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A rectangulation is a decomposition of a rectangle into finitely many rectangles. Via na-
tural equivalence relations, rectangulations can be seen as combinatorial objects with a rich
structure, with links to lattice congruences, flip graphs, polytopes, lattice paths, Hopf alge-
bras, etc. In this paper, we first revisit the structure of the respective equivalence classes:
weak rectangulations that preserve rectangle–segment adjacencies, and strong rectangulations
that preserve rectangle–rectangle adjacencies. We thoroughly investigate posets defined by
adjacency in rectangulations of both kinds, and unify and simplify known bijections between
rectangulations and permutation classes. This yields a uniform treatment of mappings be-
tween permutations and rectangulations that unifies the results from earlier contributions,
and emphasizes parallelism and differences between the weak and the strong cases. Then,
we consider the special case of guillotine rectangulations, and prove that they can be charac-
terized — under all known mappings between permutations and rectangulations — by avoid-
ance of two mesh patterns that correspond to “windmills” in rectangulations. This yields new
permutation classes in bijection with weak guillotine rectangulations, and the first known
permutation class in bijection with strong guillotine rectangulations. Finally, we address enu-
merative issues and prove asymptotic bounds for several families of strong rectangulations.
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1 Introduction

A rectangulation is a decomposition of a rectangle into finitely many interior-disjoint rectangles. Rectan-
gulations constitute a classical topic in mathematical tessellation theory. Among the earliest contributions
on this topic one finds two papers by Abe from early 1930s [1, 2], and the papers by Brooks, Stone, Smith,
and Tutte (collectively known as Blanche Descartes) on “squaring the square” [22], and on partitioning a
square into equal-area rectangles [33]. In the last decades, many results on rectangulations have been
published in journals and conferences on computational geometry as well as engineering and electronics,
due to their being a basic model in floorplanning — an essential step in the design of very large scale
integrated circuits (VLSI) [71, 67, 28]. In floorplanning, functional blocks of a circuit, represented
by rectangles, have to be packed on a small rectangular area. The term floorplan is therefore often
used to designate a rectangulation. Rectangulations have also applications in the analysis of geometric
algorithms [11, 25], in visualization of scientific data (for instance treemaps [12] and cartograms [82,
23]), in mathematical foundations of architectural design [76], and also appear in visual art — notably
in the work of the Dutch art movement De Stijl, see Figure 1.

Figure 1: Artwork Composition décentralisée (1924) by Theo van Doesburg (Dutch, 1883–1931).
Solomon R. Guggenheim Museum, New York.

We investigate structural properties of rectangulations, which in particular means that we are not in-
terested in precise measures of rectangles but rather in adjacencies between their elements — rectangles
and segments. In order to treat rectangulations as combinatorial objects, one can introduce an equiva-
lence relation formalizing the idea of two rectangulations being “structurally identical”. There are two
natural equivalence relations of this kind. The weak equivalence preserves incidence and sidedness be-
tween segments and rectangles. The strong equivalence additionally preserves the adjacencies between
rectangles. Precise definitions are given in Section 2.2.
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Many structural investigations of rectangulations are focused on their bijective representation by
classes of permutations determined by pattern avoidance [3, 46, 41, 53, 66, 6, 26, 56, 57, 59]. For
example, Baxter permutations, defined by avoidance of a certain pair of vincular patterns of size 4, have
been shown to be in a (size-preserving) bijection with mosaic or diagonal rectangulations [3] — that is,
rectangulations considered up to the weak equivalence. This bijection can be restricted to a bijection be-
tween separable permutations, defined by avoidance of the patterns 2413 and 3142 [16], and the so-called
guillotine rectangulations (also known as sliceable rectangulations). These results can be fruitfully com-
pared to a basic result in Catalan combinatorics, namely the bijection between triangulations of a convex
polygon and 231-avoiding permutations [74].

The combinatorics of such families has been analyzed in the framework of congruences of the weak
Bruhat order [65]. The weak Bruhat order is the ordering of the permutations of [n] by inclusion of their
set of inversions. A congruence is an equivalence relation on the elements of a lattice that is consistent
with the meet and join operations. Catalan families and mosaic rectangulations are both examples of
families that define congruences of the weak Bruhat order. As a consequence, the corresponding families
(of pattern-avoiding permutations or tessellations) are ordered by a lattice, defined as the quotient of the
weak Bruhat order by the congruence. It was shown by Pilaud and Santos [62] that the cover graphs of
these quotients are all skeletons of polytopes, that they called quotientopes. In the case of triangulations
and other Catalan objects, the quotient lattice is the well-studied Tamari lattice [60] and the quotientope
is the ubiquitous associahedron [75, 54, 27]. The quotientope of mosaic rectangulations, on the other
hand, is known to be a Minkowski sum of two associahedra [53].

In 2012, Reading [66] studied rectangulations considered up to the strong equivalence. He showed
that, similarly to the weak case, they are bijective to equivalence classes of permutations that form
congruence classes and thus induce a quotient of the weak Bruhat order, and also to so-called 2-clumped
permutations.

Subsequently, Meehan [57] analyzed the cover relation in this quotient, yielding a nice flip graph on
generic rectangulations. From Pilaud and Santos [62], this flip graph is the skeleton of the quotientope
of generic rectangulations.

The main goals that motivated the study presented in this paper were as follows:

1. To develop a uniform treatment of mappings between permutations and rectangulations
that would unify the results from earlier contributions and emphasize parallelism and
differences between the weak and the strong cases.

2. To simplify the description of the bijection between generic rectangulations and 2-
clumped permutations, and give a concise characterization of the corresponding con-
gruence classes of the weak Bruhat order.

3. To find a permutation class in bijection with guillotine generic rectangulations.

4. To address the enumeration of guillotine generic rectangulations. Under the weak equiv-
alence, the generating function of all rectangulations is (non-algebraic) D-finite, while
the generating function of guillotine rectangulations is algebraic. Under the strong
equivalence, the generating function for all rectangulations is not D-finite, while the
status of the generating function for guillotine rectangulations is yet to be determined.

Our results. The first part of our contribution is on the strong equivalence relation and strong rectan-
gulations. We define the strong order on rectangles of a strong rectangulation, and prove that the linear
extensions of this strong order form equivalence classes of permutations that are bijective with strong
rectangulations, and are intervals in the weak Bruhat order. We naturally derive bijections between
strong rectangulations and, respectively, 2-clumped and co-2-clumped permutations — the minimum
and the maximum of the equivalence classes.

The material in this part streamlines and simplifies a number of previous works. On one hand, Read-
ing [66] (see also Meehan [57] and Merino and Mütze [59]) considers the combinatorics of strong rec-
tangulations and defines the same permutations-to-rectangulations mapping as ours. We present simple
incremental algorithms for the forward and backward directions of this mapping that allow for simpler
and more direct proofs. In particular, our forward algorithm yields a simple proof for the description
of the flip graph studied by Meehan [57]. Our definition of the strong poset for the strong equivalence
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relation between rectangulations is an analogue of the adjacency poset for weak equivalence defined by
Meehan [56]. Interestingly, it appears that the mapping defined by Reading has already been studied in
the form of the “FT-squeeze” algorithm, devised by Fujimaki and Takahashi [46, 77] for VLSI design. The
strong poset that we introduce is equivalent to the “seagull order” proposed by Fujimaki and Takahashi
as a physical intuition for the FT-squeeze [46]. It also appears in the guise of the elimination process
devised by Takahashi, Fujimaki, and Inoue [51, 78] for giving efficient counting and coding methods
on strong rectangulations. Finally, our forward algorithm is strongly related to a mapping defined by
Françon and Viennot [44] for the analysis of permutations parameterized by their number of peaks, val-
leys, double ascents, and double descents, and can be analyzed within the framework of quadrant walks.
The connection between these numerous lines of work seems to have gone unnoticed so far.

The second part of our paper is dedicated to guillotine rectangulations. We introduce two mesh pat-
terns on permutations that can be used for “encoding” windmills — certain configurations of segments,
whose occurrence in a rectangulation is equivalent to being non-guillotine. Combining these mesh pat-
terns with the forbidden patterns of Baxter permutations, we obtain new bijections for weak guillotine
rectangulations. More interestingly, combining these two mesh patterns with the forbidden patterns for
2-clumped permutations, we obtain a bijection between strong guillotine rectangulations (that is, strong
equivalence classes of guillotine rectangulations) and a permutation class. This is the first known repre-
sentation of this family of rectangulations by a permutation class.

The plan of the paper is as follows. In Section 2, we give precise definitions of the objects that we
study and review basic results. In particular, the equivalence classes of rectangulations of the weak and
strong equivalence will be called, respectively, weak and strong rectangulations. In Section 3, we review
earlier results on weak rectangulations: a mapping γw from permutations to weak rectangulations, weak
posets as fibers of this mapping, the induced bijections between weak rectangulations and Baxter, twisted
Baxter, and co-twisted Baxter permutations, as well as the structure of the corresponding weak Bruhat
order congruence. Then, Section 4 is devoted to an extensive study of the structure of strong rectangu-
lations, while emphasizing its parallelism to the weak case: a mapping γs from permutations to strong
rectangulations, strong posets as fibers of this mapping, and the induced bijections between strong rec-
tangulations and 2-clumped (resp. co-2-clumped) permutations. Moreover, we identify the flip graph
on rectangulations, and we show how to encode rectangulations (and subfamilies) by quadrant walks,
allowing efficient counting. Finally, in Section 5, we present two mesh patterns p1, p2 that “encode”
windmills, propose novel permutation classes in bijection with weak and strong guillotine rectangula-
tions, show that the n first terms of the enumerating sequence of strong guillotine rectangulations can
be computed in polynomial time in n, and provide lower and upper bounds on the number of strong
guillotine rectangulations of size n. The following table shows a summary of bijections between the
considered classes of rectangulations and permutation classes, along with the references to the sections
where these are discussed.

Weak equivalence Strong equivalence
Arbitrary Weak rectangulations Strong rectangulations

Baxter permutations
twisted Baxter permutations 2-clumped permutations

co-twisted Baxter permutations co-2-clumped permutations
Ð→ Section 3.4 Ð→ Section 4.4

Guillotine Weak guillotine rectangulations Strong guillotine rectangulations
separable permutations

{p1, p2}-avoiding twisted Baxter perm. {p1, p2}-avoiding 2-clumped permutations
{p1, p2}-avoiding co-twisted Baxter perm. {p1, p2}-avoiding co-2-clumped permutations

Ð→ Sections 2.5 and 5.2 Ð→ Section 5.2
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2 Definitions and basics

In this section we present basic notions and definitions used in the paper, as well as some “classical”
results. In this exposition, we mainly follow the works by Ackerman, Barequet, and Pinter [3], Law and
Reading [53], Reading [66], Cardinal, Sacristán, and Silveira [26], and Merino and Mütze [59], with
some minor modifications for the sake of uniformity.

2.1 Rectangulations and their elements

Let R be an axes-aligned rectangle in the plane. A rectangulation of R is a decomposition (or tiling) of R
into finitely many interior-disjoint rectangles. The size of a rectangulation is the number of rectangles
in the decomposition. The rectangulation in Figure 1 is of size 13. Rectangulations will generically be
denoted by R, and their size by n.

A segment of a rectangulation is a maximal straight line segment that consists of one or several sides
of some rectangles of R, and is not included in one of the sides of R. A rectangulation is generic if there
is no point at which four rectangles meet. From now on, we assume that all rectangulations in this
paper are generic. Thus, intersection of two segments of a rectangulation can form a joint of one
of the following shapes: , , , , but never . It is easily shown that a rectangulation of size n has
precisely n − 1 segments. The neighbors of a segment s are the segments (perpendicular to s) with an
endpoint that lies on s.1

We also label the corners of R, or of any rectangle of R, by the ordinal directions: NE for top-right, SE
for bottom-right, SW for bottom-left, NW for top-left.

2.2 Weak equivalence and strong equivalence

In order to deal with rectangulations as combinatorial objects, one has to consider some equivalence
relation, formalizing the idea of rectangulations “having the same structure”. There are two natural
ways to do this: the weak equivalence that preserves segment–rectangle incidences and sidedness, and
the strong equivalence that additionally preserves rectangle–rectangle adjacencies.

To give precise definitions, we introduce left–right and above–below order relations between rectangles
of a rectangulation:

• Rectangle r is on the left of rectangle r′ (equivalently, r′ is on the right of r) if there is a sequence
of rectangles, r = r1, r2, . . . , rk = r′ such that the right side of ri and the left side of ri+1 lie in the
same segment for i = 1,2, . . . , k − 1.

• Rectangle r is below rectangle r′ (equivalently, r′ is above r) if there is a sequence of rectangles,
r = r1, r2, . . . , rk = r′ such that the upper side of ri and the bottom side of ri+1 lie in the same
segment for i = 1,2, . . . , k − 1.

Given a rectangle r of R, one can specify the regions that contain the rectangles which are above,
below, on the left, or on the right of r, as follows. The NE alternating path associated with r is the path
that starts at the NE (top-right) corner of r, goes first upwards if the NE corner of r has the shape
or rightwards if it has the shape , and then alternatingly traverses vertical segments upwards to their
upper endpoint then turning rightwards, and horizontal segments rightwards to their right endpoint and
then turning upwards, until it reaches the NE corner of R. The NE alternating path associated with r is
shown by red in Figure 2. One similarly defines SE, SW, and NW alternating paths. The four alternating
paths split R∖{r} into four regions (some of them can be empty). This leads to the following observation.

