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In Setion 5 the ombinatoris of the seond part is reonneted to geometry: Asignotope � 2 Sr(n) represents an arrangement A(�) of n pseudohyperplanes in Rr and amaximum hain C in Sr�1(n) represents a sweep of the arrangement A(�C) in Rr .Setion 6 onludes with a brief olletion of open problems.1.1 Arrangements of PseudolinesA pseudoline is a urve in the Eulidean plane whose removal from the plane leaves twounbounded onneted omponents. In other words: a pseudoline is a simple urve whihgoes to in�nity on both sides. An arrangement of pseudolines is a family of pseudolineswith the property that eah pair of pseudolines has a unique point of intersetion, wherethe two pseudolines ross. Sine in this paper we are not onerned about realizabil-ity questions we abbreviate and say arrangement when we really mean arrangement ofpseudolines, we also say line instead of pseudoline.An arrangement is simple if no three pseudolines have a ommon point of intersetion.The order of an arrangement is the number of its pseudolines. An arrangement partitionsthe plane into ells of dimensions 0, 1 or 2, the verties, edges and faes of the arrange-ment. Two arrangements are isomorphi if there is an isomorphism of the indued elldeompositions respeting the labeling of the lines. Edges and faes of the arrangementmay either be bounded or unbounded. Let F be an unbounded ell of arrangement A andlet F be the omplementary fae of F , i.e., the fae separated from F by all pseudolines.We may orient all pseudolines suh that F is in the left halfspae and F in the righthalfspae of every line. This orientation of pseudolines indues an orientation of the edgesof the arrangement. The pair (A; F ) is a marked arrangement or an arrangement withnorthfae F and southfae F . If there is no expliit referene to the northfae of a markedarrangement A embedded in a oordinatized plane we assume that the northfae is thefae ontaining the ray to (0;1). Two marked arrangements are isomorphi if there is anisomorphism of the indued ell deompositions respeting the labeling and the orientationof the edges. See Figure 1 for an illustration.
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2 Sweeping the PlaneOur main tool in proving a number of ombinatorial enodings for Eulidean arrangementsin Setion 3 will be the ability of sweeping the arrangement. In this setion we set upthis tool, the main result is the Sweeping Lemma (Lemma 1) showing that Eulideanarrangements an be swept. This result is not new, we are aware of at least two soures.Snoeyink and Hershberger [22℄ have a theorem implying the Sweeping Lemma for simplearrangements. In the book on oriented matroids [1℄ a result equivalent to the SweepingLemma is derived as a onsequene of Levi's extension lemma. Here we revert the diretionand prove Levi's extension lemma (Lemma 6) using sweep tehniques.To begin with we formalize the notion of a sweep. Let (A; F ) be a marked arrangement.A sweep of A with northpole in F is a sequene 0; 1; : : : r, of urves suh that eah urvei has �xed points x 2 F and x 2 F as endpoints. Further requirements are:(1) None of the urves i ontains a vertex of arrangement A.(2) Eah urve i has exatly one point of intersetion with eah line lj.(3) Besides at their endpoints any two urves i and j are disjoint.(4) For any two onseutive urves i, i+1 of the sequene there is exatly one vertexof arrangement A between them, i.e., in the interior of the losed urve i [ i+1.(5) Every vertex of the arrangement is between a unique pair of onseutive urves,hene, the interior of the losed urve 0 [ r ontains all verties of A.See Figure 2 for an example of a sweep for the arrangement A of Figure 1.A 0
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Figure 2: A sweep for arrangement ANote that if 0; : : : ; r is a sweep for A then the reversed sequene is also a sweep forA. One of these sweeps is from left to right and the other from right to left. As usual wewill always think of a sweep as a left to right sweep. A disrete sweep as de�ned here an3



be transformed into a ontinuous sweep by appropriate interpolation between any pair i,i+1 of urves. The dependeny on the hosen points x and x an also be eliminated.Lemma 1 (Sweeping Lemma) Let (A; F ) be a marked Eulidean arrangement of pseu-dolines. Then there is a sweep sequene of urves for A, i.e., A an be swept.Proof. Let G = (V;E) be the graph suh that the verties V of G are the verties of Aand the edges of G are the �nite edges of the arrangement A. Let �!E be the orientationof the edges of G indued by the orientation of pseudolines (the northfae is in the lefthalfplane of eah pseudoline).Claim A. The orientation �!E is an ayli orientation of G.Walking `at in�nity' and lokwise from F to F the pseudolines of A are met in someorder. Let permutation � be the orresponding order of the labels, w.l.o.g. we assume that� is the identity.We prove the above laim by ontradition: Assuming that �!E is not ayli we hoosea yle C suh that the area enlosed by the orresponding urve in A is minimal. It iseasy to onlude that C orresponds to the boundary of a fae of A. With respet to thisfae the yle C may be oriented lokwise or ounterlokwise. We onsider the �rst ase(lokwise) the other is symmetri.Let e1; e2; : : : ; ek be edges of C and let ij be the supporting pseudoline of ej . Sineej and ej+1 are onseutive on C the lines ij and ij+1 ross at a vertex of C. From thede�nition of � and the lokwise orientation of C it follows that ij < ij+1 (see Figure 3).Hene i1 < i2 < : : : < ik < i1 a ontradition. 4
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Figure 3: Assuming an oriented yle.Sine �!G = (V;�!E ) is ayli there exists a topologial sorting v1; v2; : : : ; vr of �!G . Fixpoints x 2 F and x 2 F . 4



Claim B. There exists a sweep of urves 0; 1; : : : ; r suh that verties v1; : : : ; vi are tothe left of i and verties vi+1; : : : ; vr are to the right of i for all i = 1; : : : ; r.Proof. Let R be the union of the losed bounded ells of A. De�ne 0 as the union ofthree urves. The �rst and the seond onnet x to R within F and x to R within F , thethird is the left boundary of an �-tube of the left boundary of R and onneted to the twoother urves. For an appropriate � this gives a urve as desired.Now suppose that i�1, i � r, has been de�ned. Let i1; : : : ; it be the lines of Aontaining vertex vi and assume i1 < : : : < it. Let T be the triangle de�ned by urvei�1 and the two lines i1 and it. Sine vi is a soure (minimal) in the restrition of �!Gto vi; : : : ; vr and v1; : : : ; vi�1 are left of i�1 vertex vi is the unique vertex of A in thetriangular region T . De�ne i as the right boundary of an �-tube around i�1 and T . Foran appropriate � this gives a urve as desired, see Figure 4. 4ii�1
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Figure 4: De�ning i based on i�1 and the shaded triangular region T .This onludes the proof of the lemma.3 Appliations of SweepingIn ombinatorial geometry it is often useful to enode a geometri objet by a ombinatorialstruture and further work with this struture. There are several ombinatorial enodingsfor arrangements. In the �rst part of this setion we review allowable sequenes and wiringdiagrams. These representations have been introdued by Goodman and Pollak [11℄. Thesame authors [12℄ give an overview on work related to allowable sequenes and mentionsome appliations. There are two reasons to inluding a omplete treatment of this subjethere. The relation between allowable sequenes and arrangements of pseudolines is aspeial ase of a more general phenomenon in the theory of signotopes (higher Bruhatorders) whih will be the topi of Subsetion 4.4, Theorem 13. Furthermore we believethat sweeps are the natural approah to these representations.5



