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1. Introduction

Let G be a graph. A tree-decomposition of G is a pair (T,B) where T is a tree and
B = (Bt | t ∈ V (T )) is a family of subsets of V (G), satisfying:

(T1) for each v ∈ V (G) there exists t ∈ V (T ) with v ∈ Bt; and for every edge uv ∈ E(G)
there exists t ∈ V (T ) with u, v ∈ Bt;

(T2) for each v ∈ V (G), if v ∈ Bt ∩Bt′′ for some t, t′′ ∈ V (T ), and t′ lies on the path in
T between t and t′′, then v ∈ Bt′ .

Many researchers refer to the subset Bt as a bag and they consider Bt as an induced
subgraph of G. With this convention, |Bt| is just the number of vertices of G in the bag
Bt, while χ(Bt) is the chromatic number of the induced subgraph of G determined by
the vertices in Bt.

The quality of a tree-decomposition (T, (Bt | t ∈ V (T ))) is usually measured by its
width, i.e. the maximum of |Bt| − 1 over all t ∈ V (T ). Then the tree-width of G is the
minimum width of a tree-decomposition of G. In this paper we study the tree-chromatic
number of a graph, a concept introduced by Seymour in [6]. The chromatic number of
a tree-decomposition (T, (Bt | t ∈ V (T ))) is the maximum of χ(Bt) over all t ∈ V (T ).
The tree-chromatic number of G, denoted by tree-χ(G), is the minimum chromatic
number of a tree-decomposition of G. A tree-decomposition (T, (Bt | t ∈ V (T ))) is a
path-decomposition when T is a path. The path-chromatic number of G, denoted by
path-χ(G), is the minimum chromatic number of a path-decomposition of G. Clearly,
for every graph G we have

ω(G) 6 tree-χ(G) 6 path-χ(G) 6 χ(G).

Furthermore, if G = Kn is the complete graph on n vertices, then ω(G) = χ(G) = n,
so all these inequalities can be tight. Accordingly, it is of interest to ask whether for
consecutive parameters in this series of inequalities, there is a sequence of graphs for
which one parameter is bounded while the next parameter is unbounded.

In [6], Seymour proved that the classic Erdős construction [1] for graphs with large
girth and large chromatic number yields a sequence {Gn : n > 1} with ω(Gn) = 2 and
tree-χ(Gn) unbounded.

For an integer n > 2, the shift graph Sn is a graph whose vertex set consists of all closed
intervals of the form [a, b] where a, b are integers with 1 6 a < b 6 n. Vertices [a, b],
[c, d] are adjacent in Sn when b = c or d = a. As is well known (and first shown in [2]),
χ(Sn) = dlg ne, for every n > 2. On the other hand, the natural path decomposition of
Sn shows that path-χ(Sn) 6 2, for every n > 2, so as noted in [6], the family of shift
graphs has bounded path-chromatic number and unbounded chromatic number.
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Accordingly, it remains only to determine whether there is an infinite sequence of graphs
with bounded tree-chromatic number and unbounded path-chromatic number. How-
ever, these two parameters appear to be more subtle in nature. As a first step, Huynh
and Kim [4] showed that there is an infinite sequence {Gn : n > 1} of graphs with
tree-χ(Gn)→∞ and tree-χ(Gn) < path-χ(Gn) for all n > 1.

In [6], Seymour proposed the following construction. Let Tn be the complete (rooted)
binary tree with 2n leaves. When y and z are distinct vertices in Tn, the path from y
to z is called a “V ” when the unique point on the path which is closest to the root of
Tn is an intermediate point x on the path which is strictly between y and z. We refer
to x as the low point of the V formed by y and z.

For a fixed value of n, we can then form a graph Gn whose vertices are the V ’s in Tn.
We take V adjacent to V ′ in Gn when an end point of one of the two paths is the low
point of the other. Clearly, ω(Gn) 6 2. Furthermore, it is easy to see that χ(Gn)→∞
with n (we will say more about this observation later in the paper), and Seymour [6]
suggested that the family {Gn : n > 1} has unbounded path-chromatic number.