Observation 1. Let r be a rectangle in a rectangulation R.

1. The rectangles of R which lie above, below, on the left, or on the right of r are contained in respective
regions of R ∖ {r} delimited by the alternating paths (refer to Figure 2).

2. Every pair of distinct rectangles in a rectangulation is comparable with precisely one of the order
relations: either one of them is on the left of the other, or one of them is above the other.
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Figure 2: Illustration to Observation 1: four regions delimited by alternating paths.

Now the two kinds of equivalence of rectangulations are defined as follows.

• Two rectangulations R1 and R2 are weakly equivalent if there is a (unique) bijection between their
rectangles that preserves the left-right and the above-below orders.

• Two rectangulations R1 and R2 are strongly equivalent if they are weakly equivalent, and the
bijection that realizes the weak equivalence also preserves adjacencies between rectangles, that is,
two rectangles in R1 are adjacent if and only if the corresponding rectangles in R2 are adjacent.

These equivalence relations can be also described in terms of local modifications of rectangulations.
Two rectangulations are weakly equivalent if they can be obtained from each other by a sequence of
moves, where each move is shifting some segment (or one of the sides of R) horizontally or vertically,
and accordingly extending or shortening its neighbors, so that the adjacencies between segments do not
change. To obtain strong equivalence, we restrict the moves so that the adjacencies between rectangles
are also preserved.

A weak rectangulation is an equivalence class of rectangulations with respect to the weak equivalence,
and a strong rectangulation is an equivalence class of rectangulations with respect to the strong equiv-
alence.2 In Figure 3, rectangulations R1, R2, and R3 are weakly equivalent, but only R1 and R2 are
strongly equivalent. In other words, here we have two weak rectangulations (one of them is given by
three representatives: R1, R2, and R3), and three strong rectangulations (one of them is given by two
representatives: R1 and R2). Rectangulation R1 will be used throughout the paper as a “running
example” for demonstrating various results.

R1 R2 R3 R4

Figure 3: R1, R2, and R3 are weakly equivalent. R1 and R2 are strongly equivalent. R4 is guillotine.

The strong equivalence refines the weak one, and thus every weak rectangulation yields one or several
strong rectangulations by all possible shuffles of the neighbors of its segments. If a segment s has a
neighbors on one side and b neighbors on the other side, then these can be shuffled in (a+b

a
) ways.

1In some papers rectangulations are referred to as floorplans, their rectangles as rooms, and segments as walls.
2In some earlier papers, for example [66, 59], weak rectangulations are called mosaic rectangulations, and strong rectangulations

are referred to just as generic rectangulations. In [46, 77], weak rectangulations are called room-to-wall floorplans, and strong
rectangulations are called room-to-room floorplans.
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2.3 NW–SE and SW–NE labelings

Let R be a rectangulation. Since, by Observation 1, the transitive relations “left” and “above” yield
a partition of the edges of the complete graph, their union “left of, or above” is a total order of the
rectangles. Hence, we can label the rectangles by the numbers from 1 to n according to this order. The
rectangle with label j (1 ≤ j ≤ n) will be denoted by rj . Since r1 contains the NW (top-left) corner of R
and rn contains the SE (bottom-right) corner of R, we call this labeling the NW–SE labeling. If j is fixed,
then ri with i < j are precisely the rectangles above or to the left of rj , and ri with i > j are precisely the
rectangles below or to the right of rj: see Figure 4 for a schematic depiction.

rj

ri: i < j

ri: i > j

Figure 4: The rectangles ri with i > j (respectively i < j) are located to the right or below rj (respectively
to the left or above rj).

The NW–SE labeling can also be obtained by the following algorithm.

Algorithm: NW–SE labeling
Input: Rectangulation R.
Output: The NW–SE labeling of the rectangles of R.

1. Label r1 the rectangle that contains the top-left corner of R.

2. For j = 2 to n:

Consider the joint of segments at the bottom-right corner of rj−1.

• If its shape is , then label rj the leftmost rectangle whose upper side belongs to the same
horizontal segment as the bottom side of rj−1,

• If its shape is , then label rj the topmost rectangle whose left side belongs to the same
vertical segment as the right side of rj−1.

Similarly, one can define the SW–NE labeling in which i < j if and only if ri is to the left or below rj .
It can be obtained by an obvious modification of the algorithm given above. Figure 5 shows the rectan-
gulation R1 with the NW–SE (left) and the SW–NE (right) labelings of its rectangles. (In this and other
examples below, we label the rectangles just j instead of rj).

2.4 Diagonal rectangulations

A diagonal rectangulation of size n is a rectangulation D of size n, drawn on an n×n grid square S, such
that all the segments are drawn along grid lines, and every rectangle of D intersects the NW–SE diagonal
of S. Diagonal rectangulations have the following properties (see for example [53, Section 5]).

Proposition 2. (a) Every rectangulation R is weakly equivalent to a unique diagonal rectangulation D,
which will be referred to as the diagonal representative of R.

(b) In a diagonal rectangulation we have the following. For every horizontal segment s, all the above
neighbors of s occur from the left of all its below neighbors; and for every vertical segment t, all the
left neighbors of t occur above all its right neighbors.
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Figure 5: The NW–SE (left) and the SW–NE (right) orderings of the rectangles of R1.

(c) The order in which the NW–SE diagonal of S meets the rectangles of a diagonal rectangulation, is the
NW–SE order.

Due to property (a), diagonal rectangulations are frequently considered as canonical representatives
of weak rectangulations (or sometimes even identified with them). Property (b) specifies the unique
shuffling of the segments of R that its diagonal representative can have. In other words, it specifies the
unique strong rectangulation which is weakly equivalent to the given R and strongly equivalent to the
diagonal representative of R. Due to property (c), the NW–SE labeling of a diagonal rectangulation is
also called the diagonal labeling.

One similarly defines anti-diagonal rectangulations all of whose rectangles meet the SW–NE diagonal
(in the order determined by the SW–NE labeling). In Figure 6 we show the diagonal rectangulation D1

weakly equivalent to R1 along with its NW–SE labeling, and the anti-diagonal rectangulation D′1 weakly
equivalent to R1 along with its SW–NE labeling.
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D1 D′
1

Figure 6: Left: The diagonal rectangulation D1 weakly equivalent to R1. Right: The anti-diagonal rec-
tangulation D′1 weakly equivalent to R1.
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2.5 Guillotine rectangulations

A cut of a rectangulation R is a vertical segment that extends from the top side to the bottom side of R,
or a horizontal segment that extends from the left side to the right side of R. If R has several cuts, then
they all have the same orientation.

A rectangulation is guillotine if it is either of size 1, or it has a cut s such that both sub-rectangulations
separated by s are guillotine. In Figure 3, only rectangulation R4 is guillotine.

A windmill in a rectangulation is a quadruple of segments forming one of the following two shapes:
or . (Windmills are also referred to as pin-wheels [3].) Note that segments that form a windmill

can have arbitrarily positioned further neighbors, also in the interior — the rectangular region that they
bound. Guillotine rectangulations have the following characterization (proven for instance in [3]).

Proposition 3. A rectangulation is guillotine if and only if it avoids the windmills and .

The enumeration of weak guillotine rectangulations is nearly elementary. Denote their generating
function with respect to the size by G(x). We say that a guillotine rectangulation of size > 1 is horizontal
or vertical in accordance with the orientation of its cut(s). The rectangulation of size 1 is considered
neither horizontal nor vertical. Then the generating function of horizontal guillotine rectangulations,
and that of vertical guillotine rectangulations, is H(x) = V (x) = (G(x) − x)/2. Every vertical guillotine
rectangulation is split by its leftmost cut such that the left part is either vertical guillotine or of size 1, and
the right part is arbitrary guillotine. This decomposition is unique, and, hence, the generating functions
introduced above satisfy the equation

V (x) = (x +H(x))G(x), (1)

which yields

H(x) = V (x) = 1 − 3x −
√
1 − 6x + x2

4
= x2 + 3x3 + 11x4 + 45x5 + . . . ,

G(x) = x +H(x) + V (x) = 1 − x −
√
1 − 6x + x2

2
= x + 2x2 + 6x3 + 22x4 + 90x5 + . . . . (2)

Therefore, we have the following result (proven, for example, in [85] via a bijection to v-h-trees, and
in [70] via a bijection to skewed slicing trees).

Proposition 4. The number of weak guillotine rectangulations of size n is the (n − 1)th Schröder number
(OEIS A006318).

Multidimensional generalizations of guillotine rectangulations were considered in [4] and [7].

2.6 Permutation patterns

In this section we briefly review the basic definitions and notation from the field of permutation patterns
(see also the summary by David Bevan [13]). To specify a permutation, we use the linear notation: that
is, π = a1a2 . . . an is the permutation of [n] that maps i to ai for i = 1,2, . . . , n. It is convenient to describe
such a permutation by a plot — the point set {(i, ai)∶ i ∈ [n]}.
Classical patterns. Let π = π1π2 . . . πn be a permutation of [n], and let τ be a “pattern” — a fixed
permutation of [k] . An occurrence of τ in π is a (not necessarily consecutive) subsequence πs1πs2 . . . πsk

of π, which is order-isomorphic to τ . If π has an occurrence of τ , we say that π contains τ . Otherwise, we
say that π avoids τ . For example, the permutation π = 32514 contains the pattern 132 (the subsequence
254 of π is an occurrence of 132); and the permutation ρ = 43512 avoids 132.

Vincular patterns. A vincular pattern is a pair v = (τ, λ), where τ is a permutation of [k], and λ is a set
of one or several pairwise disjoint strings in τ , indicated by underlining (for example 361857942). An
occurrence of v in π is an occurrence of τ such that the letters that correspond to the same underlined
string occur consecutively in π. For example, the permutation π = 24513 contains the pattern 2413
(the subsequence 2513 of π is an occurrence of 2413); and the permutation ρ = 25314 avoids 2413 (but
contains the classical pattern 2413).
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Mesh patterns. A mesh pattern is a pair m = (τ, µ), where τ is permutation of [k], and µ is a subset of
{0,1, . . . , k}× {0,1, . . . , k}. An occurrence of m in π ∈ [n] is an occurrence as1as2 . . . ask of τ that satisfies
the condition: for every (i, j) ∈ µ, there is no ℓ such that si < ℓ < si+1 (with the convention s0 = −∞ and
sk+1 = +∞) and tj < πℓ < tj+1, where t1 < t2 < . . . < tk are the (sorted) elements of {as1as2 . . . ask} (with
the convention t0 = −∞ and tk+1 = +∞).

To illustrate this concept graphically, we draw the plot of τ and add the grid lines. They split the plane
into (k + 1)2 regions, which are naturally labeled by {(i, j)∶ 0 ≤ i ≤ k,0 ≤ j ≤ k}. The regions (i, j) ∈ µ
are then indicated by shading. An occurrence of m in the plot of π is an occurrence of τ such that the
interiors of shaded regions do not contain any points of π. See [21] for examples and basic results on
mesh patterns. In Section 5, we will work with two mesh patterns, see Figure 26.

If τ1, τ2, . . . , τp are some fixed patterns (of any kind), then we denote by Av(τ1, τ2, . . . , τp) the family of
permutations that avoid all these patterns. A permutation class is any family of permutations that can be
specified by avoidance of one or several patterns.

2.7 Permutation classes

In this section we list some permutation classes which will play a role in our paper.

Separable permutations are defined as the class Av(2413,3142). Alternatively, they can be defined as
permutations that can be recursively constructed from the size-1 permutation by taking direct and skew
sums. The equivalence of the two definitions was proven by Ehrenfeucht and Rozenberg [37], and the
name “separable permutations” was coined by Bose, Buss, and Lubiw [16]. Separable permutations are
enumerated by Schröder numbers, as proven by West [84] via generating trees. For an alternative proof
of this fact, note that the definition of weak guillotine rectangulations and the (second) definition of
separable permutations yield the same recurrence for their enumerating sequences.

Schröder numbers also enumerate various combinatorial structures, for example Schröder paths —
the lattice walks from (0,0) to (2n,0) that use steps (1,1), (2,0), (1,−1) and stay (weakly) above the
x-axis. Closely related to them are little Schröder numbers (OEIS A001003): they were introduced by
Ernst Schröder in the context of counting parenthesizations [69]. Remarkably, little Schröder numbers
were supposedly mentioned in Plutarch’s Table Talk (ca. AD 100) in the context of counting compound
propositions [73].

The generating function of Schröder numbers is algebraic, it is given above in (2). Singularity analysis
readily implies their asymptotics Sn ∼ (1+

√

2)2n+1

23/4
√

πn3
(see [43, note VII.19] and [61, A001003, A006318]).

Baxter permutations are defined as the class Av(2413,3142). They were introduced by Baxter and Joichi
[9, 10] in the context of commuting real functions.

Baxter permutations are enumerated by Baxter numbers (OEIS A001181) given by the explicit formula

Bn =
n

∑
k=1

(n+1
k−1
)(n+1

k
)(n+1

k+1
)

(n+1
0
)(n+1

1
)(n+1

2
)
.

It was first obtained in 1978 by Chung, Graham, Hoggatt, and Kleiman [29]; soon after that Mallows [55]
showed that the term corresponding to fixed k is the number of Baxter permutations with precisely k − 1
descents. Another proof of this formula, via generating trees, was given by Bousquet-Mélou [18]. The
generating function of Baxter numbers is D-finite but not algebraic, and their asymptotics is Bn ∼ 23n+5

n4π
√

3

[29, “pointed out by A. M. Odlyzko”]. We refer to Felsner, Fusy, Noy, and Orden [41] for a comprehensive
survey on combinatorial families enumerated by Baxter numbers and bijections between them.