In Subsetion 3.2 we prove the equivalene between arrangements and zonotopal tilings.This is a speial (rank 3) ase of the elebrated Bohne-Dress Theorem whih states abijetion between zonotopal tilings and oriented matroid liftings. No elementary proof ofthe speial ase was known. Reently we learned that Elnitsky [4℄ found another simpleproof for the orrespondene. We will make use of zonotopal tilings in our �gures sinethey provide us with anonial pitural representations of arrangements, see e.g. Figure 8.Further soures for enodings of arrangements are Goodman and Pollak [12℄, Edels-brunner [3℄, Felsner [5℄ and Knuth [15℄.In the last appliation we use the sweep tehnique to prove Levi's extension lemma.3.1 Allowable Sequenes and Wiring DiagramsLet 0; 1; : : : ; r be a sweep sequene of urves for the marked arrangement (A; F ) of ordern. Traversing urve i from x to x we meet the lines of A in some order. Sine eah line ismet by i exatly one the order of the rossings orresponds to a permutation �i of [n℄.Consider the labels of lines rossing at vertex vi. Sine the region T de�ned in theproof of Claim B is empty of verties of A and by property 2 of the sweep urve ithe lines i1; : : : ; it ontaining vertex vi are a onseutive substring of �i�1. Moreover,in permutation �i�1 these lines are in the reversed order and this is the only di�erenebetween �i�1 and �i. Relabeling the lines of A appropriately we may assume that �0 isthe identity permutation.Example A. The sequene of permutations obtained from the sweep of Figure 2 is(1; 2; 3; 4; 5) 4;5! (1; 2; 3; 5; 4) 1;2! (2; 1; 3; 5; 4) 1;3;5! (2; 5; 3; 1; 4) 2;5! (5; 2; 3; 1; 4) 1;4!(5; 2; 3; 4; 1) 2;3! (5; 3; 2; 4; 1) 2;4! (5; 3; 4; 2; 1) 3;4! (5; 4; 3; 2; 1):The sequene �0; : : : ; �r has the following properties:(1) �0 is the identity permutation and �r is the reverse permutation on [n℄.(2) Eah permutation �i, 1 � i � r is obtained by the reversal of a onseutive substringMi from the preeding permutation �i�1.(3) Any two elements x; y 2 [n℄ are joint members of exatly one move Mi, i.e., reversetheir order exatly one.A sequene � = �0; : : : ; �r of permutations with properties (1), (2) and (3) is alled anallowable sequene of permutations. If eah move from �i�1 to �i onsists in the reversal ofjust one pair of elements, i.e., an adjaent transposition, we have r = �n2� and the sequene� is alled a simple allowable sequene. We have thus seen how to obtain an allowablesequene of permutations from every marked arrangement (A; F ). However, more an besaid:Every topologial sorting of the graph �!G of (A; F ) indues an allowable sequene.Consider the allowable sequenes � and �0 orresponding to topologial sortings � and �0of �!G with the property that � = v1; : : : ; vi; vi+1; : : : ; vr and �0 = v1; : : : ; vi+1; vi; : : : ; vr,i.e., � and �0 di�er in an adjaent transposition. It follows that vi and vi+1 are bothminimal elements in the restrition of �!G to fvi; vi+1; vi+2; : : : ; vrg. Hene, there is noline in A that ontains verties vi and vi+1 and the labels of lines involved in the movesMi : �i�1 ! �i and Mi+1 : �i ! �i+1 in � are disjoint. In fat for j 6= i; i + 1 the6



permutations �j and �0j in � and �0 oinide and M 0i = Mi+1 and M 0i+1 = Mi. Call twoallowable sequenes � and �0 elementary equivalent if � an be transformed into �0 byinterhanging two disjoint adjaent moves. Two allowable sequenes � and �0 are alledequivalent if there exists a sequene � = �1;�2; : : : ;�m = �0 suh that �i and �i+1 areelementary equivalent for 1 � i < m. It is well known that it is possible to transform anytopologial sorting of a direted ayli graph �!G into any other by a sequene of adjaenttranspositions, i.e., reversals of adjaent pairs of unrelated verties. Therefore, any twoallowable sequenes orresponding to the same marked arrangement (A; F ) are equivalent.Theorem 2 There is a bijetion between equivalene lasses of allowable sequenes andmarked arrangements of pseudolines. Moreover, this bijetion maps simple allowable se-quenes to simple arrangements.Proof. We have already seen how to de�ne the equivalene lass of allowable sequenesorresponding to a marked arrangement.Let � be an allowable sequene. Start drawing n horizontal lines alled wires andvertial lines p0; : : : ; pr. Label the rossing of the ith wire from below with pj with thelabel pj(i). Draw pseudoline i suh that it interpolates the rossings with its label as inFigure 5.
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Figure 5: A wiring diagram for the arrangement of Figure 2Following Goodman [9℄ we all the arrangement thus obtained a wiring diagram for �.Sine the vertial lines p0; : : : ; pr essentially are a sweep sequene of urves for the wiringdiagram we see that the mapping from arrangements to allowable sequenes is surjetive.Let (A; F ) be any marked arrangements (A; F ) suh that � orresponds to a sweep of0; : : : ; r of A. It is obvious that the part of A between i�1 and i is isomorphi to thepart of the wiring diagram between pi�1 and pi. These isomorphisms for i = 1; ::; r an beglued together to an isomorphism of the arrangements. This proves injetivity and henethe �rst part of the theorem.The seond part of the theorem is obvious.It is interesting to ask for the hange in the representation when the northfae ishanged. Let (A; F ) be a marked arrangement and rede�ne the northfae to be theunbounded 2-ell F 0 to the left of F . Cells F and F 0 are separated by line n. The diretedgraph �!G 0 is obtained from �!G by reverting the orientations of all edges with supportingline n. Now hoose a topologial sorting � for �!G suh that all verties of A whih areright or (below) line n preede the verties on n and all verties left or (above) line n7



ome later. Let v1; : : : ; vi�1, be the left blok of �, vi; : : : ; vj�1 be the middle blok, i.e.,the ordered sequene of verties on line n, and vj; : : : ; vr be the right blok. It followsthat v1; : : : ; vi�1; vj�1; : : : ; vi; vj ; : : : ; vr is a topologial sorting of �!G 0. Note that the orderin whih the lines enter vk for i � k � j has also hanged, in �!G line n was the highestline entering vk and in �!G 0 line n is the lowest line entering vk. Hene, from the allowablesequene � of (A; F ) with moves M1; : : : ;Mr orresponding to v1; : : : ; vr we obtain asequene �00 with moves M1; : : : ;Mi�1;M�j�1; : : : ;M�i ;Mj ; : : : ;Mr, where M�k is obtainedfrom Mk by moving element n from the top to the bottom. An allowable sequene �0 for(A; F 0) is obtained from �00 by relabeling n! 1! 2! : : :! n� 1! n.We briey mention another representation for marked arrangements where the hangefrom the representation of (A; F ) to the representation (A; F 0) is more transparent. Let�i be the permutation of f1; ::; ng n i reporting the order from left to right in whih theother pseudolines ross line i, for i = 1; ::; n. Goodman and Pollak [11℄ all this the loalsequenes of unordered swithes of the arrangement. Felsner [5℄ used sweeps to showthat loal sequenes are a representation for marked arrangements. In ase of non-simplearrangements loal sequenes are slightly more general strutures than permutations sineseveral lines an ross line i in the same point. For the arrangement of Figure 2 the loalsequenes are �1 = [2; f3; 5g; 4℄, �2 = [1; 5; 3; 4℄, �3 = [f1; 5g; 2; 4℄, �4 = [5; 1; 2; 3℄ and�5 = [4; f1; 3g; 2℄. To hange from the loal sequenes of (A; F ) to those of (A; F 0) werevert sequene �n and relabel n ! 1 ! 2 ! : : : ! n � 1 ! n as before. In Setion 4Theorem 8 we haraterize those (�i)i=1::n orresponding to simple marked arrangements.3.2 Zonotopal TilingsA partiularly nie representation of arrangements of pseudolines is the representation by`zonotopal tilings'. Basially this is a standardized drawing of the `dual graph' of thearrangement. Figure 6 should make the onnetion lear. Below, in Theorem 3 we provea bijetion between zonotopal tilings and arrangements.