However, we will show that graphs in the family {Gn : n > 1} have bounded path-
chromatic number. In fact, we will use Ramsey theoretic tools developed by Milliken [5]
to show that if we fix r > 2, and assume we have a path-decomposition of Gn witnessing
that path-χ(Gn) 6 r, then this decomposition is (essentially) uniquely determined.
Furthermore, this decomposition actually witnesses that path-χ(Gn) 6 3.

Moreover, in analyzing this decomposition, we discovered the following minor modifi-
cation. In the binary tree Tn, a subtree is called a “Y ” when it has 3 leaves and the
closest vertex in the subtree to the root of Tn is one of the three leaves. We then let
Hn be the graph whose vertex set consists of the V ’s and Y ’s in Tn. Furthermore, Y
is adjacent to Y ′ in Hn if and only if one of the two upper leaves of one of them is the
lowest leaf in the other. Also, a Y is adjacent to a V if and only if one of the upper
leaves in the Y is the low point of the V .

It is clear from the natural tree-decomposition of Hn that tree-χ(Hn) 6 2. Using
Ramsey theoretic tools, we will then be able to show that path-χ(Hn)→∞ with n, so
that Seymour’s question has been successfully resolved.

2. Ramsey Theory on Binary Trees

The Ramsey theoretic concepts discussed here are treated in a more comprehensive
manner by Milliken [5]1, but we will find it convenient to use somewhat different notation
and terminology.

1The particular result we need is Theorem 2.1 on page 220. Note that Milliken credits the result to
Halpern, Läuchi, Laver and Pincus and comments on the history of the result.
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Figure 1. Binary Trees: Down sets in Tn

For a positive integer n, we view the complete binary tree Tn as the poset2 consisting of
all binary strings of length at most n, with x 6 y in Tn when x is an initial segment in
y. The empty string, denoted ∅, is then the zero (least element) of Tn. For all n > 1, Tn
has 2n+1 − 1 elements and height n+ 1. In particular, T0 is the one-point poset whose
only element is the empty string.

When n > 1 and x is a binary string of length n, we will denote coordinate i of x as x(i)
and when a string is of modest length, we may write it explictly, e.g., x = 01001101.
When n > m > p > 0, x is a string of length p, y is a string of length m and x < y in
Tn, we say y is in the left tree above x when y(p + 1) = 0 and we say y is in the right
tree above x when y(p+ 1) = 1.

Recall that in a poset P , a subposet Q of P is called a down set if x ∈ Q whenever
y ∈ Q and x 6 y in P . We will refer to down sets of the complete binary tree Tn as
binary trees. In Figure 1, we show on the left the complete binary tree T3. On the right,
we show a binary tree Q which will be a down set in any complete binary tree Tn with
n > 5.

Let n > 0, let Q be a binary tree in Tn, and let R be a subposet of Tn. Following
Milliken [5], we will say R is a strong copy of Q when there is a function f : Q → R
satisfying the following two requirements:

(i) f is a poset isomorphism, i.e., f is a bijection and for all x, y ∈ Q, x 6 y in Q if
and only if f(x) 6 f(y) in R.

(ii) For all x, y ∈ Q with x < y in Q, y is in the left tree above x in Q if and only if
f(y) is in the left tree above f(x) in Tn.

Since we are concerned with binary trees, we note that when f satisfies the preceding
two conditions, then it automatically implies that y is in the right tree above x if and
only if f(y) is in the right tree above f(x).

2The complete (rooted) binary tree we discussed in an informal manner in the opening section of
this paper is just the cover graph of the poset Tn defined here.
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For the remainder of this paper, when r > 1, we let [r] denote the set {1, 2, . . . , r}.
Also, an r-coloring of a set X is just a map φ : X → [r]. In some situations, we will
consider a coloring φ using a set of r colors, but the set will not simply be the set [r].

The following result is a straightforward extension of the special case of Theorem 2.1
from [5] for binary trees.