Twisted Baxter permutations are defined as the class Av(2413,3412), and co-twisted Baxter permu-
tations as the class Av(2143,3142). They are, respectively, the minimum and the maximum of the
congruence classes associated to weak rectangulations [53].

Remark. The four patterns 2413,3412,2143,3142 used in the definition of Baxter, twisted Baxter, and
co-twisted Baxter permutations are known as Baxter-like patterns. Bouvel, Guerrini, Rechnizter and Ri-
naldi [19] and Bouvel, Guerrini and Rinaldi [20] investigated the enumeration of permutation families
defined by avoidance of all possible combinations of these patterns, by means of generating trees. Five
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(out of six possible) pairs of Baxter-like patterns yield permutation classes enumerated by Baxter num-
bers; the exceptional combination is {2143,3412}. Permutations that avoid this pair of patterns were
studied by Asinowski, Barequet, Bousquet-Mélou, Mansour, and Pinter [6]: they constitute the “even
part” of the so-called “complete Baxter permutations”, and they are related to orders between segments
in rectangulations.

2-clumped permutations are defined by Av(24513,42513,35124,35142), and co-2-clumped permuta-
tions are Av(24153,42153,31524,31542). They are, respectively, the minimum and the maximum of the
congruence classes associated to strong rectangulations [66]. The enumerating sequence of these classes
is OEIS A342141, and it was proven by Fusy, Narmanli, and Schaeffer [49] that its generating function
is not D-finite (via the enumeration of transversal structures, which are dual to strong rectangulations).

In Sections 3 and 4, we review and revisit the connection of these classes of permutations with rec-
tangulations, also providing a visual interpretation of the congruence classes associated to weak and
strong rectangulations. Specifically, in Theorems 6 and 7, Baxter, twisted Baxter, and co-twisted Baxter
permutations will be linked to weak rectangulations, and separable permutations to weak guillotine rec-
tangulations; and, in Theorems 14 and 15, 2-clumped and co-2-clumped permutations will be linked to
strong rectangulations.

3 Weak rectangulations

In this section we deal with representation of weak rectangulations by posets and permutations. It has an
expository nature and does not contain any new results, therefore we will present the material, mainly
from [3, 26, 53, 56], rather briefly and without proofs. We include it in order to provide a systematic
summary of all relevant material from different contributions, which makes the comparison with the
case of strong rectangulations especially clear and transparent.

As mentioned in Section 2.4, diagonal rectangulations are considered as canonical representatives of
weak rectangulations. Therefore, posets and permutations associated with weak rectangulations will be
defined via their diagonal representatives.

3.1 The weak poset

We first define the adjacency poset of a rectangulation R. Let the rectangles of R be labeled with the
NW–SE labeling. Then, for two rectangles rj and rk ofR, we define j◁k if rj and rk are adjacent, and rj
is on the left of or below rk. In this case we also say that rj and rk block each other: rk blocks rj from
the top or from the right, and rj blocks rk from the bottom or from the left. The adjacency poset Pa(R)
is the poset on [n] whose order relation is the transitive closure of ◁.

Now, given a weak rectangulation R, its weak poset Pw(R) is defined as the adjacency poset of its
diagonal representative D. This poset was introduced by Law and Reading in [53] and thoroughly
studied in [56] as a special case of Baxter posets.

Note that the adjacency posets of distinct rectangulations weakly equivalent to R may be different.
However, all of them are extensions of the adjacency poset of the corresponding diagonal rectangulation
— that is, extensions of Pw(R). Figure 7 shows the rectangulationR1 and its adjacency poset Pa(R1), as
well as the diagonal representative D1 and the weak poset Pw(R1) = Pa(D1). We draw Hasse diagrams
of the weak poset via the natural embedding by duality, and, therefore, the parents of every vertex occur
in the increasing order from left to right. This representation also implies that the weak poset Pw(R) is
a planar two-dimensional lattice (compare with Proposition 9). Indeed, the planarity is inherited from
the ◁-relation which is an orientation of the dual map of R. The cover relations of Pw(R) are a subset
of the ◁-relations. The bounded faces of the lattice correspond to segments of R that have neighbors
from both sides.

3.2 Mapping γw from permutations to weak rectangulations

Next we describe the fundamental mapping γw, introduced by Law and Reading [53], from the set Sn of
permutations of size n to the set WRn of weak rectangulations of size n.
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Figure 7: Left: Weak rectangulation R1 and its adjacency poset Pa(R1). Right: The corresponding
diagonal rectangulation D1 and its adjacency poset Pa(D1), which is also, by definition, the weak poset
Pw(R1).

Let π ∈ Sn. The corresponding weak rectangulation γw(π) ∈ WRn will be given by its diagonal rep-
resentative. It is constructed by the following forward algorithm that takes an n × n grid square R and
inserts rectangles in the order prescribed by π such that at the end a diagonal rectangulation is obtained.
At each step, a partial rectangulation — the union of already inserted rectangles — is bounded by a
horizontal segment from the bottom, a vertical segment from the left, and a monotonically decreasing
staircase from the top-right. It is also convenient to adjoin two fictitious rectangles r0 and rn+1 that oc-
cupy respectively the column to the left of the grid, and the row below the grid. Accordingly the staircase
is extended horizontally at its top-left end, and vertically at its bottom-right end. The turning points of
the staircase are referred to as peaks and valleys . Every peak is labeled according to the rectangle
incident to it within the partial rectangulation.

Algorithm WF (weak forward): Permutations to weak rectangulations.
Input: Permutation π = π1π2 . . . πn ∈ Sn.
Output: Weak rectangulation R = γw(π).

1. Draw an n × n square grid R, and label its diagonal cells by 1,2, . . . , n from the top-left to the
bottom-right corner. Amend them by an auxiliary rectangle r0 in the column to the left of the
grid, and an auxiliary rectangle rn+1 in the row below the grid.

2. Initialize the staircase to be the union of the left side and the bottom side of R, extended by
a horizontal unit-segment at the beginning, and a vertical unit-segment at the end. Initialize
the set of its peaks to be P ∶= {0, n + 1}.

3. For i from 1 to n, with j = πi:
Insert rectangle rj according to the following rules.

• The bottom-left corner of rj is the valley delimited by the two consecutive peaks of P
with labels a and b such that a < j < b.

• If all rectangles rk with a < k < j have already been inserted, then the top side of rj aligns
with the top side of ra. In this case, a is deleted from P . Otherwise, the top side of rj is
contained in the horizontal grid line that separates rows j − 1 and j.

• If all rectangles rk with j < k < b have already been inserted, then the right side of rj
aligns with the right side of rb. In this case, b is deleted from P . Otherwise, the right side
of rj is contained in the vertical grid line that separates columns j and j + 1.
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• Update the staircase by replacing the union of left and bottom sides of rj with the union
of its top and right sides. Add j to P .

An example of executing this algorithm is shown in Figure 8.

3.3 Fibers

The mapping γw is surjective but not injective. Given a weak rectangulation R of size n, one can recover
all permutations π ∈ Sn such that γw(π) =R by applying the following backward algorithm which in fact
reverses Algorithm WF. Here, a rectangle rj of a partial rectangulation R̃ is available if it is not blocked
from top or from right by some other rectangle of R̃ — that is, if there is no rectangle rk of R̃ such that
j ◁ k.

Algorithm WB (weak backward): Weak rectangulations to permutations.
Input: Weak rectangulation R ∈WRn.
Output: A permutation π ∈ Sn such that π ∈ γ−1w (R).

1. Consider D, the diagonal representative R.

2. Label the rectangles of D by the NW–SE labeling.

3. For i from n to 1:
Remove an available rectangle rj . Set πi = j.

Given a poset P , denote the set of its linear extensions by L(P ). The following results are shown
in [53, Section 6].

Proposition 5. Let R be a weak rectangulation.

1. At every step of Algorithm WB there is at least one available rectangle.

2. The set of permutations that can be generated by Algorithm WB is precisely the fiber γ−1w (R).

3. It is also the set of linear extensions of the weak poset of R:

γ−1w (R) = L(Pw(R)).

Figure 8, read backwards, demonstrates how π is obtained by Algorithm WB as one of the preimages
of D1. According to Proposition 5, the permutations that can be obtained in this way are precisely the
linear extensions of the poset Pw(R) from Figure 7.

Finally, we remark that both algorithms can be performed from the opposite corner: in the forward
algorithm one can start inserting rectangles from the top-right corner, and in the backward algorithm
one can start removing rectangles from the bottom-left corner, with obvious adjustments of the rules. In
both cases, the modified algorithms lead to the same results.

3.4 Baxter, twisted Baxter, and co-twisted Baxter permutations

By Proposition 5, there is a bijection between WRn and a family of posets on [n], and the linear extensions
of all these posets cover the entire Sn. Then we have Theorem 6 concerning distinguished elements of
L(Pw(R)), and Theorem 7 concerning bijective restrictions of γw to some permutation classes mentioned
in Section 2.7. These results were proven in several contributions, including [3, 26, 53, 56].

Theorem 6. Let R be a weak rectangulation, with its rectangles labeled by the NW–SE labeling. Then:

1. L(Pw(R)) contains a unique twisted Baxter permutation. It is the minimum element of L(Pw(R))
with respect to the weak Bruhat order.

2. L(Pw(R)) contains a unique co-twisted Baxter permutation. It is the maximum element of L(Pw(R))
with respect to the weak Bruhat order.
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Figure 8: Constructing γw(π) for π = 7 5 14 8 1 6 15 11 4 10 16 2 9 13 3 12. At each step, the
inserted rectangle is blue, and the rectangles incident to the adjacent peaks are grey.
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3. L(Pw(R)) contains a unique Baxter permutation. It is obtained by reading the labels of the rectangles
of R in the SW–NE (anti-diagonal) order.

Theorem 7. The mapping γw restricts to three bijections between weak rectangulations and permutation
classes:

1. A bijection βTB between weak rectangulations and twisted Baxter permutations;

2. A bijection βCTB between weak rectangulations and co-twisted Baxter permutations;

3. A bijection βB between weak rectangulations and Baxter permutations.

Moreover, the bijection βB restricts to a bijection βS between weak guillotine rectangulations and separable
permutations.

Note that, given Proposition 5, the three items of Theorem 6 imply the corresponding items of Theo-
rem 7. Hence we only have to care of Theorem 6. Since Pw(R) forms an interval in the weak Bruhat
order, the minimum (respectively maximum) of this interval can be obtained by iteratively choosing and
deleting the leaf with the smallest (respectively largest) label. Since the leaves (current minima) have
increasing labels from left to right in the “embedded” Hasse diagram of Pw(R), this corresponds to prun-
ing the leftmost (respectively rightmost) leaf at every step. Hence, we also refer to the minimum and the
maximum elements of L(Pw(R)), with respect to the weak Bruhat order, as the leftmost and the right-
most linear extensions of Pw(R). We will denote them by πL and πR. Then Theorem 6(1,2) says that the
twisted Baxter and the co-twisted Baxter representatives of Pw(R) are precisely πL and πR. These two
linear extensions are a realizer of the 2-dimensional poset Pw(R), which (as mentioned in Section 3.1)
is a planar lattice. Figure 9 shows the twisted Baxter, co-twisted Baxter, and Baxter representatives of
Pw(R1).

Baxter:
7 14 15 16 8 5 6 1 4 11 10 9 2 3 13 12

co-twisted Baxter:
7 14 15 16 8 11 13 10 5 6 1 4 9 2 3 12

twisted Baxter:
7 5 1 14 8 6 4 2 11 10 9 3 15 16 13 12

Figure 9: The twisted Baxter, co-twisted Baxter, and Baxter representatives of Pw(R1).

4 Strong rectangulations

In this section, we consider strong rectangulations. The set of strong rectangulations of size n will be
denoted by SRn. We first discuss their representation by posets and permutations, similarly to the weak
case. We define the strong poset of a rectangulation, Ps(R), and a surjective mapping γs from Sn to SRn.
The fibers of this mapping define equivalence classes of permutations, which are exactly the linear ex-
tensions of the strong poset. In these fibers, we identify two particular representatives — 2-clumped
and co-2-clumped permutations, both in bijection with strong rectangulations. This part includes an
alternative treatment of results from [66]: in particular, our descriptions of Ps(R) and γs lead to a
simple geometric proof of the bijections. The new proof makes the correspondence between patterns in
rectangulations and patterns in permutations more transparent, additionally, it simplifies the identifica-
tion of the flip graph of strong rectangulations, and it is well suited to encode strong rectangulations by
quadrant walks.
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4.1 The strong poset

Let R be a strong rectangulation of size n. Label the rectangles of R with their NW–SE labeling. We set
a◀ b if one of the following four conditions hold:

1. adjacency relations (earlier denoted by ◁ and also called blocking):

a) ra and rb are adjacent, and ra is on the left of rb,

b) ra and rb are adjacent, and ra is below rb;

2. special relations (see Figure 10):

a) the right side of rb lies on the same vertical segment as the left side of ra, and the bottom-right
corner of rb lies above the top-left corner of ra on this segment,

b) the top side of rb lies on the same horizontal segment as the bottom side of ra, and the top-left
corner of rb lies on the right of the bottom-right corner of ra on this segment.

a

ab

b
x

y x

y

Figure 10: The special relations in the definition of the strong poset. In both cases, we have a◀ b.

