). Recall that the last point presented in P, namely
pn, receives a new ALG-chain. This means that there is no valid chain for pn and in
particular, pn ≯ ql. From pn↑ = ∅ we get pn ‖ ql. Now, if there was a point x > ql−1

then pn, ql, ql−1, x would form a (3+ 1)-configuration. This is impossible since P is a
semi-order. �

Fact 2.16. A down-path q ending in Dij contains j + 1 bad up-points {y0, . . . , yj} such

that o−(yk) ∈ Dik , for 0 6 k 6 j.

Proof. Fix k and define yk to be the first up-point in q such that o−(yk) ∈ Dl for some
l > ik. Such point does exist, as the penultimate point in q is a candidate for yk.

Claim. yk is a bad point.

Suppose yk is the first point of q. In this case ALG uses a new chain on yk. Since
ALG is greedy there is no valid chain for yk at the moment it is presented. In particular,
o−(yk) is not an ALG-top in Pyk and therefore yk is a bad point.

If yk is not the first point of q = (. . . , p, o−(p), yk, o
−(yk), . . .), then we know that p

did not qualify for yk and therefore alg−(yk) = o−(p) ∈ D1 ∪ . . . ∪Dik−1. From Fact 2.8
it follows that o−(yk) is not an ALG-top in Pik and again yk is bad. This proves the
claim.

It remains to show that o−(yk) ∈ Dik . Fix an ALG-top t ∈ Dik (Fact 2.10). Note that
t ≮ yk as otherwise ALG would have given preference to the chain of t instead of the
one it used for yk. From Fact 2.7(v) we get yk↓ ⊆ D1 ∪ . . . ∪ Dik . From this and the
definition of yk we conclude o−(yk) ∈ Dik . �

Fact 2.17. For every j (0 6 j 6 s) and down-path q there is an up-point u ∈ q such

that one of the following two conditions is true:

(i) u ∈ Dij+1 ∪ . . . ∪Dm and o−(u) ∈ Di0, or

(ii) u is good and o−(u) ∈ Di0+1 ∪ . . . ∪Dij−1.
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Proof. Fix j and a down-path q. Let a be the last up-point in q such that o−(a) ∈ Dk

for some k 6 i0. There is such a point as by Fact 2.16 each down-path has an up-point
y with o−(y) ∈ Di0.

First we are going to prove that o−(a) ∈ Di0 . It is trivial if o
−(a) is the last point of

q as the first layer with an end of a down-path is Di0 . If o
−(a) is not the last point then

let b be the next point of q, i.e. q = (. . . , a, o−(a), b, o−(b), . . .). From the way point a

is chosen we have o−(b) ∈ Dl, for some l > i0. By Fact 2.7(iv) b > o−(b) ∈ Dl implies
Di0 ⊆ b↓. Now, recall that there is an ALG-top t ∈ Di0 (Fact 2.10). In particular, at
the moment when b was introduced the chain of t ∈ Di0 was valid for b. Since ALG has
chosen alg−(b) = o−(a) ∈ Dk we get k > i0 (Fact 2.8). Since a was chosen such that
o−(a) ∈ Dk for some k 6 i0 we get k = i0.

If a ∈ Dij+1 ∪ . . . ∪Dm then a fulfills the condition for the u of (i) and we are done.
From now on we deal with the case a ∈ Dk for some k 6 ij. As a > o−(a) ∈ Di0 point a
must be somewhere in Di0+1 ∪ . . . ∪Dm. We therefore know that

a ∈ Di0+1 ∪ . . . ∪Dij . (3)

Since ij < m (see (2)) we have a 6∈ Dm, hence, there is a point a′ ∈ P with a′ > a.
Note that o−(a) can’t be the last point of q. Otherwise, a would be the penultimate
point of q which is in Dm (Fact 2.15). Let b be the successor of o−(a) in q, i.e. q =
(. . . , a, o−(a), b, o−(b), . . .). We claim that Spoiler presents b prior to a in P, i.e. b ∈ Pa.
From the definition of a it follows that b > o−(b) ∈ Dl, for some l > i0 and hence Di0 ⊆
b↓. (Fact 2.7(v)). At the moment when b is presented there are at least two valid chains
for b, the one actually used by ALG with its top in alg−(b) = o−(a) and some chain with
top t ∈ Di0 (Fact 2.10). Recall that the last point pn presented in P is put into a new
ALG-chain and therefore pn ‖ t. Now, if a > t then pn together with t < a < a′ would
form a (3+ 1)-configuration. Therefore a ‖ t while obviously a > o−(a). Suppose that a
is presented by Spoiler prior to b. This implies that at the moment when b is introduced
(i.e. in Pb) we have t↑ ( o−(a)↑ and therefore ALG would prefer the chain of t over the
chain of alg−(b) = o−(a) to be used for b. With this contradiction we have proved the
claim that the order of presentation is P = (. . . , b, . . . , a, . . .).

