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Abstract
The queue-number of a poset is the queue-number of its cover graph viewed as a directed acyclic
graph, i.e., the vertex order must be a linear extension of the poset. Heath and Pemmaraju conjec-
tured that every poset of width w has queue-number at most w. Recently, Alam et al. constructed
posets of width w with queue-number w + 1. Our contribution is a construction of posets with
width w with queue-number Ω(w2). This (asymptotically) matches the known upper bound.

1 Introduction

A queue layout of a graph consists of a total ordering on its vertices and a partition of its
edge set into queues, i.e., no two edges in a single block of the partition are nested. The
minimum number of queues needed in a queue layout of a graph G is its queue-number and
denoted by qn(G).

To be more precise, let G be a graph and let L be a linear order of the vertices. A
k-rainbow is a set of k edges {aibi : 1 ≤ i ≤ k} such that a1 < a2 < · · · < ak < bk < · · · <
b2 < b1 in L. A pair of edges forming a 2-rainbow is said to be nested. A queue is a set of
edges without nesting. Given G and L, the edges of G can be partitioned into k queues if
and only if there is no rainbow of size k + 1 in L. The queue-number of G is the minimum
number of queues needed to partition the edges of G over all linear orders L.

The queue-number was introduced by Heath and Rosenberg in 1992 [5] as a counterpart of
book embeddings. Queue layouts were implicitly used before and have applications in fault-
tolerant processing, sorting with parallel queues, matrix computations, scheduling parallel
processes, and in communication management in distributed algorithm (see [3,5,7]). There is
a rich literature exploring bounds on the queue-number of different classes of graphs [2,3,5,8].

In this note we study the queue-number of posets. This parameter was introduced in
1997 by Heath and Pemmaraju [4]. In the spirit of the older concept of the queue-number
of directed acyclic graphs, it is required that a precedes b in a queue layout whenever there
is a directed edge a → b, i.e., the queue layout of a directed acyclic graph is a topological
ordering and in the case of a poset, it is a linear extension.

A poset P is uniquely characterized by any digraph whose edge set is between the directed
cover graph and the directed comparability graph of P . These two digraphs are respectively
the transitive reduction and the transitive closure of any digraph representing P . In the
context of drawings, embeddings and layouts, it is natural to work with the sparse cover
graphs. For example a diagram of P is an upward drawing of the directed cover graph.
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The queue-number of P , denoted by qn(P ), is the smallest k such that there is a linear
extension L of P for which the resulting linear layout of the cover graph GP contains no
(k + 1)-rainbow. Figure 1 shows an example.
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Figure 1 A poset of width 5 and a queue layout with 2 queues indicated by colors.

Clearly qn(GP ) ≤ qn(P ), i.e., the queue-number of a poset is at least as large as the
queue-number of its (undirected) cover graph. It was shown by Heath and Pemmaraju [4]
that even for planar posets P there is no function f such that qn(P ) ≤ f(qn(GP )). They
also investigated the maximum queue-number of several classes of posets, in particular with
respect to bounded width (the maximum number of pairwise incomparable elements) and
height (the maximum number of pairwise comparable elements). In particular they gave
a nice argument showing that qn(P ) ≤ width(P )2 (see Proposition 1 below). The poset P

of height 2 and width w whose cover graph is the complete bipartite graph Kw,w attains
qn(P ) = width(P ). Actually, Heath and Pemmaraju conjectured that qn(P ) ≤ width(P ) for
every poset P .

Knauer, Micek, and Ueckerdt [6] showed that the inequality qn(P ) ≤ width(P ) holds for
all posets of width 2. Last year Alam et al. [1] constructed a non-planar poset of width 3
whose queue number is 4. They generalized the example and constructed for every w > 3 a
poset P with width(P ) = w and qn(P ) = w+1. A second contribution of Alam et al. consists
in a slight improvement of the upper bound: They show qn(P ) ≤ (w−1)2 +1 for all posets P

of width at most w.
Our contribution is the following theorem.

I Theorem 1.1. For every w > 3 there is a poset Pw of width w with

qn(Pw) ≥ w2/8.