As above, the adjacency poset Pa(R) is the transitive closure of the adjacency relation ◁. Now, let ≺s
be the transitive closure of ◀. Note that the special relations 2a and 2b yield an extension of Pa(R).

Proposition 8. The relation ≺s is a partial order on [n].

Proof. To prove that ≺s is acyclic, we show that there is a linear order λ on the rectangles of R which
respects the relations of ≺s, and such that the union of rectangles in any prefix of λ is a staircase. The
order λ is constructed element by element. Consider the staircase formed by the taken elements, and
let b1, . . . , bk be the labels of the rectangles of R whose bottom-left corners correspond to a valley of the
staircase, listed in the left-to-right order. Note that the left side of b1 is contained in the staircase. If rb1
is a minimal non-taken element with respect to ≺s — that is, there is no other non-taken element a such
that a ≺s b1 — then we select rb1 as the next element for λ: after that, the taken elements still form a
staircase. Otherwise, there is an a such that a◁ b1 or a◀ b1 due to a special relation. If we have a◁ b1,
then the bottom side of rb1 extends beyond the peak that separates the valleys for rb1 and rb2 in the
staircase. If a◀ b1 due to a special relation, then the peak that separates the valleys for rb1 and rb2 in the
staircase is the bottom-right corner of rb1 . In both cases we see that b2 ≺s b1, and the left side of rb2 is
contained in the staircase. Iterating, we obtain a maximum length chain bℓ ≺s bℓ−1 ≺s . . . ≺s b2 ≺s b1, and
the left sides of all rbj for 1 ≤ j ≤ ℓ are contained in the staircase. The bottom side of rbℓ is contained in
the staircase, since otherwise we have bℓ+1 ≺s bℓ. Hence, rbℓ is a minimal element which can be added to
λ, such that the remaining elements form a staircase.

We refer to ≺s as the strong order, and refer to the set [n] partially ordered with respect to ≺s as the
strong poset Ps(R) = ([n],≺s) of R. In Figure 11 we show how the strong poset Ps(R1) is obtained in
two steps from the weak poset Pw(R1): first, new adjacencies obtained by shuffling yield Pa(R1), the
adjacency poset of R1, and then the special relations yield the strong poset Ps(R1).

Proposition 9. The strong poset Ps(R) is a planar two-dimensional lattice.

Proof. It is known that planar bounded posets are two-dimensional lattices (see for instance Baker, Fish-
burn, and Roberts [8]). It therefore suffices to prove that Ps(R) is planar. For this, we consider the
planar drawing of the adjacency graph of the rectangles of R obtained by choosing a point in each rect-
angle and connecting points in adjacent rectangles by an arc that intersect corresponding edges of the
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Figure 11: Hasse diagrams of three posets associated with R1. Left: Solid black edges form Pw(R1),
the weak poset of R1 (or: Pa(D1) the adjacency poset of D1); dashed grey edges are new adjacencies
contributed by shuffling D1 into R1. Middle: Solid black edges form Pa(R1), the adjacency poset of R1;
dashed grey edges are contributed by special relations. Right: Ps(R1), the strong poset of R1.

rectangulation. When oriented from left to right and from bottom to top, these edges give all arcs that
correspond to adjacency conditions 1a and 1b. Next, we remove all the edges implied by transitivity and
obtain the diagram of the adjacency poset. It remains to show that the arcs corresponding to the special
relations 2a and 2b can be added without creating crossings. For this, we need two observations:

• Every covering special relation is associated with an edge of the rectangulation: a vertical edge
that connects the top-left corner of ra and the bottom-right corner of rb or a horizontal edge that
connects the bottom-right corner of ra and the top-left corner of rb (refer to Figure 10). Hence,
if we need to draw an arc between two such rectangles ra and rb, then these two rectangles are
separated by a single edge s.

• The two rectangles rx and ry that share edge s are not in the covering relation of the adjacency
poset: their adjacency order x ≺ y is implied by transitivity. Indeed, referring again to Figure 10,
we have either that rx is below rb which is left of ry (special relation 2a), or rx is above rb which is
right of ry (special relation 2b). Hence, we can draw the corresponding arc from ra to rb without
crossing another arc.

These two observations allow us to draw the arcs corresponding to the special relations without creating
crossing arcs. Together with the arcs corresponding to the adjacency conditions 1a and 1b, they yield
a planar drawing of the Hasse diagram of the strong poset. See Figure 12 for an example.

4.2 Mapping γs from permutations to strong rectangulations

In [66], Reading defined a mapping γ from Sn to SRn, whose restriction yields a bijection between
2-clumped permutations and strong rectangulations. His construction of γ(π) consists of two steps:
first, one constructs the weak rectangulation corresponding to π — what we denote by γw(π). Then,
one shuffles the neighbors of every segment s according to the order in which the labels of rectangles
adjacent to s occur in π.

In this section we offer an alternative description of γ (which we denote by γs), which consists of just
one step and uses a modification of Algorithm WF. Our description emphasizes both the parallelism and
the difference between the weak and the strong cases, thus contributing to better understanding of both
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(a) (b)

Figure 12: Illustration to the proof of Proposition 9. (a) The Hasse diagram of Pa(R1), the adjacency
poset of R1. (b) Solid arcs form the Hasse diagram of ≺s (the blue arcs are contributed by special
relations). The dashed grey arcs belong to Pa(R1), but in Ps(R1) they are implied by transitivity.

kinds of equivalence. It also leads to very transparent and descriptive proofs concerning the structure of
the strong posets and their linear extensions.

We define the mapping γs∶Sn → SRn via a forward algorithm that constructs the rectangulation incre-
mentally: we read the permutation π = π1π2 . . . πn from left to right, and insert the rectangle with label
j = πi successively, for i = 1,2, . . . , n. The following invariants hold at every step.

1. The partial rectangulation is bounded by a horizontal segment from the bottom, a vertical segment
from the left, and a monotonically decreasing staircase from the top-right. Similarly to the weak
case, we imagine fictitious thin rectangles r0 and rn+1 respectively to the left of the left boundary,
and below the bottom boundary, and accordingly we extend the staircase horizontally at its top-left
end and vertically at its bottom-right end. We refer to the turning points of the staircase as peaks

and valleys .

2. The labels of the rectangles corresponding to the peaks are in increasing order from top-left to
bottom-right, with labels of consecutive peaks differing by at least 2.

Algorithm SF (strong forward): Permutations to strong rectangulations.
Input: Permutation π = π1π2 . . . πn ∈ Sn.
Output: Strong rectangulation R = γs(π).

1. Initialize the staircase to be made of two peaks, of labels 0 and n + 1, and one valley. The set
P of peaks is thus {0, n + 1} initially.

2. For i from 1 to n, with j = πi:
Insert rectangle rj according to the following rules.

• The bottom-left corner of rj is the valley delimited by the two consecutive peaks of P
with labels a and b such that a < j < b.

• If all rectangles rk with a < k < j have already been inserted, then the top side of rj aligns
with the top side of ra, and a is removed from P . Otherwise, the top side of rj forms a
with the right side of ra.

• If all rectangles rk with j < k < b have already been inserted, then the right side of rj
aligns with the right side of rb, and b is removed from P . Otherwise, the right side of rj
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forms a with the top side of rb.

• Update the staircase by replacing the union of left and bottom sides of rj with the union
of its top and right sides. Add j to P .

It is straightforward to verify that the algorithm maintains the invariants above, that it produces a rec-
tangulation, and that the labeling of the rectangles is the NW–SE labeling. Algorithm SF is schematically
illustrated in Figure 13, and an example of its execution for a permutation of size n = 16 is given in
Figure 14. The four cases of placements in the Algorithm correspond to the four cases considered by
Takahashi, Fujimaki, and Inoue [78] in their encoding procedure, and by Françon and Viennot [44] in
the proof of their Theorem 2.2 (the current valleys of the partial rectangulation correspond to the current
gaps in their iterative encoding of π−1).

a

b

j
a

b

j j j
a

b

a

b

Figure 13: Illustration of the four cases in Algorithm SF. The rectangle with label j is inserted between
the peaks of labels a and b such that a < j < b. The top (right) sides of rj are extended, respectively,
upwards (to the right) to align with ra (with rb) if all rectangles with intermediate labels have already
been inserted.

4.3 Fibers

Given a strong rectangulation R of size n, we now describe a method to recover any permutation π ∈ Sn

such that γs(π) = R. This method iteratively removes rectangles, starting from the top right rectangle,
and ending with the bottom left rectangle, and constructs a permutation π “from right to left”. As in
Algorithm WB, we first label the rectangles of R by the NW–SE labeling. However, in this case the
definition of available rectangles is slightly more involved. Let R̃ be the partial rectangulation of the not
yet taken rectangles, the choice of rectangles deleted at each step maintaining the property that its top-
right boundary is a staircase. Precisely, a rectangle rℓ in R̃ is called available if it satisfies the following
conditions, where by convention the top-left corner of R is a , and the bottom-right corner is a :

• The top side and the right side of rℓ are entirely contained in the staircase.

• The top-left corner of rℓ has the shape ; or it has the shape , and the rectangle adjacent to this
point from left contains the previous peak.

• The bottom-right corner of rℓ has the shape ; or it has the shape , and the rectangle adjacent to
this point from bottom contains the next peak.

Algorithm SB (strong backward): Strong rectangulations to permutations.
Input: Strong rectangulation R ∈ SRn.
Output: A permutation π ∈ Sn such that π ∈ γ−1s (R).

1. Label the rectangles of R by the NW–SE labeling.
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Figure 14: Constructing γs(7 5 14 8 1 6 15 11 4 10 16 2 9 13 3 12). At each step, the inserted
rectangle is blue, and the rectangles incident to the adjacent peaks are grey.
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2. For i from n to 1:
Remove any available rectangle rj , and set πi = j.

The next results show the validity of Algorithm SB.

Lemma 10. The set of permutations that can be constructed by Algorithm SB is exactly γ−1s (R).

Proof. At every step of the execution of the forward algorithm, the last rectangle that has been inserted
is by definition available among the rectangles that have already been inserted. Conversely, an available
rectangle removed by the backward algorithm is one that could have been inserted by the forward
algorithm in the same situation. Hence any execution of the forward algorithm can be mirrored to yield
a sequence of rectangles removed by the backward algorithm, and vice versa.

Then, the following determines precisely how the structure of Algorithms SF and SB is connected with
the strong poset. Recall that a subset S of the poset Ps(R) is a downset if it is closed for the relation ≺s,
hence if x ∈ S and y ≺s x, then y ∈ S.

Lemma 11. At every step of Algorithm SB, the set of labels of the remaining rectangles is a downset of
Ps(R), and a rectangle rj is available if and only if j is maximal with respect to ≺s in that set.

Proof. We first observe that rj is available if and only if none of the remaining rectangles rk satisfies
k ≻s j. Indeed, if rj is available, then the remaining rectangles rk can touch neither the top nor the
right side of rj , and from the definition of availability, cannot be located as a in the special relations
shown in Figure 10. Conversely, if there is no rectangle rk such that k ≻s j, then rj is available. Since
the backward algorithm removes an available rectangle at each step, the set of remaining rectangles is
always a downset of Ps(R).

Lemma 11 implies the following analogue of Proposition 5.

Proposition 12. LetR be a strong rectangulation of size n. Then the fiber γ−1s (R) is exactly the set of linear
extensions of Ps(R):

γ−1s (R) = L(Ps(R)).

Recall that the skeleton graph Gn of the permutahedron is the graph on Sn with edges corresponding
to adjacent transpositions. This graph can also be viewed as the cover graph of the weak Bruhat order
on Sn. From Proposition 9, we know that Ps(R) is a planar two-dimensional lattice. A realizer of size
two of Ps(R) is given by the pair {πL, πR} where πL is the leftmost and πR is the rightmost linear
extension (the definition of the leftmost and the rightmost linear extensions was given in Section 3.4).
This implies that the set L(Ps(R)) of linear extensions is the convex set spanned by πL and πR in Gn,
i.e., the set of permutations that belong to shortest πL, πR paths in Gn (see for instance Theorem 6.8 in
Björner and Wachs [14], or Felsner and Wernisch [42]). Due to the NW–SE labeling ofR we know that if
a, b is an incomparable pair then a is left of b in Ps(R) if and only if a < b in the labeling. Hence πL is the
element of L(Ps(R)) with minimal set of inversions and πR is the one with maximal set of inversions.
This implies the following:

Proposition 13. Given a strong rectangulation R, the set L(Ps(R)) of linear extensions of its strong poset
induces an interval in the weak Bruhat order on Sn.

In the next section, we describe the maximum and the minimum of these intervals.

4.4 2-clumped and co-2-clumped permutations

Recall that the class of 2-clumped permutations is defined as Av(24513,42513,35124,35142), and the
class of co-2-clumped permutations is defined as Av(24153,42153,31524,31542). The following two
theorems were proven by Reading in [66].

Theorem 14. Let R be a weak rectangulation, with its rectangles labeled by the NW–SE labeling. Then:

1. L(Ps(R)) contains a unique 2-clumped permutation. It is πL — the minimum (the “leftmost”) element
of L(Ps(R)) with respect to the weak Bruhat order.
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2. L(Ps(R)) contains a unique co-2-clumped permutation. It is πR — the maximum (the “rightmost”)
element of L(Ps(R)) with respect to the weak Bruhat order.