Theorem 2.1. For every triple (Q, p, r), where Q is a binary tree, and p and r are
positive integers with p at least as large as the height of Q, there is a least positive
integer n0 = Ram(Q, p, r) so that if n > n0 and φ is an r-coloring of the strong copies
of Q in Tn, then there is a color α ∈ [r] and a subposet R of Tn such that R is a strong
copy of Tp and φ assigns color α to every strong copy of Q contained in R.

3. Separating Tree-chromatic Number and Path-chromatic Number

For the remainder of the paper, for a positive integer n, we let Gn be the graph of the
V ’s in the complete binary tree Tn. Strictly speaking, a vertex V in Gn is a path which
is determined by its two endpoints, but we find it convenient to specify V as a triple
(x, y, z), where y and z are the endpoints of the path and x is the low point on the path.
We view V as a triple and not a 3-element set so we can follow the convention that y
is in the left tree above x and z is in the right tree above x. When V1 = (x1, y1, z1) and
V2 = (x2, y2, z2) are vertices in Gn, we note that V1 and V2 are adjacent if and only if
one of the following four statements holds: z1 = x2, y1 = x2, y2 = x1 or z2 = x1.

Also, for each n > 1, we let Hn be the graph of V ’s and Y ’s in Tn. Of course, Gn is
an induced subgraph of Hn. Furthermore, the natural tree-decomposition of Hn shows
that tree-χ(Hn) 6 2 for all n > 1.

Our goals for this section are to prove the following two theorems.

Theorem 3.1. For all n > 1, the path-chromatic number of the graph Gn of V ’s in the
complete binary tree Tn is at most 2.

Theorem 3.2. For every positive integer r, there is a least positive integer n0 so that if
n > n0, then the path-chromatic number of the graph Hn of V ’s and Y ’s in the complete
binary tree Tn has chromatic number larger than r.

We elect to follow the line of our research and prove the second of these two theorems
first. In accomplishing this goal, we will discover a path-decomposition of Gn witnessing
that path-χ(Gn) 6 2 for all n > 1.

Our argument for Theorem 3.2 will proceed by contradiction, i.e. we will assume that
there is some positive integer r such that path-χ(Hn) 6 r for all n > 1. The contradic-
tion will come when n is sufficiently large in comparison to r.

For the moment, we take n as a large but unspecified integer. Later, it will be clear
how large n needs to be. We then take a path-decomposition of Hn witnessing that



6 BARRERA-CRUZ, FELSNER, MÉSZÁROS, MICEK, SMITH, TAYLOR, AND TROTTER

path-χ(Hn) 6 r. We may assume that the host path in this decomposition is the set
N of positive integers with i adjacent to i + 1 in N for all i > 1. For each vertex v
in Hn, the set of all integers i for which v ∈ Bi is a set of consecutive integers, and
we denote the least integer in this set as av and the greatest integer as bv. Abusing
notation slightly, we will denote this set as [av, bv], i.e., this interval notation identifies
the integers i ∈ N with av 6 i 6 bv. Alternatively, [av, bv] is just the set of integers i for
which v is in the bag Bi. We point out the requirement that [av, bv] ∩ [au, bu] 6= ∅ when
v and u are adjacent vertices in Hn.

We may assume that av < bv for every vertex v ∈ Hn. Furthermore, we may assume
that for each integer i, there is at most one vertex v ∈ Hn with i ∈ {av, bv}.

For each i ∈ N, we let Gn(i) denote the induced subgraph of Gn determined by those
vertices v ∈ Gn with i ∈ [av, bv]. Alternatively, Gn(i) is the subgraph of Gn induced by
the vertices in bag Bi. The graph Hn(i) is defined analogously.

We pause here to point out an essential detail for the remainder of the proof. Since
χ(Gn(i)) 6 χ(Hn(i)) 6 r for all integers i, then for all q > 2r, there is no positive
integer i for which either Gn(i) or Hn(i) contains the shift graph Sq as a subgraph.