These examples (asymptotically) match the upper bound. Besides yielding a strong
improvement of the lower bound, we also believe that our construction is conceptually sim-
pler than the examples provided by Alam et al. to disprove the conjecture of Heath and
Pemmaraju.

As an open problem we promote the question whether the original conjecture holds for
planar posets. In [6] it was shown that the queue-number of planar posets of width w is upper
bounded by 3w − 2 and that there are such planar posets P with qn(P ) = width(P ) = w.

2 Preliminaries

Before getting serious with our construction, we revisit the nice upper bound argument of
Heath and Pemmaraju. Let P = (X, <) be a poset of width w. Dilworth’s Theorem asserts
that X can be decomposed into w chains of P .

I Proposition 1 (Heath and Pemmaraju). For every poset P we have qn(P ) ≤ width(P )2.
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Proof. Let w = width(P ), let C1, . . . , Cw be a chain partition, and let L be any linear
extension of P . Partition the edges of the cover graph into w2 sets Qi,j with i, j ∈ [w] such
that (u, v) ∈ Qi,j if u ∈ Ci and v ∈ Cj . We claim that each Qi,j is a queue.

Let a < b < c < d in L support a pair of nesting cover edges and suppose that both edges
(a, d) and (b, c) belong to Qi,j . By definition a, b ∈ Ci and c, d ∈ Cj and from the ordering
in L we get a < b and c < d in P . Now we have a < b and b < c and c < d in P whence the
relation a < d is implied by transitivity. This contradicts that (a, d) is a cover edge. J

In fact we have shown a much stronger statement: If P and a chain partition C1, . . . , Cw

are given, then there is a partition of the edges of the cover graph of P into parts Qi,j with
i, j ∈ [w] such that each Qi,j is a queue for every linear extension L of P .

2.1 Concepts needed for the construction
Let P be a poset. The dual of P , denoted P̄ , is the poset on the same ground set such that:
x < y in P ⇐⇒ y < x in P̄ .

A poset P is 2-dimensional if and only if there are two linear extensions L1 and L2 such
that: x < y in P ⇐⇒ x < y in L1 and L2. Such a pair L1, L2 is called a realizer of P .

When drawing 2-dimensional posets, it is common to represent each element x by a point
with coordinates (x1, x2) where x1 is the position of x in L1 and x2 is the position of x in L2.
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Figure 2 A poset P , its dual P̄ , and a 2-dimensional drawing of P .

3 Proof of Theorem 1.1

We define Pw recursively. For w = 1, 2 we let Pw be a w-chain, for w ≥ 3, the construction
of Pw is based on a copy of Pw−2, a reinforcement poset Rw−2 of width w−2 with two linear
extensions Lx and Ly, the duals P̄w−2 and R̄w−2 of Pw−2 and Rw−2, and two additional
points a and b. Due to space limitations, we refrain from giving a full formal description
of the construction. Instead, we invite the reader to take a look at Figure 3, which shows
a sketch of Pw. Note that the number p(w) of vertices of Pw is given by the recursion
p(w) = 2p(w − 2) + 6r(w − 2) + 2, where r(w) is the number of vertices of Rw. The edges
between X and Rw−2 are given by Lx such that for each i the i-th element of the chain X

is connected to the element of Rw−2 which is at position i in Lx. The edges between Y and
Rw−2 are given by Ly in the same way.

It can be seen from the sketch that Pw is self-dual, the reflection Pw ↔ P̄w has two fixed
points a and b. This shows that when analyzing qn(Pw), we can restrict the attention to
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Figure 3 Recursive construction of Pw.

linear extensions of Pw which have a before b. With this assumption, a rainbow between
Rw−2 and either X or Y nests above each rainbow of Pw−2. If we let qw−2 be the size of a
rainbow between Rw−2 and either X or Y , then we have the recursion:

qn(Pw) ≥ qn(Pw−2) + qw−2 (1)

We think of this use of a self-dual construction as the symmetry trick. Constructions given
in [6] (Proof of Prop. 2) and [1] (Proof of Thm. 4) also use a recursion based on two copies of
the poset from the previous level of the recursion. This allows them to add an edge nesting
over the rainbow from the previous level of the recursion.