Theorem 15. The mapping γs restricts to two bijections between strong rectangulations and permutation
classes:

1. Bijection β2C between strong rectangulations to 2-clumped permutations;

2. Bijection βC2C between strong rectangulations to co-2-clumped permutations;

As in the weak case, given Proposition 12, the two items of Theorem 14 imply the corresponding items
of Theorem 15. Also similarly to the weak case, one can easily obtain πL and πR by repeated pruning
the leftmost (respectively, the rightmost) leaf of the Hasse diagram of Ps(R). Figure 15 shows πL — the
2-clumped representative, and πR — the co-2-clumped representative of Ps(R1).

2-clumped:
7 5 1 14 8 6 15 11 4 2 10 9 16 13 3 12

co-2-clumped:
7 14 5 8 15 1 6 11 16 4 10 2 9 13 3 12

Figure 15: The 2-clumped and the co-2-clumped representatives of Ps(R1).

Below, we provide an alternative proof of Theorems 14 and 15. Our proof consists of a sequence
of lemmas (16, 17, 18), and emphasizes the correspondence between patterns in rectangulations and
patterns in permutations. In both cases we prove the part about 2-clumpled permutations; the part about
co-2-clumpled permutations then follows by symmetry (Observation 19) — which can also be seen from
the characterization of the congruence classes associated to strong rectangulations in [66, Prop 2.2(2)].

Lemma 16. Let πL be the leftmost linear extension of Ps(R). Then the pattern 2413 occurs in πL if and
only if the pattern occurs in R.

Proof. (⇒) Suppose that the pattern appears in πL in the form bdac, where a < b < c < d and d and a
appear consecutively. Since πL is the leftmost linear extension, we necessarily have d ≺s a, otherwise a
would occur in πL earlier than d. Just after taking rd, the rectangle ra is available: hence, there is
a segment s which contains either the bottom side of ra and the top side of rd (a possible configuration
is shown in Figure 16(a)), or the right side of ra and the left side of rd, in which case the bottom-right
corner of ra is higher then the top-left corner of rd, as shown in Figure 16(b).

If s is horizontal (case (a)), then, by Observation 1(1) (refer also to Figure 4), all the rectangles rx
with a < x < d lie in the union of two regions (shown by green and blue in Figure 16(a)) delimited by
the NE and SW alternating paths of ra and rd. Since πL contains the pattern bdac, the rectangle rb lies in
the green region, and the rectangle rc in the blue region. However, considering the SW alternating path
of such rc, we see that the entire green region is below rc, and, hence, c < b, which is a contradiction.
Therefore, we necessarily have case (b), and this configuration contains the pattern .
(⇐) Suppose that R contains the pattern . Denote by s the vertical segment, and by ra and rd two

rectangles contributing to the pattern as in Figure 16 (b). Let b be the lowest rectangle touching s from
the left, and c the highest rectangle touching s from the right, see Figure 17(a). We have a < b < c < d,
and also c = b + 1. Then, in any linear extension π of Ps(R), we have the pattern 2413 realized as bdac
with c = b+ 1. It is well known that such a pattern implies an occurrence of 2413: to see that, note that π
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Figure 16: The two possibilities for a covering pair d ≺s a with a < d in πL.

has two consecutive letters d′a′, with d′ weakly on the right of d, and a′ weakly on the left of a, such that
d′ > c and a′ < b, see Figure 17(b). Then bd′a′c is an occurrence of 2413.

Remark. In the proof of (⇐) we did not use the assumption that πL is the leftmost linear extension.
Therefore, in fact, a stronger result holds: If R contains , then any preimage of R contains 2413.

a

d

b

a

b
c = b+ 1

dc = b+ 1

(a) (b)

Figure 17: (a) The relative position of the rectangles ra, rb, rb+1, rd in the proofs of Lemmas 16 and 17.
(b) An occurrence bdac of 2413, where c = b + 1, implies an occurrence of 2413.

Lemma 17. The leftmost linear extension πL of Ps(R) is 2-clumped.

Proof. Assume for the sake of contradiction that πL contains one of the four patterns 24513, 42513,
35124, 35142 forbidden in 2-clumped permutations. Then, clearly, πL contains 2413. Then, similarly to
the proof of (⇒) in Lemma 16, the pattern appears in R, realized by four rectangles ra, rb, rc, rd with
labels a < b < c < d. Using the argument symmetric to that shown in Figure 17(b), we can assume that
c = b + 1, and the four rectangles are in the relative position as shown in Figure 17(a).

Consider the possible completions of this occurrence of 2413 to one of the two patterns 24513 or 42513.
It follows that there is a rectangle rx that yields an occurrence of bxdac or xbdac in πL, with a, b, c, d fixed
as above and c < x < d. Then, the condition c < x < d implies that rx lies in the region (shown by blue)
delimited by the rectangles rc, rd, the segment s, and the NE alternating paths of rc and rd (note that
the SW alternating path of rd is included in that of rc). However, rx is inserted earlier than rd, and must
lie below the staircase obtained just before inserting rd. Since the blue region is above such a staircase,
it is not possible to place rx so that an occurrence of 42513 or 24513 will be created. One can show with
a symmetric argument that the occurrence of the pattern 2413 can neither be completed to an occurrence
of 35142 nor 35124. Therefore, πL must be a 2-clumped permutation.

In order to show that the fibers of γs, hence the strong rectangulations, are in bijection with 2-clumped
permutations, we need to prove that the leftmost linear extension is the unique 2-clumped one.

Lemma 18. If a linear extension π of Ps(R) is not the leftmost linear extension, then it is not 2-clumped.

Proof. Since π /= πL, there are two indices i and j with i < j such that πi and πj are both minima of the
poset induced by πi, . . . , πn and πj < πi. By looking at the elements between πi and πj we find an index ℓ
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Figure 18: The two cases in the proof of Lemma 18.

with i ≤ ℓ < j such that πℓ+1 < πℓ and such that πℓ and πℓ+1 are both minima of the poset induced by
πℓ, . . . , πn.

Let a = πℓ+1 and e = πℓ. Note that a and e are incomparable in Ps(R). Consider the rectangles of
R with labels in the prefix π1 . . . πℓ−1 of π: They form a staircase such that the rectangles ra and re are
in two valleys, the one for ra before the one for re along the staircase. We consider this staircase and
distinguish two cases, see Figure 18.

First, if there is a valley between the valleys occupied by ra and re, then the bottom side of ra and the
left side of re belong to two segments forming two peaks belonging to two different rectangles rb and rd
with a < b < d < e. Consider the next rectangle rc to be inserted in a valley between those occupied by ra
and re. Due to the NW–SE labeling, we have b < c < d, and in π we first have b and d in any order, then
consecutively ea, and finally c. This yields an occurrence of one of the two forbidden patterns 24513 and
42513.

Now suppose that the rectangles ra and re are inserted in consecutive valleys. Let rc be the rectangle
forming the peak between the valleys of ra and re. We claim that neither ra nor re extend to the top-right
corner of rc. Indeed, if re extends to the top-right corner of c, then we have a ≺s e due to the special
relations; and similarly, if ra extends to the top-right corner of rc, then e ≺s a. Both are impossible since
a and e are incomparable in Ps(R). Hence, adding ra and re to the staircase makes two valleys, one on
each side of rc. Let rb and rd be the rectangles filling these valleys. From the order along the staircase
we obtain a < b < c < d < e, while in π we first have c then consecutively ea, and finally b and d in any
order. This yields one of the other forbidden patterns 35124 and 35142.

Lemmas 16, 17 and 18 together imply Theorems 14(1) and 15(1).

Given a permutation π in Sn, its complement π̄ is the permutation whose ith component is π̄i = n+1−πi.
Note that the forbidden patterns of co-2-clumped permutations are the complements of the forbidden
patterns of 2-clumped permutations.

The following fact is a direct consequence of the symmetry of the forward algorithm.

Observation 19. The rectangulation R̄ = γs(π̄) is symmetric to R = γs(π) with respect to the SW–NE
diagonal.

Since the rightmost linear extension of Ps(R) is the complement of the leftmost linear extension of
Ps(R̄), it must forbid the complements of the forbidden patterns for the 2-clumped permutations. There-
fore, the rightmost linear extension πR of Ps(R) is co-2-clumped, and if a linear extension π of Ps(R)
is not the rightmost linear extension, then it is not co-2-clumped. Hence co-2-clumped permutations are
exactly the maxima, in the weak Bruhat order, of the intervals γ−1s (R), and they are bijective to strong
rectangulations as well. This completes the proof of Theorem 14 and 15.

Remark. Combining Theorem 15 with Lemma 16, we observe that γs specializes into a bijection from
permutations that avoid 2413 — the semi-Baxter permutations — to rectangulations that avoid . By
duality [49, Sec.2.4], rectangulations of size n avoiding are in bijection with plane bipolar posets with
n + 2 vertices, which are in a simple bijection [49, Sec.5] with permutations of size n that avoid 2143
(plane permutations). Plane permutations are shown in [19] to be in bijection with semi-Baxter permu-
tations, but the bijection is recursive (it proceeds via generating trees). Via rectangulations avoiding
we have a more geometric bijection between these two permutation classes.

24



Moreover, by symmetry, γs specializes into a bijection from permutations avoiding 3142 to rectan-
gulations avoiding . So γs specializes into a bijection from Baxter permutations to rectangulations
avoiding and , which identify with weak rectangulations (and are realized by the anti-diagonal
representation), and we recover the bijection from [3] between Baxter permutations and weak rectan-
gulations.

4.5 The flip graph on strong rectangulations

We briefly recall the notion of lattice congruence, and refer to Reading [65] for a specific treatment of
congruences of the weak Bruhat order. An equivalence relation ≡ on the set of elements of a lattice
(L,∧,∨) is said to be a lattice congruence if it behaves consistently with respects to joins and meets,
hence if x ≡ x′ and y ≡ y′, then x ∧ y ≡ x′ ∧ y′, and x ∨ y ≡ x′ ∨ y′. In that case, one can define the
quotient of the lattice on the congruence classes, such that the order as well as the meet and the join of
two classes is defined respectively by the order, the meet, and the join in L of any two representatives
of the classes. The lattice quotient can also be shown to be isomorphic to the lattice induced in L by
the minimal element of each congruence class. It is known that the equivalence classes of permutations
defined by the fibers of γs form a lattice congruence.

Theorem 20 (Reading [66]). Consider the equivalence relation ≡ on Sn defined by

π ≡ σ⇔ γs(π) = γs(σ).

Then ≡ is a lattice congruence of the weak Bruhat order ≺ on Sn.

In particular, the partial order induced by the weak Bruhat order on these equivalence classes is a lat-
tice. The cover graph of this lattice is a graph with vertex set SRn. Meehan [56] described the edges
of this graph as local operations on the rectangulations, so that two rectangulations are adjacent if and
only if they differ by such an operation. These operations are called flips, and the cover graph of the
lattice on SRn is called the flip graph on SRn. This is in perfect analogy with the well-known flip graph
on triangulations of a convex polygon defined by the Sylvester congruence [79], and the flip graph on
diagonal rectangulations defined by the Baxter congruence [53]. These flip graphs happen to be skele-
tons of polytopes: Flip graphs on triangulations, for instance, are skeletons of associahedra [72, 63].
A remarkable result by Pilaud and Santos allow us to make the same statement for the flip graph on
strong rectangulations.

Theorem 21 (Pilaud and Santos [62]). For any lattice congruence ≡ of the weak Bruhat order on Sn, the
cover graph of the quotient of the weak Bruhat order by ≡ is the skeleton of a polytope.

Our algorithm describing the mapping γs allows us to identify the flip operations defining the graph
of this strong rectangulation polytope.

Theorem 22. The flip graph on the set of strong rectangulations SRn is described by the flip operations of
Figure 19.

Proof. Observe that if we consider two permutations π and π′ differing by one adjacent transposition,
then either π ≡ π′ or, by definition of a lattice congruence, γ(π) and γ(π′) are in a cover relation in the
lattice quotient, hence γ(π) and γ(π′) differ by a flip. It therefore suffices to inspect all changes in the
rectangulation γ(π) that can occur when two adjacent entries of π are transposed.

Recall that the forward algorithm reads the input permutation π = π1π2 . . . πn from left to right, and
at each step t, inserts the rectangle rπt , with label πt. Consider two successive steps of the algorithm,
involving πt = i and πt+1 = j. Suppose, without loss of generality, that i < j. There are five possible ways
that the rectangles change placement after the transposition of i and j, which are illustrated in Figure 19.
Note that in this figure, the grey regions cannot intersect any edge of the rectangulation. This follows
from the way that the rectangles ri and rj , as well as any rectangle processed later, are inserted by the
forward algorithm. In all five cases, the transformation in R is of one of three types of flips: pivoting
flips, simple flips, and wall slides.

Conversely, if such an operation is possible in a rectangulation R, then there is an execution of the
forward algorithm such that the two rectangles involved are inserted consecutively. One can, for instance,
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Figure 19: Flips in strong rectangulations that correspond to cover relation in the lattice of strong rec-
tangulations. These are obtained by considering the changes that occur in the rectangulations when the
forward algorithm is applied on two permutations that differ by the adjacent transposition of i and j. In
all five situations, the shaded regions cannot intersect any edge of the rectangulation, by the definition
of the mapping γs.

consider the downset Si,j ⊂ [n] of labels ℓ such that either ℓ ≺s i, or ℓ ≺s j, and consider any linear
extension of (Si,j ,≺s). By Proposition 12, running the forward algorithm on this prefix of a permutation
leads to a situation in which we can insert either ri or rj , and the flip can be implemented.