To begin to make the connection with Ramsey theory, we observe that there is a natural
1–1 correspondence between V ’s in Gn and strong copies of T1 in Tn. So in the discussion
to follow, we will interchangeably view a vertex V = (x, y, z) of Gn as a path in Tn and
as a 3-element subposet of Tn forming a strong copy of T1. Of course, we are abusing
notation slightly by referring to Tn as a graph and as a poset, but by now the notion
that as a graph, we are referring to the cover graph of the poset should be clear.

In the discussion to follow, when we discuss a family {Vj : j ∈ [t]} of V ’s in Gn, we will
let Vj = (xj, yj, zj), and we will let [aj, bj] be the interval in the path-decomposition
corresponding to Vj, for each j ∈ [t].

Let (V1, V2) be an ordered pair of vertices in Gn. Referring to the binary trees in
Figure 2, we consider the 7 different ways this pair can appear in Tn so that the two
paths V1 and V2 have at most one vertex from Tn in common:

(i) V1 and V2 are adjacent with z1 = x2. In this case, we associate the pair (V1, V2)
with a strong copy of the poset Q1.

(ii) V1 and V2 are adjacent with y1 = x2. In this case, we associate the pair (V1, V2)
with a strong copy of the poset Q2.

(iii) V1 and V2 are non-adjacent with x2 in the right tree above z1. In this case, we
associate the pair (V1, V2) with a strong copy of the poset Q3.

(iv) V1 and V2 are non-adjacent with x2 in the left tree above y1. In this case, we
associate the pair (V1, V2) with a strong copy of the poset Q4.

(v) V1 and V2 are non-adjacent with x2 in the left tree above z1. In this case, we
associate the pair (V1, V2) with a strong copy of the poset Q5.

(vi) V1 and V2 are non-adjacent with x2 in the right tree above y1. In this case, we
associate the pair (V1, V2) with a strong copy of the poset Q6.
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Figure 2. Applying Ramsey with Seven Binary Trees

(vii) V1 and V2 are non-adjacent and there is a vertex w in Tn so that x1 is in the left
tree above w while x2 is in the right tree above w. In this case, we associate the
pair (V1, V2) with a strong copy of the poset Q7.

Also, given a pair (V1, V2) of distinct V ’s in Gn, there are 6 ways the intervals [a1, b1]
and [a2, b2] can appear in the path-decomposition:

a1 < a2 < b1 < b2 Overlapping, moving right

a2 < a1 < b2 < b1 Overlapping, moving left

a1 < b1 < a2 < b2 Disjoint, moving right

a2 < b2 < a1 < b1 Disjoint, moving left

a1 < a2 < b2 < b1 Inclusion, second in first

a2 < a1 < b1 < b2 Inclusion, first in second

In the arguments to follow, we will abbreviate these 6 options as OMR, OML, DMR,
DML, ISF and IFS, respectively.

We then define for each i ∈ [7] a 6-coloring φi of the strong copies of Qi in Tn. The
colors will be the six labels {OMR,OML, . . . , IFS} listed above. When i ∈ [7] and Q
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Figure 3. A Shift Graph in Gn

is a strong copy of Qi, then Q is associated with a pair (V1, V2) of vertices from Gn.
It is then natural to set φi(Q) as the label describing how the pair ([a1, b1], [a2, b2]) of
intervals are positioned in the path decomposition.

Now let p = 4 · 2r. By iterating on Theorem 2.1, we may assume that n is sufficiently
large to guarantee that there is a subposet R of Tn and a vector (α1, α2, . . . , α7) of colors
such that R is a strong copy of Tp and for each i ∈ [7], φi assigns color αi to all strong
copies of Qi in R. In the remainder of the argument, we will abuse notation slightly
and simply consider that R = Tp.

Claim 1. α1 is either OMR or OML.