Figure 6: An arrangement with its dual graph and the dual graph as zonotopal tiling.A 2-dimensional zonotope is a entrally symmetri 2n-gon, or equivalently the Minkowskisum of a set of line segments in R2 . With a vetor vi we assoiate the line segment[�vi;+vi℄. The Minkowski sum of the line segments orresponding to V = fv1; : : : ; vng is8



the set Z(V ) = � nXi=1 i vi : �1 � i � 1 for all 1 � i � n�:A zonotopal tiling T is a tiling of Z(V ) by translates of zonotopes Z(Vi) with Vi � V . Azonotopal tiling is a simple zonotopal tiling if all tiles are rhombi, i.e., jVij = 2 for all i.A zonotopal tiling together with a distinguished vertex x of the boundary of Z(V ) is amarked zonotopal tiling. The next theorem is a preise statement for the orrespondenesuggested by Figure 6. The proof of the theorem is based on a Sweeping Lemma forzonotopal tilings, Lemma 4.Theorem 3 Let V be a set of n pairwise non-ollinear vetors in R2 .(1) There is a bijetion between marked zonotopal tilings of Z(V ) and marked arrange-ments of order n.(2) Via this bijetion simple tilings orrespond to simple arrangements.Before going into the proof let us omment on the broader ontext Theorem 3. thetheorem is equivalent to the rank 3 version of the Bohne-Dress Theorem whih givesa bijetion between zonotopal tilings of d-dimensional zonotopes and oriented matroidsof rank d + 1 with a realizable one-element ontration. The orrespondene betweenoriented matroids and arrangements is given by the representation theorem for orientedmatroids. This theorem states that oriented matroids of rank d + 1 are in bijetion witharrangements of pseudohyperplanes in d-dimensiononal projetive spae. An aessibletreatment of these onnetions is given by Zigler [27℄. A more geometri proof of theBohne-Dress Theorem was given by Rihter-Gebert and Ziegler [20℄.In the �rst part of the proof we give the mapping from zonotopal tilings to equivalenelasses of allowable sequenes. Let Z(V ) be a marked zonotope with V a set of n pairwisenon-ollinear vetors. The zonotope Z = Z(V ) is a entrally symmetri 2n-gon. RotateZ suh that the distinguished vertex x is the unique highest vertex of Z, in partiular theboundary of Z has no horizontal edge. Assume that the vetors in V are labeled suhthat along the left boundary of Z, i.e., on the left path from the lowest vertex x to x, thesegments orrespond to v1; v2; : : : ; vn in this order.Given a zonotopal tiling T onsider the set of y-monotone path along segments ofT from x to x. We de�ne a sweep of T with northpole x as a sequene p0; p1; : : : ; pr ofy-monotone path from x to x in T with the following properties.(1) Any two onseutive paths pi, pi+1 of the sequene have exatly one tile Ti of tilingT between them, i.e., in the interior of the losed urve pi [ pi+1.(2) Every tile is between a unique pair of onseutive paths, therefore, p0 [ pr is theboundary of Z(V ).As we did for sweeps of arrangements we further assume that the sweep of T is fromleft to right, i.e., p0 is the left boundary of Z(V ).Remark. There is some interest in the maximum numberm(n) of y-monotone x to x patha marked zonotopal tiling an have. Knuth [15, page 39℄ onjetures that m(n) � n2n�2.Via an indutive argument this would imply that the number of marked arrangements of9



n pseudolines is bounded by �nk=1m(k). Therefore, the onjetured bound would showthat this number is at most 2n2=2+o(n2) whih would be an improvement over the urrentlybest upper bound 20:69n2 , Felsner [5℄.A sweep of tiling T indues a total order T1; T2; : : : ; Tr on the tiles of T with the propertythat after removing the tiles of any initial segment T1; : : : ; Ti�1 tile Ti an be separatedfrom the remaining tiles Ti+1; : : : ; Tr by a translation to the left parallel to the x-axis,we all this the separation property. Conversely, an order T1; T2; : : : ; Tr of the tiles withthe separation property orresponds to a sweep: De�ne path pi as the right boundary ofthe union of T1; : : : ; Ti. To proof that a zonotopal tiling T an be swept it is thereforesuÆient to show that there is a total order of the tiles with the separation property.Guibas and Yao [14℄ observed that given any set C1; C2; : : : ; Cr of disjoint onvexobjets in the plane there is at least one objet Ci that an be translated to the leftparallel to the x-axis without ever olliding with another objet from the set. Hene, byindution every set of disjoint onvex objets admits a total ordering C1; C2; : : : ; Cr withthe separation property, i.e., for i = 1; ::; r given the sets Ci; : : : ; Cr we an separate Cifrom the remaining sets by a translation to the left parallel to the x-axis. As a speialase we obtain:Lemma 4 Every marked zonotopal tiling T an be swept.De�ne a graph G = (V;E) suh that the verties V of G are the tiles of T and theedges of G are pairs of tiles sharing a ommon segment. Let �!E be an orientation of theedges of G suh that an edge fT; T 0g of G points from the tile on the left side of thesegment T \ T 0 to the tile on the right side. Sine the boundary of Z onsists entirelyof non horizontal edges this orientation is well de�ned. The orientation of the edges ofG represents the `immediate bloking relation' with respet to translations parallel to thex-axis. From Lemma 4 we obtain:Fat A. The orientation �!E is an ayli orientation of G.From the orrespondene between marked zonotopal tilings and marked arrangementsindiated in Figure 6 we see that we met graph G and its orientation already in the proofof Lemma 1. A formal proof of this `obvious fat' will be impliit in the next lemma. Forlater use we note:Fat B. Every topologial sorting of �!G has the separation property.The next lemma is the `zonotopal equivalent' of Theorem 2.Lemma 5 There is a bijetion between marked zonotopal tilings and equivalene lassesof allowable sequenes. Moreover, this bijetion maps simple zonotopal tilings to lasses ofsimple allowable sequenes.Proof. First we show how to assoiate an allowable sequene to every sweep of a zonotopaltiling. Reall that sweeps of T orrespond to topologial sortings of �!G . Given a sweepsequene p0; : : : ; pr of paths we assoiate to eah path pi a sequene �i reording the labelsof the vetors whih de�ne the segments along the path in the order of the path from xto x. The sequene �0 is a permutation, the identity. Any two onseutive sequenes �iand �i+1 only di�er in a substring where path pi takes the left boundary and path pi+110



takes the right boundary of tile Ti. Sine Ti is a zonotope the same labels appear on bothboundaries but in reversed order. Hene, all �i are permutations, moreover, �i ! �i+1 isa move as in part (2) of the de�nition of allowable sequenes. We also note that �r is thereverse permutation.It remains to prove property (3) of allowable sequenes, namely, that any two elementsa; b 2 [n℄ are reversed in exatly one move. This is shown by an argument involvingvolumes. Due to a formula of MMullen (see Shephard [21, Prop. 2.2.12℄) the volume ofa 2-dimensional zonotope Z(v1; : : : ; vn) is given as followsvol(Z(v1; : : : ; vn)) =Xi<j vol(Z(vi; vj) =Xi<j 4jdet(vi; vj)j:A move reverting i1 < i2 < :: < is orresponds to a tile T = Z(vi1 ; ::; vis) of volumePij<ik 4jdet(vij ; vik)j. Eah pair has to be reversed at least one and this exhausts thevolume of the zonotope Z(V ). Hene there an be no additional reversals and property (3)is established.Now we have to show that the set of sweeps of T maps to an equivalene lass ofallowable sequenes. From Fat B we already know that the sweeps of T are in one-to-oneorrespondene with topologial sortings of �!G .Consider topologial sortings � and �0 of �!G whih only di�er in an adjaent trans-position and let � and �0 be the two orresponding allowable sequenes. From � =T1; : : : ; Ti; Ti+1; : : : ; Tr and �0 = T1; : : : ; Ti+1; Ti; : : : ; Tr it follows that the tiles Ti and Ti+1are both minimal elements in the restrition of �!G to fTi; Ti+1; Ti+2; : : : ; Trg. Hene thereis no horizontal line interseting both of them. From the y-monotoniity of pi�1 and thefat that �i�1 is a permutation we onlude that Vi \ Vi+1 = ; when Ti = Z(Vi) andTi+1 = Z(Vi+1). This shows that the moves Mi : �i�1 ! �i and Mi+1 : �i ! �i+1 in �are disjoint and hene � and �0 are elementary equivalent. The argument an be readbakwards to show that if � and �0 are elementary equivalent allowable sequenes and �orresponds to a topologial sorting of �!G then so does �0.For the inverse mapping we have to assoiate a marked zonotopal tiling to an equiva-lene lass of allowable sequenes. Build the tiling from left to right starting with the leftboundary of Z(V ). After plaing i tiles, three properties remain invariant:(1) The union of the already plaed tiles together with the left boundary of Z is a simplyonneted region.(2) The right boundary of this region is a y-monotone path pi.(3) The segments along path pi are in the order given by �i.From this it is obvious that we an plae the tile Ti+1 orresponding to move Mi+1 suhthat the invariant remains valid. Sine the last permutation �r is the reverse of the identitypath pr is the right boundary of Z(V ). The volume formula implies that the tiles havebeen plaed without overlap. Therefore, the plaement of tiles T1; : : : ; Tr is a tiling T ofZ(V ).It is easily seen that equivalent allowable sequenes lead to the same tiling while non-equivalent allowable sequenes produe di�erent tilings.Theorem 3 is now easily obtained: 11