4.6 Quadrant walk encoding and enumeration

From the definition of the forward algorithm, we can now establish bijections between families of strong
rectangulations and families of quadrant walks (we also discuss how the method adapts in the weak
case).

For a point p = (x, y) in the quadrant N2, the level of p is h(p) ∶= x + y. We define a history quadrant
walk as a sequence of points (x, y) in the quadrant N2, each point having a color in {black, red, green,
white}, such that for any two consecutive points p, p′ of the sequence:

• if p is black, then h(p′) = h(p) + 1,

• if p is red or green, then h(p′) = h(p),

• if p is white, then h(p′) = h(p) − 1.

Such a walk is called closed if the final point is at the origin and is white; it is called an excursion if it is
closed and starts at the origin.

For π a permutation of size n, with R = γs(π) the rectangulation produced from π by the forward
algorithm, the corresponding quadrant history is the history quadrant excursion (with n points) where
each rectangle addition yields a point as shown in Figure 20. See also Figure 21 for a complete example.

Remark. A bicolored Motzkin excursion is a Motzkin excursion (walk with steps in {(1,1), (1,0), (1,−1)},
starting at the origin, staying in {y ≥ 0}, and ending on the line {y = 0}) where each horizontal step
is colored either red or green, it is decorated if each point of the excursion is assigned an integer x
between 0 and its height. For π a permutation of size n, the quadrant history σ of (π,R = γ(π)) can be
encoded by a decorated bicolored Motzkin excursion (of length n − 1), where the successive heights in
the Motzkin excursion are given by the sequence of levels of points in σ, the horizontal steps are colored
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if the type of added
rectangle is. . .

Figure 20: Rule for inserting a colored point in the quadrant, corresponding to inserting a rectangle by
the forward algorithm.
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π = 3 2 6 4 1 7 5

(0,0) (0,1) (1,0) (1,1) (0,2) (1,0) (0,0)

Figure 21: A permutation π, and the associated quadrant history σ, which is built jointly with the rectan-
gulation R produced by the forward algorithm (note that π is not needed to build R from σ).

as the initial point of the corresponding step in σ, and the assigned integers are given by the abscissas of
points in σ. One can check that this decorated bicolored Motzkin excursion is the one associated to the
permutation π−1 by the Françon-Viennot bijection [44].

A history quadrant walk is called leftmost if, for any two consecutive points p, p′:

• if the color of p is in {black,red} and the color of p′ is in {black,green}, then x(p′) ≥ x(p),

• otherwise, x(p′) ≥ x(p) − 1.

r

if next is or

r

if next is or

r r

Figure 22: If the last inserted rectangle r is the current rightmost available rectangle, the figure indicates
for each valley whether the insertion of a rectangle r′ at that valley makes r′ the new rightmost available
rectangle (purple) or not (orange). As shown, when r is of black or red type, there is a mixed valley to
the left of r, where r′ is allowed to be inserted only if it is red or white (indeed, in that case, r is not
available anymore after inserting r′).
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As shown in [51] (in different but equivalent terms) and illustrated in Figure 22, the quadrant history
of a pair (π,R = γ(π)) is leftmost if and only if π is the leftmost linear extension of Ps(R), that is, at any
step, the last added rectangle is the rightmost available rectangle. We therefore obtain the following.

Proposition 23. Leftmost history quadrant excursions of length n−1 (hence having n points) are in bijection
with rectangulations of size n, and with 2-clumped permutations of size n.

The above characterization can be turned into a recurrence for counting these walks, and gives
an efficient procedure for counting rectangulations [51] (other polynomial-time counting methods
have been given respectively in [30] via inclusion-exclusion, and in [49] by a different quad-
rant walk encoding, via some decorated plane bipolar orientations). The sequence starts with
1,2,6,24,116,642,3938,26194,186042,1395008, . . . (OEIS A342141). As shown in [49] (and in [45, 78]
for the upper bound), its exponential growth rate is 27/2.

Symmetrically, a history quadrant walk is called rightmost if, for any two consecutive points p, p′:

• if the color of p is in {black,green} and the color of p′ is in {black,red}, then y(p′) ≥ y(p),

• otherwise, y(p′) ≥ y(p) − 1.

These correspond to pairs (π,R = γ(π)) such that π is the rightmost linear extension of Ps(R) (at any
step, the last added rectangle is the leftmost available one), which occurs if and only if π is co-2-clumped.

allowed steps after

if ends at

if ends at

if ends at
if ends at

Figure 23: The allowed steps in leftright history walks (special steps are shown dashed).

A history quadrant walk is called leftright if it is both leftmost and rightmost. Equivalently, it is a history
walk (here better formulated in terms of allowed steps) such that, for any two consecutive points p, p′

(see Figure 23):

• If p is black, then from p to p′ the steps (0,1) and (1,0) are allowed. Furthermore, if the color of p′

is in {red,white} then the step (−1,2) is allowed, and if the color of p′ is in {green,white} then the
step (2,−1) is allowed, such steps being called special.

• If p is red, then from p to p′ the steps (0,0) and (1,−1) are allowed, and furthermore the step
(−1,1), called a special step, is allowed if the color of p′ is in {red,white}.

• If p is green, then from p to p′ the steps (0,0) and (−1,1) are allowed, and furthermore the step
(1,−1), called a special step, is allowed if the color of p′ is in {green,white}.

• If p is white, then from p to p′ the allowed steps are (−1,0) and (0,−1).

Leftright history quadrant excursions thus correspond to rectangulations R such that Ps(R) is a total
order, i.e., the fiber has size 1 (indeed, at any step, the last added rectangle is both the leftmost and
rightmost available rectangle, hence is the unique available rectangle), a superfamily of rectangulati-
ons avoiding and (those represented by anti-diagonal rectangulations). These also correspond
to permutations that are 2-clumped and co-2-clumped (and to equivalence classes of size 1 for the
congruence in Theorem 20), a superfamily of Baxter permutations.

The above characterization of leftright walks can be turned into a recurrence as follows. For G a set
of history quadrant walks, and for n ≥ 1, i, j ≥ 0, we let Gn,i,j be the number of closed walks of length
n in G and starting at (i, j). Then, with A the set of leftright history quadrant walks, and with B (resp.
R,G,W) the subset of those starting at a black (resp. red,green,white) point, a classical decomposition
by first-step removal yields, for n ≥ 1 and i, j ≥ 0,
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Bn,i,j = An−1;i+1,j +An−1,i,j+1 +Rn−1,i−1,j+2 +Wn−1,i−1,j+2

+ Gn−1,i+2,j−1 +Wn−1,i+2,j−1

Rn,i,j = An−1,i+1,j−1 +An−1,i,j +Rn−1,i−1,j+1 +Wn−1,i−1,j+1,
Gn,i,j = An−1,i−1,j+1 +An−1,i,j +Gn−1,i+1,j−1 +Wn−1,i+1,j−1,
Wn,i,j = An−1,i−1,j +An−1,i,j−1,
An,i,j = Bn,i,j +Rn,i,j +Gn,i,j +Wn,i,j ,

(3)

with boundary conditions Ln;i,j = 0 for n ≤ 0 or i < 0 or j < 0 (for L ∈ {A,B,R,G,W}), except for
W0,0,0 = A0,0,0 = 1.

Note that, by {x, y}-symmetry of the walk specification, we have Rn,i,j = Gn,j,i (and the co-
efficients An,i,j ,Bn,i,j ,Wn,i,j are symmetric in i and j). The sequence Un = An−1,0,0 gives
the number of permutations of size n that are 2-clumped and co-2-clumped3, it starts with
1,2,6,24,112,582,3272,19550,122628,800392, . . ., and, to our knowledge, it has not been considered
before.

Proposition 24. The exponential growth rate of Un is bounded from above by Γ ∶= 1
2
(9 +
√
113) ≈ 9.815.

Proof. Let

A =
⎛
⎜⎜⎜
⎝

2 3 3 4
2 3 2 3
2 2 3 3
2 2 2 2

⎞
⎟⎟⎟
⎠

and let I = (1,1,1,1). Then obviously the number of leftright walks of length n (starting at the origin)
with no constraint on domain nor on endpoint is equal to I ⋅An ⋅ IT ; and Γ is the spectral radius of A.

Remark. From the table of initial coefficients, the ratio Un/Un−1 seems to converge to Γ (this is even
more visible when applying acceleration of convergence techniques, see e.g. [50, Sec.6]). By similar
calculations as [48, Conjecture 25] (details omitted), letting ξ = (−93 + 9

√
113)/4, one can conjecture

(up to a plausible extension of [32]) the asymptotic estimate Un ∼ cΓnn−α, with c > 0 and α = 1 +
π/arccos(ξ) ≈ 4.742. By a criterion in [17] (ensuring that α ∉ Q), this would imply that the generating
function of Un is not D-finite.

We now discuss the specialization to anti-diagonal rectangulations and Baxter permutations. We refer
here to an anti-diagonal rectangulation as a rectangulation avoiding the patterns and . Each weak
class of rectangulations has a unique such representative, we see them here as a subclass of strong rec-
tangulations and do not insist on considering the specific anti-diagonal representation on the n × n grid.
Any anti-diagonal rectangulation has fiber of size 1, so that the corresponding history quadrant excursion
is leftright. We also recall from the remark at the end of Section 4.4 that the mapping γs specializes into
a bijection between Baxter permutations and anti-diagonal rectangulations.

Proposition 25. The history quadrant excursions of length n−1 that encode Baxter permutations and anti-
diagonal rectangulations of size n are in bijection with the set NITn of non-intersecting triples of lattice walks
(with steps up or right), starting respectively at (−1,1), (0,0), (1,−1), and ending at (n−k−1, k), (n−k, k−
1), (n − k + 1, k − 2) for some 1 ≤ k ≤ n.

Proof. Let σ be a history quadrant excursion, with R the rectangulation built from σ. The following
properties are easy to check:

• If σ is leftmost, then each occurrence of in R corresponds to a transition from a black or red
point p = (x, y) to a red or white point p′ = (x′, y′) such that x′ = x − 1 (this corresponds to an
insertion in a mixed valley in Figure 22).

• Symmetrically, if σ is rightmost, then each occurrence of in R corresponds to a transition from
a black or green point p = (x, y) to a green or white point p′ = (x′, y′) such that y′ = y − 1.

3With the strong poset characterization it is not difficult to show that it also counts weak rectangulations of size n where every
2-sided segment (segment with at least one neighbor on each side) is given weight 2.
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Hence, if σ is leftright, each occurrence of in R corresponds to an occurrence of a special step (−1,2)
or (−1,1), while each occurrence of in R corresponds to an occurrence of a special step (2,−1) or
(1,−1), so that R is anti-diagonal if and only if σ has no special step.

Note that a leftright quadrant excursion σ with no special step identifies to a quadrant walk of
same length and with no colors on points, starting and ending at the origin, whose step-set is
{2 × (0,0), (0,1), (0,−1), (1,0), (−1,0), (−1,1), (1,−1)}, with two kinds of stay-steps to account for the
color of the initial point of each stay-step in σ. There is a simple bijection [24, Prop.20] between such
walks of length n − 1 and NITn.

Thus, we recover — via rectangulations — the fact that the Françon-Viennot encoding specialized to
Baxter permutations yields a bijection with non-intersecting triples of lattice walks [83]. By the Gessel-
Viennot Lemma, these are counted by the Baxter numbers Bn (whose exponential growth rate is 8).

add rectangle

x = 3

y = 2

add point at (x, y)
of color. . .

if the type of added
rectangle is. . .

Figure 24: Correspondence between the insertion of a colored point in the quadrant and the insertion of
a rectangle for weak rectangulations

To conclude the section, we briefly explain that a very similar study can be performed in the context
of weak rectangulations. A weak rectangulation R endowed with a linear extension of its weak poset
Pw(R) can again be bijectively encoded by a history quadrant excursion, where the addition of a rect-
angle is now done in the “innermost” way in a valley for the situations without alignment of sides, see
Figure 24 compared to Figure 20. Using the innermost convention yields the weak rectangulation in the
form of its strong representative with no nor , the one for which the diagonal representation exists.

For the backward direction, in the current staircase shape, a rectangle is available if and only if all its
adjacent rectangles are to its left or below. It is then easy to characterize the leftmost (resp. rightmost)
history quadrant excursions in this context, i.e., those corresponding to weak rectangulations endowed
with the leftmost (resp. rightmost) linear extension of their weak poset, equivalently at each step the
last added rectangle is the rightmost (resp. leftmost) available one. Quite nicely, these have the same
specification as the leftmost (resp. rightmost) walks in the strong case, upon replacing “and” by “or”
in the first item. These quadrant walks of length n − 1 also encode twisted (resp. co-twisted) Baxter
permutations of size n. They are thus counted by Bn, even if a direct bijection to NITn does not seem
easy to find.

As in the strong case, we can then consider the history quadrant walks that are leftmost and rightmost,
called leftright. Leftright history quadrant excursions encode weak rectangulations whose weak poset is
totally ordered. These are known to be the one-sided rectangulations, i.e., weak rectangulations such that
for each segment at least one side has no contact, which are also the weak rectangulations with a unique
strong representative. And they correspond via γw to the permutations in Av(2413,2143,3412,3142),
i.e., twisted and co-twisted Baxter permutations. By intersecting the step-sets for leftmost and rightmost
walks, the specification of the step-set for leftright walks is as shown in Figure 25.