Let c be the last up-point in q presented by Spoiler prior to a (i.e. in Pa). There is
such a point as b is an up-point of q and it is presented prior to a. Since b comes after
a on q this also holds for c, i.e.,

q = (. . . , a, o−(a), . . . , c, o−(c), . . .). (4)

The last step in the proof is to show that c fulfills the condition for the u of (ii).
First, we show that c is good. If not, z = alg+(o−(c)) would be defined and had to

be presented prior to c, so before a as well. But then z would be also an up-point of q
which contradicts the choice of c.

It remains to prove that o−(c) ∈ Di0+1∪. . .∪Dij−1. Recall that a is the last up-point of
q with o−(a) ∈ Dk for k 6 i0. Since c comes later than a on q (see (4)) we have o−(c) ∈ Dk

for some k > i0 + 1. To bound k from above recall that a ∈ Di0+1 ∪ . . . ∪Dij and o−(c)
is presented prior to a. Applying this to Fact 2.7.(vi) we get that o−(c) ∈

⋃

i<ij
Di. This

finishes the proof of Fact 2.17. �

With these preparations we are ready for the proofs of Lemmas 2.13 and 2.14.
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Proof of Lemma 2.13. We are going to construct an antichain in P of size x0 + x0 − x1.
This implies the statement.

By Fact 2.16 a down-path q contains a bad up-point yq with o−(yq) ∈ Di0 . Collect
these points in a set Y = {yq : q is a down-path}. Since x0 is just the number of down-
paths and Y contains a point from each down-path we get |Y | = x0. Let Z be the set of
penultimate points of down-paths ending in Di0 . The number of such paths is x0 − x1.
hence |Z| = x0 − x1. From Fact 2.15 we know that points in Z are good. Summarizing:

(i) |Y | = x0, all y ∈ Y are bad and satisfy o−(y) ∈ Di0 .
(ii) |Z| = x0 − x1, all z ∈ Z are good and satisfy o−(z) ∈ Di0 .

This implies that Y and Z are disjoint and

x0 + x0 − x1 = |Y |+ |Z| = |Y ∪ Z| =
∣

∣o−(Y ∪ Z)
∣

∣ 6 |Di0 | 6 w,

where the last inequality holds as Di0 is an antichain in P (Fact 2.7(iii)). �

Proof of Lemma 2.14. The basic idea of the proof is similar to the proof Lemma 2.13
but the details are more involved. For fixed j we construct a set consisting of x0 + x1 +
. . . + xj + xj − xj+1 points such that the points of the set belong to different chains in
O. As O contains at most w chains, this implies the inequality with index j.

Fix j. First we construct a set of size x1 + . . . + xj . For a down-path q ending in
Dik put r(q) = min(k, j). By Fact 2.16 each q contains a set Yq of r(q) bad up-points
y with o−(y) ∈ Di1 ∪ . . . ∪Dij . Let Y be the union of all these sets Yq. We claim that
that all the Yq’s are pairwise disjoint. This is true because no point occurs in more than
one alternating path as an up-point (Fact 2.9). The claim implies |Y | =

∑

q |Yq|. We
determine the size of Y as follows

|Y | =
s

∑

k=1

∑

q ending

in Dik

|Yq| =
s

∑

k=1

∑

q ending

in Dik

r(q) =

s
∑

k=1

min(k, j) · (xk − xk+1)

=

j
∑

k=1

k · (xk − xk+1) +

s
∑

k=j+1

j · (xk − xk+1) = x1 + . . .+ xj − j · xs+1

= x1 + . . .+ xj .

For further reference we collect the important properties of Y :

(i) |Y | = x1 + . . .+ xj .
(ii) All y ∈ Y are bad and o−(y) ∈ Di1 ∪ . . . ∪Dij ⊆ Di0+1 ∪ . . . ∪Dij .

The second set to consider is:

Z =
{

z : there is a down-path q = (. . . , z, o−(z)) and o−(z) ∈ Dij

}

.