Proof. A pair (V1, V2) of vertices in Gn associated with a strong copy of Q1 in Tp is
adjacent in Gn so that [a1, b1] and [a2, b2] intersect. So α1 cannot be DMR or DML. We
assume that α1 is ISF and argue to a contradiction. The argument when α1 is IFS is
symmetric. Consider the subposet of Tp consisting of all non-empty strings for which
each bit, except possibly the last, is a 1. We suggest how this subposet appears (at least
for a modest value of p = 7) in Figure 3.

Using the labelling given in Figure 3, for each interval [i, j] with 1 6 i < j 6 p,
we consider the vertex V [i, j] = (ci, di, cj). Clearly, V [i, j] is adjacent to V [j, k] when
1 6 i < j < k 6 p, i.e, these vertices form the shift graph Sp.

Let [a, b] = [aV [p−1,p], bV [p−1,p]] be the interval for the vertex V [p− 1, p]. We claim that
for each [i, j] with 1 6 i < j 6 p− 1, the interval for V [i, j] in the path-decomposition
for Hn contains [a, b]. This is immediate if j = p − 1, since (V [i, p − 1], V [p − 1, p]) is
assigned color ISF. Now suppose j < p − 1. Then (V [i, j], V [j, p − 1]) is also ISF, so
that in the path-decomposition, the interval for V [j, p − 1] is included in the interval
for V [i, j]. By transitivity, we conclude that [a, b] is included in the interval for V [i, j].
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So the V ’s in {V [i, j] : 1 6 i < j 6 p− 1} form a copy of the shift graph Sp−1, and all
of them are in the bag Gn(a). Since p = 4 · 2r, this is a contradiction. �

Without loss of generality, we take α1 to be OMR, since if α1 is OML, we may simply re-
verse the entire path-decomposition. To help keep track of the configuration information
as it is discovered, we list this statement as a property.

Property 1. α1 = OMR, i.e., φ1 assigns color OMR to a pair (V1, V2) of adjacent
vertices in Gn when z1 = x2.

Although it may not be a surprise, once the color α1 is set, colors α2, α3, . . . , α7 are
determined.

Property 2. α3 = DMR, i.e., φ3 assigns color DMR to a pair (V1, V2) of non-adjacent
vertices in Gn when x2 is in the right tree above z1.

Proof. Let (V1, V2) be a pair of non-adjacent vertices in Gn with x2 in the right tree
above z1. Then let w3 be the string formed by attaching a 0 at the end of z1, and set
V3 = (z1, w3, x2). Then V3 is adjacent to both V1 and V2. Furthermore, φ1(V1, V3) =
OMR and φ1(V3, V2) = OMR. Accordingly, α3 is either OMR or DMR. We assume that
α3 = OMR and argue to a contradiction.

Consider the shift graph used in the proof of Claim 1. Let a = aV [p−1,p] be the left
endpoint of the interval for V [p − 1, p] in the path-decomposition. We claim that a
is in the interval for V [i, j] in the path-decomposition whenever 1 6 i < j 6 p − 1.
Again, this holds when j = p− 1 since φ1(V [i, p− 1], V [p− 1, p]) = OMR. Also, when
j < p− 1, the color assigned by φ3 to the pair (V [i, j], V [p− 1, p]) is also OMR, so that
the interval for V [i, j] in the path-decomposition also contains a. This now implies that
Gn(a) contains the shift graph Sp−1. The contradiction completes the proof. �

Property 3. α2 = OML, i.e, φ2 assigns color OML to a pair (V1, V2) of adjacent
vertices in Gn when y1 = x2. Also, α4 = DML, i.e., φ4 assigns color DML to a pair
(V1, V2) of non-adjacent vertices in Gn when x2 is in the left tree above y1.

Proof. We can repeat the arguments given previously to conclude that one of two cases
must hold: Either (1) α2 = OMR and α4 = DMR, or (2) α2 = OML and α4 = DML.
We assume that α2 = OMR and α4 = DMR and argue to a contradiction. Consider
the binary tree contained in Tp as shown on the left side of Figure 4. Let V1 = (f, g, h),
V2 = (i, j, k), V3 = (c, f, e) and V4 = (c, d, i).