proof (Theorem 3). Statement (1) is a diret onsequene of Theorem 2 and Lemma 5.Combining the two bijetions it is seen that the graph of edges of the marked zonotopaltiling orresponding is the dual of the graph of the orresponding marked arrangementwith the marked fae F of the arrangement and the marked vertex x of the tiling duallyorresponding to eah other. For statement (2) we additionally note that an arrangementis simple exatly if all bounded regions of the dual graph are quadrangles.Remark. Rihter-Gebert and Ziegler [20℄ use a similar volume argument in their proofof the Bohne-Dress Theorem. A proof of Theorem 3 avoiding the volume argument wasreently given by Elnitsky [4℄ in the ontext of redued deompositions.3.3 Levi's Extension LemmaLemma 6 Let A be an arrangement of order n and let p; q be two points in the planewhih do not both lie on any of the lines of A. Then there is a pseudoline  ontaining pand q suh that A[  is an arrangement of order n+ 1.The original soure for the lemma stated for projetive arrangements is Levi [16℄, anEnglish transription is found in Gr�unbaum [13℄. A proof using a variant of sweeps, namelyyli sweeps, was given by Snoeyink and Hershberger [22℄. Here we use the projetivespae as auxiliary tool.Proof. We detail the proof for the ase where p and q are not inident to a line of A andleave the obvious modi�ations to inlude speial ases to the interested reader.Let p be ontained in fae Fp of A. Let l1; : : : ; ln be the pseudolines of A and withoutloss of generality let l1 ontain an edge e of the boundary of Fp. Add the line at in�nity l1to the arrangement and map it bak to Eulidean spae suh that l1 is the line at in�nitythus obtaining an arrangement A0 with lines l1; l2; : : : ; ln. Mark A0 suh that p 2 Fp is thenorthpole. Apply the Sweeping Lemma to �nd a urve  rossing the fae Fq ontainingq. Line  an be bent in Fq to make q a point on . Extending  from p to in�nity we seethat A0[ is an arrangement of order n+1. Adding the line at in�nity, i.e., l1 we obtain aprojetive arrangement of order n+2 whih is mapped bak to the Eulidean plane usingl1 as line at in�nity. This gives an arrangement of lines l1; : : : ; ln;  with both points pand q on line .It is notable that higher dimensional analogs of the Extension Lemma fail. Examplesan be given of arrangements of pseudoplanes in three-spae suh that for some triples ofpoints p; q; r no pseudoplane an be added to extend the arrangement and ontain the threepoints (see Goodman and Pollak [10℄). Rihter-Gebert [19℄ has onstruted examplesshowing that the above non-existene result is already true for two points instead of three.4 Flips, Arrangements and SignotopesIn the �rst part of the paper we have studied arrangements of pseudolines as individualobjets. In this part we will hange the fous and onsider the set of all arrangements.More preisely we onsider a graph Gn whose verties are all ombinatorially di�erent sim-ple marked arrangements of n pseudolines in the Eulidean plane and edges orrespondingto elementary ips (see Figure 7), i.e., arrangements A and B are adjaent if they only12



di�er in the orientation of a single triangle. Figure 8 shows the graph Gn for n = 5 withthe arrangements represented by zonotopal tilings.
Figure 7: Elementary ip at the shaded triangle.In Subsetion 4.1 we introdue an enoding of arrangements by triangle orientations.This enoding imposes a natural orientation on Gn. In Subsetion 4.2 we generalize thepatterns and de�ne an order Sr(n), for all 1 � r � n, suh that S1(n) is the Boolean lattie,S2(n) is the weak Bruhat order of the symmetri group and S3(n) is the abovementionedorientation of Gn. The elements of Sr(n) will be alled signotopes. Subsetion 4.3 givessome onstrutions for new signotopes from old ones. The main strutural result aboutsignotopes is the surjetive mapping from maximum hains in Sr�1(n) to the elements ofSr(n), this result is derived in Subsetion 4.4. Note that we have already seen a speialase of this mapping in Theorem 2: Maximum hains in the weak Bruhat order S2(n)are simple allowable sequenes and elements of S3(n) are marked simple arrangements ofpseudolines.4.1 Enoding arrangements by triangle orientationsFlips are niely desribed in the di�erent enodings of arrangements. In the enoding byzonotopal tilings the projetion of a ube is replaed by the view of the ube from theother side. In the enoding by loal sequenes an adjaent transposition of elements i andj is applied to the loal sequene �k of line k and similarly to loal sequenes �i and �jwhen the ip-triangle is on�ned by lines i; j and k.In the representation by allowable sequenes the transformation is not that obvious.The hange is easy to desribe if we reall that the allowable sequenes of a markedarrangement (A; F ) orrespond to topologial sortings of a direted graph �!G . The hangeon �!G is again a loal one.We now introdue a further representation for simple marked arrangements of pseu-dolines. Let (A; F ) be suh an arrangement of n pseudolines. Consider the arrangementindued by a triple of fi; j; kg of lines of A, where we assume i < j < k. Note that thesethree lines an indue two ombinatorial di�erent arrangements. Either the rossing oflines i and k is above line j, denote this by the symbol � or the rossing is below line j,denoted by +. The shaded triangles of Figure 7 are a � triangle on the left side and a +triangle on the right side. With this onvention a marked simple arrangement indues atriangle-sign funtion f : �[n℄3 �! f�;+g.Note that for i < j and all k 6= i; j we have f(fi; j; kg) = � i� on line k, the rossingwith line i preedes the rossing with line j, i.e., on the loal sequene �k the pair (i; j) is anon-inversion. Sine loal sequenes enode marked arrangements, i.e., arrangements withthe same loal sequenes are isomorphi, it follows that the above de�ned sign patternsf : �[n℄3 �! f�;+g also enode marked simple arrangements of pseudolines.13



Figure 8: The graph G5 as diagram of the signotope order S3(n).Clearly not every possible sign pattern f : �[n℄3 � ! f�;+g will orrespond to anarrangement, there are simply too many suh funtions. Below we derive an obviousneessary ondition on the sign patterns of arrangements. Later it will be shown that thisneessary ondition is already suÆient.Consider a quadruple of pseudolines h; i; j; k ofA. These lines indue a marked arrange-ment of four pseudolines. Sine there is only one (unmarked) arrangement of four lineswith eight unbounded faes we easily enumerate the eight possible patterns of triangle-signfuntions for n = 4. The following list shows them, the signs are given in lexiographialorder of the three-sets, i.e, as f sign(1,2,3), sign(1,2,4), sign(1,3,4), sign(2,3,4) g.f�;�;�;�g; f+;�;�;�g; f+;+;�;�g; f+;+;+;�g;f�;�;�;+g; f�;�;+;+g; f�;+;+;+g; f+;+;+;+gFrom this we obtain a neessary ondition for the funtions f indued by an arrange-ment. For A 2 �[n℄4 � and 1 � i � 4 we let Abi denote the set Aminus the ith largest elementof A, e.g., f2; 4; 5; 9gb3 = f2; 4; 9g. If f orresponds to an arrangement A then the restri-tion of A to the four lines of A has a pattern f signAb4; signAb3; signAb2; signAb1 g fromthe above list. Order the set f�;+g of signs by � � +. Inspeting the above enumerationwe see that the legal sign patterns are haraterized by the following property: For every14