This is the set of the penultimate points of down-paths ending in Dij . The penultimate
points of down-paths are up-points and hence all distinct (Fact 2.9). From Fact 2.15 we
know that all points in Z are good. Summarizing:

(i) |Z| = xj − xj+1,
(ii) All z ∈ Z are good and o−(z) ∈ Dij

With a help of Fact 2.17 we construct a third set U . Each down-path q contains an
up-point uq satisfying property (i) or (ii) of Fact 2.17. The set U is the collection



ON-LINE CHAIN PARTITIONS OF UP-GROWING SEMI-ORDERS 14

of all these points. Since no point is an up-point of more than one path all the uq’s
are distinct. Since there are x0 down-paths we have |U | = x0. We partition the set
U = {uq : q down-path} into three parts U1, U2 and U3 as follows:

(i) U1 is the set of u ∈ U with u ∈ Dij+1 ∪ . . . ∪Dm−1 and o−(u) ∈ Di0 .
(ii) U2 is the set of u ∈ U with u ∈ Dm and o−(u) ∈ Di0 .
(iii) U3 is the set of u ∈ U such that u is good and o−(u) ∈ Di0+1 ∪ . . . ∪Dij−1.

The following properties of sets Y , Z and U1, U2, U3 are crucial:

(1) The sum of sizes of U1, U2, U3, Y and Z is x0 + x1 + . . .+ xj + (xj − xj+1).
(2) U3, Y and Z are disjoint. Indeed points in Y are bad while points in Z and U3 are

good. The predecessors in O-chains show that Z and U3 are disjoint.
(3) o−(U3 ∪ Y ∪ Z) ⊆ Di0+1 ∪ . . . ∪Dij and U1 ⊆ Dij+1 ∪ . . . ∪Dm−1.
(4) Points in U2∪Di0+1∪. . .∪Dm−1 lie in different O-chains. Indeed, Di0+1∪. . .∪Dm−1

is an antichain (Fact 2.11) and O-chains of points from U2 skip all layers between
Di0 and Dm, i.e., they avoid Di0+1 ∪ . . . ∪Dm−1.

We are now ready to complete the proof:

x0 + (x1 + . . .+ xj) + (xj − xj+1) =

(1) = (|U1|+ |U2|+ |U3|) + |Y |+ |Z|
(2) = |U2|+ |U3 ∪ Y ∪ Z|+ |U1|

= |U2|+
∣

∣o−(U3 ∪ Y ∪ Z)
∣

∣+ |U1|
(3) 6 |U2|+ |Di0+1 ∪ . . . ∪Dm−1|
(4)

6 |O|

6 w.

�

Lemmas 2.13 and 2.14 provide us with a system of inequalities involving all the xi’s:

x0 + x1 + . . .+ xj + xj − xj+1 6 w, j = 0, . . . , k.

Note that these are the inequalities used for the lower bound. Here, for the completion
of the proof of Proposition 2.6 we need a final lemma to bound the number x0 + w of
chains used by Algorithm.

Lemma 2.18. x0 6 (ϕ− 1) · w.

Proof. We weight the jth inequality with the Fibonacci number F2(k−j)+1 and take the
sum of weighted inequalities:

k
∑

j=0

j
∑

i=0

xiF2(k−j)+1 +

k
∑

j=0

(xj − xj+1)F2(k−j)+1 6 w

k
∑

j=0

F2(k−j)+1. (5)

Using the well-known Fibonacci identity
∑k

j=0 F2(k−j)+1 =
∑k

j=0 F2j+1 = F2k+2 we can
simplify the double-sum:

k
∑

j=0

j
∑

i=0

xiF2(k−j)+1 =

k
∑

i=0

xi

k
∑

j=i

F2(k−j)+1 =

k
∑

j=0

xjF2(k−j)+2.
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This and again using the Fibonacci identity on the right hand side allows us to rewrite
inequality (5):

k
∑

j=0

xjF2(k−j)+2 +
k

∑

j=0

xjF2(k−j)+1 −
k+1
∑

j=1

xjF2(k−j)+3 6 wF2k+2.

Using the Fibonacci recursion and the fact that xk+1 = 0 this reduces to

x0F2k+2 + x0F2k+1 6 wF2k+2.

This in turn can be rewritten into

x0 6
F2k+2

F2k+3
· w 6 (ϕ− 1) · w.

The last inequality is due to the fact that the sequence (F2k+2

F2k+3
)k>0 is monotonically

increasing with the limit ϕ− 1. �

The statement of Lemma 2.18 was the last piece of the puzzle. The number of chains
used by ALG is bounded by

xU + x0 6 w + (ϕ− 1) · w.

This completes the proof of Proposition 2.6 and hence of Theorem 1.1.
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