Letting On be the number of one-sided rectangulations of size n, and number of leftright history
quadrant excursions of length n − 1, a recurrence for On analogue to the recurrence (3) for Un can then
be obtained, by first-step removal in closed leftright history quadrant walks. Another counting method
for On, also in polynomial time, has been given in [20] (pages 162-175) by describing a generating tree
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allowed steps after

if ends at

if ends at
if ends at if ends at

Figure 25: The allowed steps in leftright history quadrant walks, in the context of weak rectangulations.

for the permutation class, the sequence starts with 1,2,6,20,72,274,1088,4470,18884,81652, . . . and is
OEIS A348351.

Proposition 26. The exponential growth rate of On is bounded from above by Γ′ ∶= 1
2
(7 +
√
17) ≈ 5.562.

Proof. Let

A′ =
⎛
⎜⎜⎜
⎝

2 2 2 2
1 1 2 2
1 2 1 2
0 1 1 2

⎞
⎟⎟⎟
⎠

and let I = (1,1,1,1). The number of leftright walks of length n (starting at the origin) with no constraint
on domain nor on endpoint is equal to I ⋅A′ n ⋅ IT ; and Γ′ is the spectral radius of A′.

Again, by similar calculations as [48, Conjecture 25], letting ξ′ = (−29 + 7
√
17)/4, one can conjecture

the asymptotic estimate On ∼ c′ Γ′ nn−α
′
, with c′ > 0 and α′ = 1+π/arccos(ξ′) ≈ 2.957, which would imply

that the generating function of On is not D-finite.
An interesting consequence of Proposition 26 is that the growth rate of one-sided rectangulations,

which are also the rectangulations that are area-universal [38], is smaller than the known [80, 47]
growth rate 27/4 = 6.75 of triangulations of the 4-gon that are irreducible (no separating triangle). Thus
the irreducible triangulations of the 4-gon admitting a dual representation as an area-universal rectan-
gulation are exponentially rare, their growth rate being at most Γ′.

5 Guillotine rectangulations

In this section we deal with guillotine rectangulations, introduced in Section 2.5. While weak guillotine
rectangulations are well understood (see Propositions 3 and 4), we are not aware of any results con-
cerning strong guillotine rectangulations. In this section we provide a uniform treatment of guillotine
rectangulations by characterizing those permutations that correspond to guillotine partitions under both
permutation-to-rectangulation mappings γw and γs, by means of pattern avoidance. As a result, we can
restrict all the bijections between (both weak and strong) rectangulations that were mentioned above, to
the guillotine case. In particular, we find a permutation class bijective to strong guillotine rectangulations.

5.1 Characterization by mesh patterns

Consider the following mesh patterns4 (depicted in Figure 26):

p1 = (25314, {(0,3), (0,4), (1,3), (4,2), (5,1), (5,2)}),
p2 = (41352, {(0,1), (0,2), (1,2), (4,3), (5,3), (5,4)}).

Theorem 27. Let π ∈ Sn. Then the following conditions are equivalent:

(1) The weak rectangulation γw(π) is guillotine,

4 These mesh patterns were proposed by Merino and Mütze [58], see remark after Corollary 32.

31

https://oeis.org/A348351
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Figure 26: Two mesh patterns whose avoidance characterizes guillotine permutations.

(2) The strong rectangulation γs(π) is guillotine,

(3) π avoids both mesh patterns p1 and p2.

The equivalence of (1) and (2) is clear, since being guillotine is invariant under shuffling. Hence,
it suffices to prove the equivalence of (1) and (3). Recall from Proposition 3 that a rectangulations is
guillotine if and only if it avoids two “windmills” and . Theorem 27 follows directly from the
following lemma, which also precisely points out the correspondence between both mesh patterns and
both kinds of windmills.

Lemma 28. Let π ∈ Sn.

(a) γw(π) contains if and only if π contains p1,

(b) γw(π) contains if and only if π contains p2.

Proof. We provide the proof for (a) (then (b) follows from (a) by reflection via Observation 19).
At the first step we modify the pattern p1 in a way that simplifies some technical details. Consider the

mesh pattern
q1 = (25314, {0,1} × {2,3,4} ∪ {4,5} × {1,2,3}).

We show that a permutation π contains p1 if and only if it contains q1, refer to Figure 27. Assume that
π contains p1, and the pattern 25314 of p1 is realized as becad where a < b < c < d < e. Then, in the
plot, we can replace the point e by a left-minimum point in the cell (1,4), then b by the top-most point
in (0,2) ∪ (1,2), then a by a right-maximum point in (4,1), and finally d by the bottom-most point in
(4,3) ∪ (5,3). This shows that if a permutation contains p1 then it contains q1. The converse implication
is trivial.

p1 q1

a
b
c
d
e

Figure 27: An occurrence of p1 implies an occurrence of q1.

We now prove that γw(π) contains if and only if π contains q1.
(⇐) Let π be a permutation that contains q1, and consider the diagonal representative of γw(π).

Assume, as above, that the pattern 25314 of p1 is realized as becad. The shaded regions of q1 imply that
no rectangle rx with label x such that b < x < e is inserted earlier than e, and that no rectangle rx with
a < x < d is inserted later than a. It follows that just after inserting the rectangle re, the staircase contains
a horizontal segment se just above re and a vertical segment sb just to the right from rb, and these
segments (shown by red in Figure 28) meet in a joint. Similarly, just before inserting the rectangle ra,
the staircase contains a horizontal segment sa just under ra and a vertical segment sd just to the left
from rd, and these segments (shown by green in Figure 28) meet in a joint. Due to the presence of rc,
we know that sd does not coincide with sb.
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Now we show that γw(π) contains a windmill . Traverse the segment sb from below to above. Due
to sa, the segment sb can not reach the upper side of R, as it is blocked by a horizontal segment sa′

(which is possibly sa). Now we traverse sa′ to the right. Due to the existence of sd, the segment sa′

cannot reach the right side of R, as it is be blocked by a vertical segment sd′ (which is possibly sd). We
continue traversing segments in this way and due to sa, sd, se, sb we never reach the boundary of R.
Since the process is finite, a windmill will eventually be obtained.

b

c
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d

e

b

c

a
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se se

Figure 28: Illustration for (⇐) in the proof of Theorem 27: q1 implies .

(⇒) Let R be a rectangulation containing . Label by ra, rb, rd, re the rectangles as shown in Fig-
ure 29: ra is the rectangle whose bottom-right corner is the top-right corner of the windmill, rd is the
upmost rectangle whose left side is included in the right vertical segment of the windmill, and similarly
for re and rb. Finally, let rc be any rectangle in the region bounded by the windmill. Then we have
a < b < c < d < e in the diagonal ordering. On the other hand, in Pw(R) we have b ≺w e ≺w c ≺w a ≺w d,
which gives the pattern 25314 in any linear extension π of this poset. It remains to show that there are no
points in the shaded regions from the plot of q1. Suppose there is a point in the region {0,1} × {2,3,4}.
Then there exists a rectangle rx such that b < x < e, which is inserted earlier than e. By Observation 1(1),
all rectangles rx such that b < x < e are contained in the region shown in grey in Figure 29. However, all
rectangles rx included in this region satisfy e ≺w x, hence rx can not be inserted earlier than re.

5.2 New bijections and permutation classes for guillotine rectangulations

In this section we discuss specializations of the bijections βTB, βCTB, βB, β2C, βC2C from Theorems 7
and 15 to the case of guillotine rectangulations.

Weak guillotine rectangulations. Basically, the respective permutation classes are obtained by adding
p1 and p2 to the forbidden patterns. The next lemma makes it possible to describe some of them by fewer
patterns.
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Figure 29: Illustration for (⇒) in the proof of Theorem 27: implies q1.

Lemma 29. The following identities between permutation classes hold:

1. Av(2413, 3412, p1) = Av(2413, 3412), 2. Av(2413, 3142, p1) = Av(2413, 3142),
3. Av(3142, 2143, p2) = Av(3142, 2143), 4. Av(3142, 2413, p2) = Av(3142, 2413).

Proof. We provide a detailed proof of (1). The proof of (2) is similar, and the proofs of (3) and (4) are
obtained by taking complements.

In (1), the implication ⊇ is obvious. To prove ⊆, we need to show that if π contains 2413, then it
contains 2413, 3412, or p1.

Let bead, where a < b < d < e, be a (vertically) shortest occurrence of 2413, that is, an occurrence with
the smallest possible e − a. If it is not a part of 25314, then we can replace the point e by the rightmost
point in the region (2,3) ∪ (2,4); this yields an occurrence of 2413 (refer to the left part of Figure 30).

Now assume that our occurrence of 2413 is a part of 25314 (refer to the right part of Figure 30). The
regions (1,4), (2,4), (3,4), (0,3), (1,3), (4,2), (5,2), (2,1), (3,1), (4,1) are empty because otherwise
we have a shorter occurrence of the pattern 2413. If the region (0,4) is not empty, then — applying the
same argument as above and using the fact that the region (2,4) is empty — we obtain an occurrence of
3412. Similarly, we obtain 3412 if (5,1) is not empty. And if both regions (0,4) and (5,1) are empty, then
our assumed 25314 is an occurrence of p1.

Figure 30: Illustration to the proof of Lemma 29.

Remark. Note that it is not possible to “cancel” the patterns that occur on both sides of these identities.
For example, Av(2413, p1) = Av(2413) is false: 526314 is a counterexample.

Combining Lemma 29 with Lemma 28 we obtain:

Proposition 30. The following families of permutations are in bijection (respectively via βTB, βCTB, and βB)
with weak rectangulations that avoid :

1. Av(2413, 3412),

2. Av(2143, 3142, p1),

3. Av(2413, 3142).
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Similarly, via βTB, βCTB, and βB, weak rectangulations that avoid correspond respectively to the
families Av(2413, 3412, p2), Av(2143,3142), and Av(2413, 3142).

Proposition 30 sheds new light on some previously known results. Weak rectangulations of size n
are in a simple bijection with 2-orientations [31] on rooted simple quadrangulations (embedded on the
sphere) with n+ 1 faces, i.e., orientations of the edges not incident to the root-face such that vertices not
incident (resp. incident) to the root-face have outdegree 2 (resp. 0). Moreover, a weak rectangulation
has a if and only if the 2-orientation has a clockwise cycle (more precisely, the occurrence of a
corresponds to the occurrence of a clockwise 4-cycle, and the presence of a clockwise cycle implies the
presence of a clockwise 4-cycle). Since any rooted simple quadrangulation has a unique 2-orientation
with no clockwise cycle [64, 40], weak rectangulations of size n with no are thus in bijection with
rooted simple quadrangulations with n + 1 faces, which are themselves in bijection with rooted non-
separable maps with n+1 edges, whose counting coefficients are an = 2 (3n)!

(n+1)! (2n+1)!
as shown in [81, 68].

The fact that Av(2413, 3142) is in bijection with rooted non-separable maps was already proved in [36]
(via isomorphic generating trees) and in [15], by specializing a bijection between Baxter permutations
and plane bipolar orientations: this bijection has the property that Baxter permutations with no 2413 cor-
respond to plane bipolar orientations with no ROP (right-oriented piece), and moreover any rooted non-
separable map has a unique plane bipolar orientation with no ROP. Our bijection between Av(2413, 3142)
and weak rectangulations with no is very analogous, since plane bipolar orientations are in a simple
bijection [31] with 2-orientations, such that the occurrence of a ROP corresponds to the occurrence of
a counterclockwise 4-cycle (or the occurrence of a clockwise 4-cycle, upon reflection).

Let us also mention that the coefficients an are well-known to count 2-stack sortable permuta-
tions [86]. In [35], a correspondence with Av(2413, 3142) has been obtained via a chain of several
bijections relating permutation classes (and relying on isomorphic generating trees). Along that chain
after Av(2413, 3142) is the class Av(2413, 3412) (see [35, Fig.3]); this corresponds to the link between
the first and second item in Proposition 30. Recently a more direct bijective link between 2-stack sortable
permutations and rooted non-separable maps has been established via fighting fish [39, 34].

We now further specialize the bijections (for weak classes) to the guillotine case:

Proposition 31. The following families of permutations are in bijection (respectively via βTB, βCTB, and
βB) with weak guillotine rectangulations:

1. Av(2413, 3412, p2),

2. Av(2143, 3142, p1),

3. Av(2413, 3142).

Proof. It follows from Theorems 7 and 27 that weak guillotine rectangulations are in bijec-
tion (respectively via βTB, βCTB, and βB) with Av(2413,3412, p1, p2), Av(2143,3142, p1, p2), and
Av(2413,3142, p1, p2). By Lemma 29 we have

Av(2413,3412, p1, p2) = Av(2413,3412, p2), Av(2413,3412, p1, p2) = Av(2413,3412, p2),
Av(2413,3142, p1, p2) = Av(2413,3142, p1), Av(2143,3142, p1, p2) = Av(2143,3142, p1).

The combination of the two identities for Av(2413,3142, p1, p2) implies that this class is equal to
Av(2413, 3142).

Part 3 of Proposition 31 recovers the bijection βS from Theorem 7(4); parts 1 and 2 are new results.