4 element subset P of [n℄ and all 1 � i < j < k � 4 either f(P bi) � f(P bj) � f(P bk) orf(P bi) � f(P bj) � f(P bk). This property is alled monotoniity.Theorem 7, whose proof will be given in the next setion, shows that monotoniityalready haraterizes the sign patterns f : �[n℄3 �! f�;+g enoding arrangements.Theorem 7 A funtion f : �[n℄3 �! f�;+g is the triangle-sign funtion of a marked simplearrangements Af of order n if and only if f is monotone on all 4-element subsets of [n℄.It is a useful exerise to verify that monotoniity of the triangle-sign funtion induedby an arrangement is equivalent to the transitivity of non-inversions and of inversions ofthe loal sequenes �k, hene, equivalent to �k being a permutation. Combining theseremarks with Theorem 7 we obtain:Theorem 8 A set (�i)i=1::n with �i a permutation of [n℄nfig is the set of loal sequenesof a simple marked arrangement of order n if and only if for all i < j < k the pairs(i; j); (i; k); (j; k) are inversions in �k; �j ; �i or they are all three non-inversions.An equivalent haraterization theorem has been obtained by Streinu [24℄ in the ontextof generalized on�gurations of points.4.2 Signotopes and their OrdersIn this setion we generalize the onept of triangle-sign funtions. Reall some notations.The set [n℄ = f1; ::; ng is equipped with the natural linear order. The set of r elementsubsets of [n℄ is �[n℄r �. For A 2 �[n℄r � with r � i we let Abi denote the set A minus the ithlargest element of A. The set f�;+g of signs is ordered by � � +.De�nition 1 For integers 1 � r � n a r{signotope on [n℄ is a funtion � from the relements subsets of [n℄ to f�;+g suh that for every r+1 element subset P of [n℄ and all1 � i < j < k � r+1 either �(P bi) � �(P bj) � �(P bk) or �(P bi) � �(P bj) � �(P bk).We refer to this property as monotoniity.Let Sr(n) denote the set of all r-signotopes on [n℄ equipped with the order relation� � � if �(A) � �(A) for all A 2 �[n℄r �. Call Sr(n) the r{signotope order.Note that for r = 3 the de�nitions reet our observations for the enodings of markedsimple arrangements of pseudolines made in the previous setion. In partiular Theorem 7implies that S3(n) is a partial order on the set of marked arrangements of n pseudolines.Indeed S3(n) is an orientation of the graph Gn, see Figure 8.The list below ollets some other speial ases and easy observations.(1) For r = 1 monotoniity is vauous and S1(n) is just the lattie of subsets of [n℄.(2) For all n � r � 1 there is a unique minimal and a unique maximal element in Sr(n),namely the onstant � and the onstant + funtion.(3) The diagram of Sr(r + 1) is a (2r + 2)-gon for all r � 1.(4) There is a natural orrespondene between 2-signotopes on [n℄ and permutationsof n. Permutation � and 2-signotope � orrespond to eah other if a pair (i; j) is15



an inversion of � i� �(i; j) = +. For the proof that this is a bijetion, note thatmonotoniity of � orresponds to transitivity of the inversion relation and transitivityof the non-inversion relation for �. In the weak Bruhat order of the symmetri group,the permutations are ordered by inlusion of their inversion sets. By the indiatedorrespondene between 2-signotopes and permutations, S2(n) is isomorphi to theweak Bruhat order of Sn.Manin and Shehtman [17℄ introdued the higher Bruhat order B(n; r�1) whih is anorder relation on the set of r-signotopes on [n℄. The higher Bruhat order relation �HB isde�ned as follows: Let � and � be two r-signotopes with �(A) = �(A) for all r-subsets Aof [n℄ but just one A� where �(A�) = � and �(A�) = + in this ase we all the pair (�; �)a single-step. The order relation �HB is the transitive losure of the single-step relation,i.e, � �HB � i� there is a sequene � = �0; �1; : : : �t = � suh that for i = 1; : : : ; t thepair (�i�1; �i) is a single-step. Higher Bruhat orders were further studied by Voevodskijand Kapranov [25℄ and Ziegler [26℄. In partiular, Ziegler showed that the higher Bruhatorder B(n; r � 1) and the signotope order Sr(n) are not equal in general. His exampleis B(8; 3) 6= S4(8). For r � 2 obviously B(n; r � 1) = Sr(n). Ziegler also shows thatB(n; n� k� 1) = Sn�k(n) for k � 3. The question whether B(n; 2) = S3(n) was left openby Ziegler. This problem was resolved aÆrmatively by Felsner and Weil [7℄.It should also be mentioned that Ziegler [26℄ gives a geometri interpretation of sig-notopes. We give a di�erent interpretation in Theorem 7 (dimension 2) and Setion 5(general dimension). In terms of the losely related theory of oriented matroids our geo-metri objets are the adjoints of the duals of Ziegler's; see [8℄ for details.4.3 New Signotopes from OldVarious operations an be performed on signotopes. As in matroids we an performdeletion and ontration but there exist other onstrutions of new signotopes from old.In this subsetion we review these operations. Some of the onstrutions, e.g. deletion,ontration and weak boundary, will be useful later.(1) For an r-signotope � the omplement � is obtained by exhanging all signs of �. �is a r-signotope.(2) For an r-signotope � on a linearly ordered set X and Y � X with jX n Y j � rde�ne the deletion �"Y to be the indued funtion on �XnYr �. Deletion of Y gives ar-signotope on X n Y .(3) For an r-signotope � on a set X and Y � X with jY j < r de�ne the ontration �#Yto be the funtion on �XnYr�jY j� with �#Y (A) = �(A [ Y ). Contration of Y gives a(r � jY j)-signotope on X n Y .Let � be an r-signotope on [n� 1℄. A one-element expansion of � is an r-signotope � inSr(n) suh that � = �"n.Lemma 9 The one-element expansions of � 2 Sr(n� 1) form a lattie in Sr(n).Proof. Let � and �0 be expansions of �. Let  : �nr� ! f�;+g be the funtion with(A) = + if �(A) = + or �0(A) = +. We laim that  is a r-signotope and hene the16



least upper bound for � and �0. For the laim note �rst that every r + 1 element set Phas �(P br+1) = �0(P br+1) = �(P br+1). It follows that restrited to P the signotopes �and �0 are omparable, i.e., the restritions are omparable in Sr(P ). On P the funtion equals the larger of the restritions of � and �0. Hene for all (r+1)-sets P monotoniityof  is inherited from either � or �0.We give geometri interpretations for the above onstrutions in the two-dimensionalase, i.e., for r = 3. Proofs for the orrespondenes an be derived from Theorem 7.Let (A; F ) be the marked arrangement with lines labeled by X orresponding to �. Thearrangement orresponding to � is (A; F ). Delete the lines of Y from A to obtain thearrangement orresponding to �"Y . Let x be an element of X; the ontration �#x is theloal sequene �x of line x in A. One-element expansions of A are obtained by addinga pseudoline n ompatible with A that enters the plane in F and leaves in F . The newnorthfae is the right one of the two faes obtained from F , i.e., the fae above n. Lemma 9has the intuitive explanation that with two expansion lines n and ln0 the right boundaryof the region R obtained as union of the left halfplanes of n and n0 is again an expansionline.Ziegler [26℄ proposes two onstrutions of (r + 1)-signotopes from a r-signotope.(4) For a r-signotope � on [n℄ let �� : � [n℄r+1� ! f�;+g be de�ned by ��(P ) = + i��(P b1) = � and �(P br+1) = +. The boundary �� of � is an (r + 1)-signotope(see [26℄).(5) For a r-signotope � on [n℄ let �̂ : �[n+1℄r+1 � ! f�;+g be the unique funtion with�̂"n+1= �� and �̂#n+1= �. The extension �̂ is an (r + 1)-signotope (see [26℄).Very muh in the spirit of these onstrutions we de�ne:(6) For a r-signotope � on [n℄ let ��� : � [n℄r+1� ! f�;+g be de�ned by ���(P ) = + i��(P br+1) = +.Claim. The weak boundary ��� of � is an (r + 1)-signotope.Proof. Let Q be a r + 2 element set and let P = Qbr+2. Note that Qbibr+1 = P bi forall i < r+2. Hene, ���(Qbi) = �(Qbibr+1) = �(P bi). It follows from the monotoniityof � that for 1 � i < j < k < r + 2 either ���(Qbi) � ���(Qbj) � ���(Qbk) or���(Qbi) � ���(Qbj) � ���(Qbk).If k = r + 2 and j < r + 1 we note that Qbkbr+1 = P br+1 and the monotoniityondition of ��� for indies i; j; k follows from the ondition for i; j; k � 1. Finally ifk = r + 2 and j = r + 1 we �nd that Qbjbr+1 = Qbkbr+1, hene, ���(Qbj) = ���(Qbk)and this implies the monotoniity ondition of ��� for i; j; k. 4(7) For a r-signotope � on [n℄ let ~� : �[n+1℄r+1 � ! f�;+g be the unique funtion with~�"n+1= ��� and ~�#n+1= �. The weak extension ~� is a r + 1-signotope.Remark. Weak extensions have been studied by Rambau [18℄, using the name expansionfor these objets, he shows that �! ~� is an order preserving embedding from B(n; r� 1)to B(n+ 1; r).
17