Since φ4(V4, V1) = DMR, we know b4 < a1. Since φ1(V4, V2) = OMR, we know a2 < b4,
so a2 < a1. Since φ3(V3, V2) = DMR, we know b3 < a2 so b3 < a1. But φ2(V3, V1) =
OMR, which requires a1 < b3. The contradiction completes the proof of Property 3. �
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Property 4. α7 = DMR, i.e., φ7 assigns color DMR to a pair (V1, V2) of non-adjacent
vertices in Gn when there is a vertex w in Tn such that x1 is in the left tree above w
while x2 is in the right tree above w.

Proof. We again consider the binary tree shown on the left side of Figure 4. Again, we
take V1 = (f, g, h) and V2 = (i, j, k). Noting that f is in the left tree above c and i is in
the right tree above a, φ7(V1, V2) = α7.

Now let V5 = (c, d, e). Then φ4(V5, V1) = DML and φ3(V5, V2) = DMR. These state-
ments imply α7 = DMR. �

Property 5. α5 = α6 = ISF, i.e., φ5 assigns color ISF to a pair (V1, V2) of non-
adjacent vertices in Gn when x2 is in the left tree above z1 and φ6 assigns this pair color
IFS when x2 is in the right tree above y1.

Proof. We prove that α5 = ISF. The argument to show that α6 = ISF is symmetric.
Consider the binary tree shown on the right side of Figure 4. Let V1 = (c, d, e) and
V2 = (j, k, l). Then j is in the left tree above e, so φ5(V1, V2) = α5.

Now set V3 = (d, f, g) and V4 = (e, h, i). We observe that φ2(V1, V3) = OML,
φ7(V3, V2) = DMR, φ1(V1, V4) = OMR and φ4(V4, V2) = DML. Together, these state-
ments imply α5 = ISF. �

Up to this point in the proof, our entire focus has been on the V ’s in Gn. We now turn
our attention to properties that the Y ’s in Hn must satisfy.

Consider the binary tree shown in Figure 5. Of course, we intend that this tree appear
inside Tp. In our figure, the “size” of this construction is m = 6, but since p = 4 · 2r, we
know we can make m > 2r. For each interval [i, j] with 1 6 i < j 6 m, we let Y [i, j] be
the Y whose three leaves are xi, xj and wj. Clearly, the family {Y [i, j] : 1 6 i < j 6 m}
forms a copy of the shift graph Sm. To reach a final contradiction, it remains only to
show that there is some integer k ∈ N for which all vertices in {Y [i, j] : 1 6 i < j 6 m}
belong to Hn(k).
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For each j ∈ [m], we let Vj = (xj, yj, zj), and as usual, we let [aj, bj] be the corresponding
interval for Vj in the path decomposition. By Property 2, we have α3 = DMR, so that:

a1 < b1 < a2 < b2 < · · · < am−1 < bm−1 < am < bm.

For each j = 2, 3, . . . ,m, let V ′j = (wj, wj0, wj1), and we let [a′j, b
′
j] be the corresponding

interval in the path-decomposition. By Property 4, α7 = DMR so that:

a′m < b′m < a′m−1 < b′m−1 < · · · < a′3 < b′3 < a′2 < b′2.

Again, since α7 = DMR, we know that am < bm < a′m < b′m.

Now consider a pair i, j with 1 6 i < j 6 m. The vertex Y [i, j] is adjacent in Hn

to both Vj and V ′j . This implies that the interval for Y [i, j] must overlap both [aj, bj]
and [a′j, b

′
j]. However, this forces the interval for Y [i, j] to contain [bm, a

′
m]. Therefore,

Gn(bm) contains the shift graph Sm. With this observation, the proof of Theorem 3.2
is complete.