Strong guillotine rectangulations. Here we just add p1 and p2 to the patterns that define 2-clumped
permutations and co-2-clumped permutations, and we did not find a way to describe these classes with
fewer patterns. However, this is the first known representation of strong guillotine rectangulations
by permutation classes.

Proposition 32. The following families of permutations are in bijection (respectively via β2C and βC2C) with
strong guillotine rectangulations:
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1. the {p1, p2}-avoiding 2-clumped permutations,

2. the {p1, p2}-avoiding co-2-clumped permutations.

Summary. Proposition 32(1) was conjectured and communicated to us by Merino and Mütze [58]. They
found the mesh patterns p1 and p2 experimentally, as a part of their study of patterns in rectangulations.
This conjecture was our starting point for the study presented in this section. As our results — mainly
Theorem 27 and Lemma 28 — show, these two patterns not just define a permutation class in bijection
with with strong guillotine rectangulations, but they generally “encode the windmills in the language of
permutations”. As such, these results belong to the study of representing patterns in rectangulations by
patterns in permutations, which was suggested in [59, Section 11] as an open question. Our Lemma 16
is another instance of correspondence between these kinds of patterns, see also [5] for more results of
this kind.

5.3 Enumeration of strong guillotine rectangulations

Generating the enumerating sequence. A straightforward way to generate the enumerating sequence
for strong guillotine rectangulations is counting multiplicities. A multiplicity of a weak rectangulation R
is the number of strong rectangulations whose union constitutes R. Every segment s contributes (a+b

a
)

to the multiplicity of R, where a and b are the numbers of neighbors of s from both sides. The total
multiplicity of a rectangulationR is the product of such binomial coefficients taken over all its segments.

For strong guillotine rectangulations, we can use the same argument as in our proof of Proposition 4,
but taking into account the multiplicities. Let R be a vertical guillotine rectangulation of size > 1, and
let s be its leftmost cut. Denote by RL and RR the left and the right subrectangulations separated by s.
If the multiplicity of RL is m1, and that of RR is m2, then the multiplicity of R is m1m2(a+ba ), where a
and b are the numbers of left and right neighbors of s.

Therefore, we have to keep track of the numbers of segments that have an endpoint on the sides of R.
This leads to a recurrence in five variables. Denote by S(n, ℓ, t, r, b) the number of strong guillotine rec-
tangulations of size n with ℓ, t, r, b endpoints of segments on the left, top, right, bottom side. Further,
denote by SV (n, ℓ, t, r, b) and SH(n, ℓ, t, r, b) the numbers of vertical and, respectively, horizontal strong
guillotine rectangulations with these parameters. (To keep the expressions more compact, here we regard
the rectangulation of size 1 as both vertical and horizontal.) Then we have the following recurrence.

For n = 1:

S(1, ℓ, t, r, b) = SV (1,0,0,0,0) = SH(1,0,0,0,0) = {
1, (ℓ, t, r, b) = (0,0,0,0),
0, (ℓ, t, r, b) ≠ (0,0,0,0).

For n > 1:

SV (n, ℓ, t, r, b) =∑SH(n′, ℓ, t′, r′, b′) ⋅ S(n − n′, ℓ′, t − 1 − t′, r, b − 1 − b′) ⋅ (
r′ + ℓ′
r′
),

where the sum is taken over 1 ≤ n′ ≤ n − 1 and 0 ≤ t′, r′, b′, ℓ′ ≤ n.
This rule is illustrated in Figure 31.
For SH(n, ℓ, t, r, b) we have a similar expression, but for computations we can use

SV (n, ℓ, t, r, b) = SV (n, r, t, ℓ, b) = SV (n, ℓ, b, r, t) = SV (n, r, b, ℓ, t) =
= SH(n, t, ℓ, b, r) = SH(n, b, ℓ, t, r) = SH(n, t, r, b, ℓ) = SH(n, b, r, t, ℓ).

Finally, for n > 1 we have

S(n, ℓ, t, r, b) = SH(n, ℓ, t, r, b) + SV (n, ℓ, t, r, b)

We implemented the recurrence in Maple, and obtained the first numbers in the enumerating sequence
of strong guillotine rectangulations of size n:
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Figure 31: Illustration of the recurrence for counting strong guillotine rectangulations. The multiplicity
of this rectangulation is the product of the multiplicity of the left part, the multiplicity of the right part,
and the binomial coefficient (7

4
).

n = 1 . . .8 n = 9 . . .16 n = 17 . . .24 n = 25 . . .32
1 138100 1143606856808 23673987861077379184
2 926008 9072734766636 201493429381831155064
6 6418576 72827462660824 1725380127954612191928

24 45755516 590852491725920 14858311852609658166276
114 334117246 4840436813758832 128634723318443875261706
606 2491317430 40009072880216344 1119203662581349129800254

3494 18919957430 333419662183186932 9783477314800654941937182
21434 146034939362 2799687668599080296 85899976772035554402923170

This sequence has no OEIS entry at the time of writing.

Asymptotic bounds. We now would like to show that guillotine rectangulations are rare among strong
rectangulations of size n, as n gets large. Precisely, we will show that the exponential growth rate of
strong guillotine rectangulations is bounded from above by a constant ≈ 13.081, hence is strictly smaller
than the exponential growth rate of all strong rectangulations, which, as mentioned above, is known to
be 27/2 [49].

We will make use of asymptotic results in [49] (to be slightly extended below in Lemma 33) on so-
called arbitrary rectangulations, which are rectangulations allowing for points where 4 rectangles meet,
called special points. These are considered in the strong equivalence sense. Let an,k be the number
of arbitrary rectangulations of size n with k special points, let an(v) = ∑k an,kv

k, and let A(z, v) =
∑n an(v)zn be the associated counting series. For fixed v, let ρ(v) be the radius of convergence of
z → A(z, v), i.e., 1/ρ(v) is the exponential growth rate of an(v). It has been shown in [49, Thm. 4.3]
that, for v ≥ 0,

ρ(v) = 2(2 + v)
2v2 + 18v + 27 + (9 + 4v)3/2 . (4)

Lemma 33. There exist non-negative coefficients ãn,k such that, with ãn(v) ∶= ∑k ãn,kv
k, we have an(v) =

ãn(v + 2), so that an(v) ≥ 0 for v ≥ −2. Moreover, for v ∈ (−2,0), ρ(v) is still given by (4).

Proof. An arbitrary rectangulation is called reduced if it avoids both and . If we let ãn,k be the
number of reduced arbitrary rectangulations of size n with k special points, and let ãn(v) = ∑k ãn,kv

k,
then we have

an(v) = ãn(v + 2).

Indeed, an arbitrary rectangulation yields a reduced one by contracting the inner segment of each or
, turning it into a . Conversely, a reduced arbitrary rectangulation lifts to a set of arbitrary rectan-

gulations by choosing, for each special point , whether it stays unchanged, is expanded into , or is
expanded into .

The encoding of arbitrary rectangulations by weighted quadrant walks that is obtained in [49, Sec.2.4]
(relying on a bijection in [52]) can be specialized to reduced arbitrary rectangulations: with the terminol-
ogy of [49] (where the study is done in the dual setting of transversal structures), forbidding amounts
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to forbidding consecutive face-steps, and forbidding can easily be encoded in the weight affected to
face-steps. All calculations done as in [49, Sec.4] (details omitted) one finds that, if ρ̃(v) denotes the
radius of convergence of v → ∑n ãn(v)zn for v > 0 (which equals ρ(v − 2) since ãn(v) = an(v − 2)), then
the obtained expression of ρ̃(v) matches the right-hand side of (4) where v is substituted by v − 2.

In a strong rectangulation the enclosing 4-gon of a windmill is the 4-gon extracted from the union of
the 4 constituting segments. The windmill is called simple if there is no segment leaving a point on a side
of the enclosing 4-gon towards the exterior of the 4-gon. A small windmill is a simple windmill with
a single rectangular region inside the enclosing 4-gon. Let bn be the number of rectangulations of size n
with no small windmill. Obviously, bn is an upper bound on the number of guillotine rectangulations of
size n.

Proposition 34. The exponential growth rate of bn is bounded from above by the unique positive root
x0 ≈ 13.155 of the polynomial 2x5 − 29x4 + 36x3 − 8x2 − 8.

Proof. Let ân,k be the number of rectangulations of size n with k small windmills; and let Â(z, v) =
∑n,k ân,kz

nvk be the associated counting series. Then we have A(z,2vz) = Â(z,1 + v). Indeed, starting
from an arbitrary rectangulation, each special point can be expanded into either or (here
these symbols are to be understood as small windmills); then these form an arbitrary subset of all small
windmills in the obtained rectangulation. Hence, letting B(z) = ∑n bnz

n, we have

B(z) = Â(z,0) = A(z,−2z).

For 0 ≤ z ≤ 1 such that z < ρ(−2z), the function A(., .) is analytic at (z,−2z) (this follows from the fact
that, by continuity of ρ(.), there exist ϵ, η > 0 such that ∑n,k ãn,k(z+ϵ)n(2−2z+η)k < +∞). Hence B(.) is
analytic at z. Thus, letting z0 be the smallest positive root of the equation z = ρ(−2z), the function B(.)
is analytic at z for 0 ≤ z < z0. By Pringsheim’s theorem, the radius of convergence of B(z) is at least z0,
hence the exponential growth rate of bn is at most 1/z0. From the above expression of ρ(v), we find that
1/z0 ≈ 13.155 is the unique positive root of the polynomial 2x5 − 29x4 + 36x3 − 8x2 − 8.

Now let bn be the number of rectangulations of size n with no simple windmill, which again is an
upper bound on the number of guillotine rectangulations of size n.

Proposition 35. The exponential growth rate of bn is bounded from above by 13.081.

Proof. For any fixed k ≥ 1, a simple windmill is called k-small if the rectangulation inside the enclosing
4-gon is a guillotine rectangulation of size at most k. Let b(k)n be the number of rectangulations of size n

with no k-small windmill (in particular bn = b(1)n , and bn ≤ bn(k) for all k ≥ 1); let B(k)(z) = ∑n b
(k)
n zn.

With gn ∶= S(n) the number of guillotine rectangulations of size n, the argument in Proposition 34
extends to give the equation

B(k)(z) = A(z,−2
k

∑
i=1

giz
i).

Letting z
(k)
0 be the smallest positive solution of the equation z = ρ(−2∑k

i=1 giz
i), by the same argument

as in Proposition 34, the radius of convergence of B(k)(z) is at least z(k)0 , hence 1/z(k)0 is an upper bound
on the exponential growth rate of b(k)n , and also of bn ≤ b(k)n . We find that as k increases, 1/z(k)0 (which
decreases) rapidly approaches a constant ≈ 13.081 (upper approximation).

Remark. For fixed n, b(k)n weakly decreases with k and stabilizes to bn. We expect that (for any fixed k ≥ 1)
1/z(k)0 is the exponential growth rate of b(k)n , and that, as k →∞, it converges to the exponential growth
rate of bn, which thus should be ≈ 13.081. However, forbidding only simple windmills does not seem
to give a close upper bound on the exponential growth rate of guillotine rectangulations. Indeed, from
the table of the initial counting coefficients gn, and applying acceleration of convergence (see, e.g., [50,
Sec.6]) to the ratio gn+1/gn, the exponential growth rate of gn seems to be ≈ 10.24.

Finally, we discuss lower bounds. By Proposition 4, the number of weak guillotine rectangulations of
size n is the (n − 1)th Schröder number. Therefore, the exponential growth rate of Schröder numbers,
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3+2
√
2 ≈ 5.828, is a “trivial” lower bound on the exponential growth rate of strong guillotine rectangula-

tions. In order to give a better bound, we consider weak guillotine rectangulations where every 2-sided
segment (that is, a segment with at least one neighbor on each side) has weight 2. This will give a lower
bound, since the neighbors of every 2-sided segment can be shuffled in at least two ways. We adapt the
decomposition from our proof of Proposition 4 as follows. Let G = G(x, y) be the generating function
for weak guillotine rectangulations, where the variable x is for the size, and y for the number of 2-sided
segments. Further, let G0 = G0(x, y) be the generating function for weak guillotine rectangulations that
have no segment with an endpoint on the left side of R, and let G1 = G1(x, y) be the generating function
for weak guillotine rectangulations that have at least one segment with an endpoint on the left side of R.
Finally, let H = H(x, y) and V = V (x, y) be the generating functions for horizontal and, respectively,
vertical weak guillotine rectangulations. Then we have H = V , G = x + H + V , G0 = xG + x, and
G1 = (1 − x)G − x, and the decomposition of a vertical guillotine rectangulation by its leftmost cut leads
to the following weighted version of equation (1):

V = xG +H(G0 + yG1).

The solution of this system yields

G(x,2) = 1 + x − x2 −
√
1 − 6x − 5x2 + 2x3 + x4

2(2 − x) ,

and its dominant singularity gives us the following lower bound.

Proposition 36. The exponential growth rate of the number of strong guillotine rectangulations is bounded
from below by 1

2
(1 +
√
13 − 8

√
2)(3 + 2

√
2) ≈ 6.699.

This strategy can be pushed further: for a fixed threshold value t ≥ 1, every segment with i neighbors
on one side and j neighbors on the other side is weighted by (i

′
+j′

i′ ), where i′ =min(i, t) and j′ =min(j, t).
The exponential growth rate for any fixed t should be computable (by the approach of [43, VII.6.3]),
and grow with t, giving better and better lower bounds. The complexity of the decomposition and of
computations, however, will rapidly explode as t grows.
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