4.4 Maximum Chains of SignotopesThis subsetion is devoted to the proof of the main strutural theorem on signotopes,Theorem 13. This result is already part of publiations on higher Bruhat orders [17, 26℄.While Ziegler refers to some non-trivial results from the theory of oriented matroids in hisproof the approah we take remains ompletely within elementary ombinatoris.With an r-signotope � on [n℄ assoiate a direted graph with verties the r�1 elementsubsets of [n℄ and edges !� de�ned by: For P 2 �[n℄r � and 1 � i < j � r, if �(P ) = + letP bi !� P bj and if �(P ) = � let P bj !� P bi.Lemma 10 For an r-signotope � on [n℄ the graph with verties � [n℄r�1� and edges !� isayli.Proof. For r = 2 and arbitrary n, relation !� is the transitive tournament orrespondingto the permutation whose inversion set is the set of pairs (i; j) with �(i; j) = +.For n = r, relation!� is the lexiographi order on the r�1 subsets of [r℄ if �([r℄) = �, otherwise, if �([r℄) = + it is the reverse-lexiographi order.Let n > r > 2 and let � be the signotope obtained from � by deletion of fng. Byindution!� is ayli on �[n�1℄r�1 �. Let  be the signotope obtained from � by ontrationof fng and view ! as graph on the vertex set Y = fA 2 � [n℄r�1� : n 2 Ag. By indution! is ayli.Let X� = fA 2 �[n�1℄r�1 � : �(A [ fng) = �g and X+ = fA 2 �[n�1℄r�1 � : �(A [ fng) = +g.The three sets X�;X+; Y partition the r�1 element subsets of [n℄, moreover, the subgraphof !� indued by eah of the three bloks of the partition is ayli: It agrees with thesubgraph indued by !� in ase of X� and X+ and with the subgraph indued by !in the ase of Y . Now onsider the edges of !� between the bloks. By de�nition of X�all edges with one end in X� and the other end in Y are oriented from X� to Y . Also alledges with one end in X+ and the other end in Y are oriented from Y to X+. Therefore,the ayliity of !� is readily established if we show that all edges with one end in X�and the other end in X+ are oriented from X� to X+. This follows from the next laim:Claim. A 2 X� and B !� A implies B 2 X�,i.e., X� is an ideal in the partial orderde�ned by the transitive losure of !�.From B !� A it follows that P = A[B is a r subset [n℄. Let i; j be suh that B = P biand A = P bj. For Q = P [ fng we then obtain Qbi = B [ fng, Qbj = A [ fng andQbr+1 = A [B = P . We use the monotoniity of � on Q and distinguish two ases:(1) If i < j then B !� A implies �(P ) = �(Qbr+1) = +. From A 2 X� it follows that�(Qbj) = �(A[ fng) = �. Monotoniity fores �(Qbi) = �(B [fng) = �, i.e., B 2 X�.(2) If j < i then B !� A implies �(P ) = �(Qbr+1) = �. From A 2 X� it follows that�(Qbj) = �(A[ fng) = �. Monotoniity fores �(Qbi) = �(B [fng) = �, i.e., B 2 X�.Proposition 11 For a r-signotope � on [n℄ there exist a hain �0 < �1 < : : : < �( nr�1) of(r � 1)-signotopes in Sr�1(n) suh that for t = 1; : : : ; � nr�1� the signs of �t�1 and �t di�erat only one (r � 1)-set At. 18



Proof. Let A1; A2; : : : ; A( nr�1) be a topologial sorting of !� and de�ne �t(A) = � ifA = Ai for some i > t and �t(A) = + if A = Ai for some i � t. To prove the lemma itremains to show that eah �t is a (r � 1)-signotope.For every r element set P and all i; j; k with 1 � i < j < k � r we either haveP bi !� P bj !� P bk or P bk !� P bj !� P bi. In the �rst ase we have �t(P bi) ��t(P bj) � �t(P bk) for all t and in the seond ase �t(P bi) � �t(P bj) � �t(P bk) for allt. This proves monotoniity for �t.Based on this lemma will next give the proof of Theorem 7. The main motivation forinluding this here is to illustrate the interpretations of the abstrat ombinatorial objetswe are playing with.Proof. [Theorem 7℄ Let � be a 3-signotope, i.e., a funtion � : �[n℄3 � ! f�;+g obeyingmonotoniity on 4-subsets of [n℄. From Proposition 11 we obtain a hain �0; : : : ; �(n2)in S2(n) orresponding to �. Eah �i enodes a permutation of [n℄. �0 is the identityand �(n2) the reverse permutation. Moreover, two permutations �t and �t+1 di�er in asingle sign where �t is � and �t+1 is +. Hene, there is a single pair (i; j) being a non-inversion of �t but an inversion in �t+1. This pair is an adjaent pair of both permutations.This shows that �0; : : : ; �(n2) is a simple allowable sequene. From Theorem 2 we obtainthat via �0; : : : ; �(n2) signotope � enodes an arrangement A. From the onstrution it iseasily veri�ed that the triangle indued by lines i; j; k in A is a + triangle exatly when�(ijk) = +. This proves the bijetion.The next proposition an be seen as a generalization of Theorem 2; it shows thatsaturated hains of (r � 1)-signotopes an be used to enode r-signotopes.Proposition 12 Let 1 < r � n and �0 < �1 < : : : < �( nr�1) be a maximum hain inSr�1(n). For t = 1; : : : ; � nr�1� let At be the unique (r � 1)-set with �t�1(At) = � and�t(At) = +. There exists a r-signotope � on [n℄ so that A1; : : : ; A( nr�1) is a topologialsorting of !�.Proof. For a set A 2 � [n℄r�1� let �(A) be the index of A in the list A1; : : : ; A( nr�1). Notethat monotoniity of the �t's implies that for all D 2 �[n℄r � either �(Db1) < �(Db2) <: : : < �(Dbr) or �(Db1) > �(Db2) > : : : > �(Dbr). In the �rst ase let �(D) = +in the seond ase �(D) = �. We have to show that � is a r-signotope, i.e., that � ismonotone at r + 1 sets. Let Q 2 � [n℄r+1� and onsider indies 1 � i < j < k � r + 1.Suppose �(Qbi) = �(Qbk) = +. Let Qbi;j denote the set Q minus the ith largest andthe jth largest element of Q, e.g., f1; 2; 5; 7; 8gb2;3 = f1; 7; 8g. From �(Qbi) = + weobtain �(Qbi;j) < �(Qbi;k). From �(Qbk) = + we obtain that �(Qbi;k) < �(Qbj;k).Hene �(Qbi;j) < �(Qbj;k) whih implies �(Qbj) = + as required. The argument for�(Qbi) = �(Qbk) = � is symmetri. It is obvious that A1; : : : ; A( [n℄r�1) is a topologialsorting for the relation !�.Propositions 11 and 12 together prove the main struture theorem for signotopes.Theorem 13 There is a surjetive mapping from maximum hains in Sr�1(n) to Sr(n).19