We now return to the task of proving Theorem 3.1, i.e., the assertion that path-χ(Gn) 6
2 for all n > 1. Our proof for Theorem 3.2 suggests a natural way to define a path-
decomposition of the graph Gn of V ’s in the binary tree Tn, one that satisfies all five
properties we have developed to this point. We simply take a drawing in the plane of
Tn using a geometric series approach. Taking a standard cartesian coordinate system
in the plane, we place the zero of Tn at the origin. If m > 0 and we have placed a
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V = (x, y, z)

1

1

1/2

1/2

1/4

1/4

aV =π(y) bV =π(z) ∅

x=0

z=010

y=00110

Figure 6. A Path-Decomposition of Gn

string x of length m at (h, v), we set δ = 2−m and place x1 and x0 at (h+ δ, v+ δ) and
(h− δ, v + δ), respectively.

For each x in Tn, let π(x) denote the vertical projection of x down onto the horizontal
axis. In turn, for each V = (x, y, z), we take aV = π(y) and bV = π(z). To illustrate
this construction, we show in Figure 6 the interval [aV , bV ] corresponding to the vertex
V = (0, 00110, 010) in Gn.

Clearly, we may consider the host path P for the decomposition as consisting of all
points on the horizontal axis of the form π(x) where x ∈ Tn. Also, in the natural
manner, π(x) is adjacent to π(x′) in P when there is no string x′′ ∈ Tn with π(x′′)
between π(x) and π(x′).

So let x0 ∈ Tn and consider the bag B = Bπ(x0) consisting of all vertices V = (x, y, z)
in Gn with π(y) 6 π(x0) 6 π(z). We partition B as C1 ∪ C2 ∪ C3 where:

(i) A vertex V = (x, y, z) of B belongs to C1 if π(x) < π(x0).
(ii) A vertex V = (x, y, z) of B belongs to C2 if π(x) > π(x0).

(iii) A vertex V = (x, y, z) of B belongs to C3 if π(x) = π(x0). In this case, x = x0.

We now explain why C1, C2 and C3 are independent sets in Gn. This is trivial for C3.
We give the argument for C1, noting that the argument for C2 is symmetric.

Suppose that V1 and V2 are adjacent vertices in C1. If the pair (V1, V2) determines
a strong copy of Q1, then π(z1) = π(x2) < π(x0), which is a contradiction. On the
other hand, if the pair (V1, V2) determines a strong copy of Q2, then y1 = x2 so that
π(y1) = π(x2) < π(x1) < π(x0). Now the geometric series nature of the construction
implies that π(z2) < π(x1) < π(x0), which is again a contradiction.
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With these observations, we have now proved that path-χ(Gn) 6 3 for all n > 1. This
inequality is tight as evidenced by the following five elements of Gn which form a 5-
cycle: V1 = (∅, 0, 1), V2 = (1, 10, 11), V3 = (10, 100, 101), V4 = (101, 1010, 1011) and
V5 = (1, 101, 11). Note that π(101) is in [ai, bi] for each i ∈ [5].

Nevertheless, we are able to make a small but important change in the path-
decomposition to obtain a decomposition witnessing that path-χ(Gn) 6 2. For the
integer n, let ε = 2−2n. Then for each vertex V = (x, y, z) of Gn, we change the interval
in the path decomposition for V from [π(y), π(z)] to [π(y) + ε, π(z)− ε]. Our choice of
ε guarantees that we still have a path-decomposition of Gn.

Again, we consider an element x0 of Tn and the bag B consisting of all V = (x, y, z) with
π(y) + ε 6 π(x0) 6 π(z)− ε. As before, C1, C2 and C3 are independent sets, although
membership in these three sets has been affected by the revised path-decomposition. We
claim that C1 ∪C3 is also an independent set, so that the partition B = (C1 ∪C3)∪C2

witnesses that path-χ(Gn) 6 2.

Suppose to the contrary that V1 ∈ C1 and V3 ∈ C3 with V1 adjacent to V3 in Gn. Clearly,
this requires that (V1, V3) is associated with a strong copy of the binary tree Q1 as shown
in Figure 2. This implies that z1 = x0 = x3 so that b1 = π(z1) − ε = π(x0) − ε, which
contradicts the assumption that a1 < π(x1) < π(x0) 6 b1. The contradiction completes
the proof of Theorem 3.1.
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