Now suppose that for each width u < w, we choose the poset Ru to be an antichain
of size u and the linear extensions Lx and Ly to be a realizer (think of Lx as the identity
permutation and of Ly as its reverse). The Lemma of Erdős-Szekeres asserts that in every
linear extension of Ru there is an increasing or a decreasing sequence of size at least d

√
ue,

i.e., qu = d
√

ue.
This value of qu together with inequality (1) yields

qn(Pw) ≥
∑

u<w; u≡w(2)

⌈√
u
⌉
∈ Θ(w3/2).
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For the proof of the theorem we need a better construction for the reinforcement posets Ru.
Such a construction will be provided in the proof of the following lemma1.

I Lemma 3.1. For each u ≥ 1, there is a 2-dimensional poset Ru of width u with a realizer
Lx, Ly, such that if L is a linear extension of Ru and dx and dy denote the maximum
lengths of an increasing sequence of L which is decreasing in Lx and Ly respectively, then
dx + dy ≥ u + 1.

The lemma says that we can assume the value qu = du+1
2 e. With inequality (1) we get:

qn(Pw) ≥
∑

u<w; u≡w(2)

⌈u + 1
2

⌉

In the case w odd, w = 2s + 1, we get qn(Pw) ≥
∑s

k=1 k =
(

s+1
2
)
. In the case w even,

w = 2s, we get qn(Pw) ≥
∑s

k=2 k =
(

s+1
2
)
− 1. A simple computation shows that for w ≥ 4

we get qn(Pw) ≥ w2/8, independent of the parity of w. This completes the proof.

3.1 The construction of Ru for Lemma 3.1
The construction of Ru is again recursive. Let R1 be a single point. Then clearly dx+dy = 2.
For the construction of Ru for u ≥ 2 we again use the symmetry trick. We take a series
composition of Q1 + a + Q2 where Q1 and Q2 are two copies of Ru−1 and compose it in
parallel with a single element b. We remark that element a is here only for the sake of the
exposition. The choice of the realizer Lx, Ly is depicted in Figure 4. Clearly width(Ru) =
width(Ru−1) + 1 = u.

a

Lx

b
Ly

Q1
x

y

Q2
x

y

Figure 4 The recursive construction of Ru with its realizer Lx, Ly.

Let L be any linear extension of Ru. First suppose that a < b in L. Let L′ be the
restriction of L to Q1. By induction the lengths d′x and d′y of increasing sequences of L′

which are decreasing in the two linear extensions of the realizer of Q1 satisfy d′x + d′y ≥ u.
Since b precedes Q1 in Lx and comes after Q1 in L, we have dx ≥ d′x + 1. Together with the
trivial dy ≥ d′y, we get dx + dy ≥ u + 1.

1 The lemma with a different proof was originally discovered by the first and the second author in joint
research with Francois Dross, Piotr Micek, and Michał Pilipczuk.
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If b < a we consider Q2. As before we get the two values d′x and d′y for the restriction L′

of L to Q2 and know by induction that d′x + d′y ≥ u. The position of b relative to Q2 in L

and Ly shows that dy ≥ d′y + 1, whence again dx + dy ≥ u + 1. This completes the proof of
the lemma.

4 Conclusion

We have made substantial progress in the understanding of queue-numbers of partial ordered
sets. We take the opportunity to list and comment on open questions in the field.

An obvious question is to ask for improved upper and lower bounds. More precisely, we
now know that the growth rate of the queue-number of posets of width w is (C +o(1))w2

for some constant C between 1/8 and 1. What is the precise value of constant C?
What is the maximum queue-number of planer posets of width w? Knauer, Micek, and
Ueckerdt [6] proved the lower bound w and the upper bound 3w − 2.
Heath and Pemmaraju [4] conjectured that planar posets on n elements have queue-
number at most

√
n. The k antichain together with a matching up to a chain X and a

matching down to a chain Y such that the chains represent a dual pair of linear extensions
is a planar poset P with width n = 3k elements and qn(P ) =

√
dn/3e.

In [6] is was shown that posets P of width 2 have qn(P ) ≤ 2. In [1] it was shown that
posets P of width 3 may have qn(P ) ≥ 4 and satisfy qn(P ) ≤ 5. Is 4 or 5 the best upper
bound in this case?
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