Note that whenever Sr(n) = B(n; r � 1) then for any two signotopes � < � in Sr(n)there is a hain of maximum length ontaining both. In general we an show that at leastevery single element of Sr(n) is ontained in a hain of maximum length.Proposition 14 Every element of Sr(n) is ontained in a hain of length �nr�+ 1.Proof. Let � 2 Sr(n) and onsider the weak boundary ��� of �. This de�nes the diretedgraph !��� on �[n℄r �. Note that A !��� B implies �(A) � �(B), i.e., the sets A with�(A) = � form an ideal in the order orresponding to !���. Let A1; A2 : : : ; A(nr) bea linear extension of this order suh that there is a t with �(Ai) = � for all i � tand �(Ai) = + for all i > t. De�ne the sequene �j of r-signotopes as in the proof ofProposition 11. The sequene of omplements �j is a hain of r signotopes with �t = �.Proposition 11 implies that the mapping � from maximum hains in Sr�1(n) to ele-ments of Sr(n) desribed in the proof of Proposition 12 is surjetive. The two propositionsalso imply that the preimage of � under � is a set of maximum hains in Sr�1(n) of thesame size as the set of topologial sortings of !�, i.e., linear extensions of the transitivelosure of !�. We an even say more about this preimage.Call two maximum hains in Sr�1(n) swap-equivalent if one of them orresponds to thelist A1; : : : ; A( nr�1) of (r� 1)-sets and the list of the other hain di�ers only by an adjaenttransposition, i.e., is of the form A1; ::; At�1; At+1; At; At+2; ::; A( nr�1) for some t.Proposition 15 For r � 3 the set of maximum hains in Sr�1(n) mapped by � to � 2Sr(n) is a omplete swap-equivalene lass.Proof. The proof follows from two fats.First, it is possible to transform any topologial sorting of a direted ayli graphinto any other by a sequene of adjaent transpositions, i.e., reversals of adjaent pairsof unrelated verties. Therefore, the preimage of � is ontained in one swap-equivalenelass of hains in Sr�1(n).Now assume r � 3 that A1; : : : ; A( nr�1) is a topologial sorting of !� and let listA1; ::; At�1; At+1; At; At+2; ::; A( nr�1) orrespond to a maximum hain of Sr�1(n). We laimthat At andAt+1 are unrelated in!�. Otherwise P = At[At+1 is a r-set and monotoniityonly allows the signs of At and At+1 to be hanged in a row if there is an index i so thatone of the two sets is P bi and the other is P bi+1. Consider sign and loation in the list ofa set of P bj, j 6= i; i + 1, to obtain a ontradition to monotoniity. Hene, At and At+1are unrelated in !� and the seond list also orresponds to a topologial sorting of !�.These onsiderations about swap-equivalene of the � preimages an be rephrased asfollows: Given a r-signotope � the set of (r�1)-signotopes on maximum hains of Sr�1(n)mapped to � by � together with the edges (single-steps) used by these hains forms alattie isomorphi to the lattie of antihains of the transitive losure of !� (An exampleof this is given in Example B below). In partiular this shows that the orders Sr(n) havea loal lattie struture. What about global lattie struture? It is known that Sr(n) isa lattie for r � 2. Ziegler [26℄ has shown that Sr(n) is a lattie for r � n � 2 and thatS3(6) is not a lattie. 20
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(a) The arrangement. (1,2)
(3,4)(1,4) (1,3)(2,4) (2,3)

(b) The graph !�.
421342314321

2413214321341234
2431
1243() The lattie.Figure 9: Illustrations for Example B.Example B. Let A (as shown in Figure 9(a)) be the arrangement orresponding to a3-signotope �. The direted graph !� is shown in Figure 9(b). Note that we met thetransitive redution of this graph (non-dashed edges) several times as �!G (see Lemma 1,Subsetion 3.1 and Lemma 4). The maximum hains of 2-signotopes mapped by � to �are the allowable sequenes of A. In Subsetion 3.1 we have seen that they orrespondbijetively to topologial sortings of �!G . It follows that the suborder of the weak Bruhatorder indued by permutations � appearing in allowable sequenes of A is a distributivelattie (see Figure 9()).5 Geometri Interpretations for SignotopesZiegler [26℄ shows that there is a natural bijetion between the uniform extension poset onthe set of single element extensions of a yli hyperplane arrangement Xn;d in Rd and thehigher Bruhat order B(n; n�d�1). Felsner and Ziegler [8℄ note that from oriented matroidduality, B(n; n�d�1) has another geometri representation as the set of 1{element liftingsof Xn;n�d . These liftings orrespond to ertain aÆne arrangements of pseudohyperplanesin Rn�d�1 . In this setion we make the onnetion with the seond lass of geometriobjets expliit; that is, we haraterize a lass of arrangements of pseudohyperplanes inRd orresponding to signotopes � 2 Sd+1(n).A pseudohyperplane H in Rd is a homeomorph of a hyperplane suh that the twoonneted omponents of Rd nH are homeomorphi to the d-ball. A set fH1; : : : ;Hng ofpseudohyperplanes in Rd is an arrangement of pseudohyperplanes if every two pseudohy-perplanes Hi and Hj interset in an (n� 1) dimensional pseudohyperplane and they rossat their intersetion. Moreover, for all j the set fHi \ Hj : i = 1; :::; j � 1; j + 1; :::; ngis an arrangement of n � 1 pseudohyperplanes in Hj �= Rd�1 . We say d-arrangement toabbreviate for `arrangement of pseudohyperplanes in Rd '. A d-arrangement is simple ifany set of d+ 1 pseudohyperplanes has empty intersetion.So far we have disussed arrangements of pseudolines whih had been normalized by a21



marking fae F and a spei� labeling of the lines (inreasing on a lokwise walk from Fto F at in�nity). For all arrangements of this setion we assume that they are simple andthat they are embedded in Rd in a normalized way as desribed in the next paragraph.For i = 1; :::; d� 1 let Ii be the d� i dimensional spae at in�nity obtained by settingthe last i oordinates equal to �1, i.e., with xd = �1; xd�1 = �1; : : : ; xd�i+1 = �1(if the reader feels unomfortable with these `spaes at in�nity' he may assume that thearrangement is embedded in a d-dimensional unit hyperube [0; 1℄d and onsider Ii as theside of this ube obtained by setting the last i oordinates equal to 0). We demand that thed-arrangement indues a (d� i)-arrangement with the same number of pseudohyperplaneson Ii. Moreover, the pseudohyperplanes are labeled by inreasing x1 oordinate at theirintersetion with Id�1. We all an arrangement with these properties normal.The intersetion of every set of d � 1 pseudohyperplanes of an arrangement A deter-mines a line of the arrangement. If the arrangement is normal we onsider these linesand the edges they support as oriented away from I1. A normal d-arrangement induesa sign funtion f : � [n℄d+1� ! f�;+g by the following rule: Given i1 < i2 < : : : < id+1 letf(i1; :::; id+1) = � i� on the intersetion line of the pseudohyperplanes hi3 ; :::; hid+1 theintersetion with hi1 omes before the intersetion with hi2 .Hurrying ahead we de�ne: A normal d-arrangement A is alled a Cd-arrangement if thenormal (d�1)-arrangement indued by A on I1 orresponds to the minimal signotope �0 2Sd(n); the minimal signotope �0 is the signotope with all signs �. It should be remarkedthat the arrangement orresponding to �0 2 Sd(n) is the yli arrangement Xn;d .Theorem 16 There is a bijetion between Cd-arrangements with n pseudohyperplanes andsignotopes in Sd+1(n). The signotope orresponding to a Cd-arrangement A is the signfuntion of A as de�ned above.Proof. We use indution on d. Theorem 7 overs the ase d = 2 and may serve as basis forthe indution. For the indution step we also use that if (�; �0) is a single step in Sd(n)then the assoiated Cd�1-arrangements A and A0 are related by a ip at a simpliial ellbounded by the hyperplanes orresponding to the unique d element set A with �(A) = �and �0(A) = +.For d dimensions we �rst onsider normal arrangements of d + 1 pseudohyperplaneslabeled by the elements of A = [d + 1℄. Suh an arrangement A has just one boundedell whih is a (pseudo)simplex. The set of bounded edges of A forms the skeleton graphof the simplex, i.e., a omplete graph Kd+1. The vertex of this graph determined by theintersetion of the pseudohyperplanes in Abi will itself be denoted Abi.Claim A. The orientation of lines indues an ayli orientation on the graph of boundededges of A.Let Abi, Abj and Abk be any three verties of the graph. The three lines Abi;j; Abi;k,Abj;k are supported by the plane Abi;j;k whih is a homeomorph of a disk D. Theintersetion of Abi;j;k with I1 orresponds to an interval on the boundary of D in whihall three lines begin. Sine lines and edges are oriented away from I1 the orientation ofthe triangle with verties Abi, Abj and Abk is ayli. An orientation of the ompletegraph Kd+1 with all triangles ayli is ayli. 4Claim B. For Cd-arrangements the orientation of Kd+1 is either the transitive losure22



of Ab1 ! Ab2 ! : : : ! Abd+1 in whih ase the sign of the arrangement is + or ofAbd+1 ! Abd ! : : :! Ab1 in whih ase the sign is �.Sine the graph is ayli we an sweep arrangement A starting with I1. Meaning, we�nd a sequene s0; s1; : : : ; sd+1 of pseudohyperplanes suh that they all share the pseu-dosphere at in�nity with I1 = s0 and between any two onseutive pseudohyperplanessi, si+1 there is exatly one vertex of the arrangement. Sine the arrangement is a Cdarrangement we know that the �rst vertex to be swept orresponds to a simpliial ellin the arrangement of the minimal element of Sd(d + 1). This arrangement has only twosimpliial ells one bounded by the pseudohyperplanes in Ab1 and the other by those inAbd+1. The arrangement indued on s1 is thus obtained by ipping one of these ells.After this �rst ip one of the two branhes of Sd(d+ 1) whih as we reall has the stru-ture of (2d + 2)-gon is determined. Playing with the bijetion between the arrangementsindued on the sweep-planes si and the orresponding signotopes we see that the sweephas to follow the hosen branh of Sd(d + 1). This results in one of the above orderingsof the verties of Kd+1. The statement about the sign of the arrangement follows fromonsidering the orientation of the edge between Ab1 and Ab2. 4From the previous laim we obtain generalized riteria for determining the sign of ad + 1 element set A in a Cd-arrangement. Consider any two verties Abi and Abj withi < j of the arrangement indued by A. The sign of A is + i� Abi preedes Abj on theline Abi;j.With this at hand we an show monotoniity for the sign funtions of a Cd-arrangementA with more then d+1 pseudohyperplanes: Let � be the sign funtion orresponding to Aand let P be a d+2 element set of pseudohyperplanes. For 1 � i < j < k � d+2 we have toshow that �(P bi) = + together with �(P bj) = � implies �(P bk) = � and �(P bi) = �together with �(P bj) = + implies �(P bk) = +. We only prove the �rst impliation, theother being similar. From �(P bi) = + we obtain that vertex P bi;j preedes vertex P bi;kon the line P bi;j;k. From �(P bj) = � we obtain that vertex P bj;k preedes vertex P bi;jon the line P bi;j;k. From transitivity P bj;k preedes P bi;k and hene �(P bk) = �.So far we have seen that the sign funtion of a Cd-arrangement of n pseudohyperplanesis a signotope in Sd+1(n). Given a Cd-arrangement with signotope � the next thing toprove is the orrespondene between simpliial ells in A and single steps involving �.For the �rst half note that a simpliial ell of A an be ipped leading to A0. Sine A0is a Cd-arrangement it has a orresponding signotope �0. Now ompare the ordering ofverties on lines of A and A0 to see that � and �0 di�er in just one sign. On the otherhand, if � and �0 only di�er in the sign A then it is possible to show that for all i; j in Athe two verties Abi and Abj are adjaent along the line Abi;j. Therefore, the simpliialell orresponding to A is not penetrated by any further pseudohyperplane.Given any Cd-arrangement A, we may move to any other Cd-arrangement (of samedimension with same number of pseudohyperplanes) using ips. This is due to the on-netedness of Sd+1(n) (Lemma 14). Therefore, the missing link for a omplete proof isthe existene of a single Cd-arrangement with n pseudohyperplanes. This an be pro-vided by heking that the yli arrangements have the required properties. Here weindiate a onstrution whih is similar in spirit to the onstrution of wiring diagrams asrepresentatives of pseudolinearrangements:Given � 2 Sd+1(n) hoose a hain �0 < �1 < : : : < �(nd) in Sd(n) mapped by � to �. By23



indution �0 orresponds to a Cd�1-arrangement B0 of n pseudohyperplanes. Let A be theunique d-set with di�erent sign in �0 and �1. We know that the pseudohyperplanes from Abound a simpliial ell in B0. Construt B1 by applying a simpliial-ip to this ell in B0.Repeat this to obtain a sequene B0;B1; : : : ;B(nd) of arrangements in Rd�1 orrespondingto �0; �1; : : : ; �(nd). Introdue a new dimension xd and plae arrangement Bi in the aÆne(d � 1)-dimensional spae at xd = i. The pseudohyperplane hi of the arrangement Aorresponding to � is obtained by properly interpolating between the ith pseudohyperplanein Bj and Bj+1 for j = 0; : : : ; �nd� � 1 and extending the ith pseudohyperplane of B0 andB(nd) to xd = �1 and xd =1 respetively.Note that, as a onsequene of Theorem 16 Cd-arrangements an be swept. This meansthat starting with the sweep-pseudohyperplane I1 the sweep never gets stuk. While thisproperty is learly shared by realizable arrangements there are reasons to believe that\most" higher dimensional arrangements an not be swept (e.g. the examples onstrutedby Rihter-Gebert [19℄). In fat it is not even known whether every d-arrangement ofn > d pseudohyperplanes ontains a simpliial ell.6 Conlusion and Open ProblemsSummarized in three phrases the ontributions of this paper are: Sweeps are an e�etivetool in dealing with planar arrangements. In the simple ase the mapping from allowablesequenes to marked arrangements is a speial ase of the general existene of surjetivemappings frommaximal hains in Sr�1(n) to elements of Sr(n). And that elements of Sr(n)orrespond to a speial lass of arrangements (Cr�1-arrangements) of pseudohyperplanesin Rr�1 whih admits sweeps.Hene, restrited to Cr�1-arrangements maximal hains in Sr�1(n) an be seen as anr � 1 dimensional generalization of allowable sequenes. Goodman and Pollak [11℄ hadalready asked for higher dimensional analogs of allowable sequenes. Can these ideasbe arried further to give suh analogs for a larger lass of arrangements of pseudohy-perplanes? Are there other sets of onditions whih guarantee the sweepability of anarrangement?Already Manin and Shehtman [17℄ mention that maximal hains in the weak Bruhatorder have a nie enoding in terms of Young tableaux [23, 2℄. They ask for a generalizationto higher dimension, i.e., for enodings of hains in Sr(n), for r > 2. It seems that so farthere is no progress onerning this question.It would be very interesting to understand more of the struture of the graph Gr(n)whose elements are r-signotopes and edges orrespond to single-steps, i.e., two r-signotopesare onneted by an edge if they di�er only in the sign of a single r-set. Only little isknown: Ziegler [26℄ shows that the higher Bruhat order is homotopy equivalent to a sphere.Felsner and Ziegler [8℄ have shown that these graphs ontain large subgraphs whih formthe skeleton of zonotopes and haraterize those pairs (r; n) where Gr(n) atually is theskeleton graph of a zonotope in Rn�r+1 . Questions like minimum and maximum degree ofGr(n) or onnetedness are wide open in general. Even for r = 3 the question onerningthe minimum degree has only reently been solved by Felsner and Kriegel [6℄. They showedthat every simple Eulidean arrangement of n pseudolines ontains n � 2 triangles. We24
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