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tGiven a set P of points in the plane we are interested in points that are `deep' inthe set in the sense that they have two opposite quadrants both 
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ontains atleast a b-fra
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omplete des
ription of the set F ofall admissible pairs (a; b). This amounts to identifying three line segments and a point onthe boundary of F .In higher dimensions we study the maximum a, su
h that (a; a) is opposite-orthantadmissible. In dimension d we show that 1=(2
) � a � 1=
 for 
 = 22d�12d�1.Finally we deal with a variant of the problem where the opposite pairs of orthantsneed not be determined by a point in P . Again we are interested in values a, su
h thatall subsets P in Rd admit a pair (O;Oop) of opposite orthants both 
ontaining at leastan a-fra
tion of the points. The maximum su
h value is a = 1=2d. Generalizations of theproblem are also dis
ussed.1 Introdu
tionA point p = (p1; p2) in the plane de�nes four quadrants Q1(p); Q2(p); Q3(p), and Q4(p)
entered at p, ea
h being the interse
tion of two halfspa
es de�ned by one horizontal andone verti
al line through p. As usual the quadrants are numbered in 
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kwise orderstarting from Q1 = f(x1; x2) 2 R2 : x1 � p1 and x2 � p2g. There are two pairs of oppositequadrants (Q1; Q3) and (Q2; Q4). We write Qop to denote the quadrant opposite to Q, e.g.,Qop3 = Q1. In the extended abstra
t of this arti
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results hold for 
losed quadrants as well. The 
losed quadrants have the advantage that weneed no assumption about general position.For a given set P of points we ask for points p 2 P that are `deep' in the set in the sensethat p has two opposite quadrants both 
ontaining many points of P . A pair (Q;Qop) ofopposite quadrants 
entered at a point p 2 P is 
alled (a; b)-admissible if jQ \ P j � a(n� 1)and jQop \ P j � b(n � 1). Clearly, the admissibility of (a; b) depends on n, the number ofpoints in P . However, we are interested in the asymptoti
 behaviour for n ! 1. We 
all apair (a; b) admissible if every �nite point set P 
ontains a point with two opposite quadrantsthat are (a; b)-admissible. Thus, (a; b) is not admissible if there exists a number N , su
h thatfor all n � N there is an n-element set P in whi
h no point has two opposite quadrants thatare (a; b)-admissible.Br�onnimann, Len
hner, and Pa
h [BLP℄ de�ne the notion of opposite-quadrant depth forpoint sets in the plane as the maximum a, su
h that (a; a) is admissible. They prove thatevery set of points in the plane has opposite-quadrant depth at least 18 . We give a new andsimpler proof of this result below, Theorem 1.1.In Se
tion 2 we provide a 
omplete des
ription of the set F of all admissible pairs. Theshape of F turns out to be surprisingly 
ompli
ated (see Figure 3).In Se
tion 3 we ask for the maximum a, su
h that (a; a) is admissible in higher dimensions.In dimension d we obtain upper and lower bounds that di�er by a fa
tor of 2. In Se
tion 4we dis
uss further generalizations.The notion of opposite-quadrant depth, resp. opposite-orthant depth, is related to 
enter-points and some measures of statisti
al depth, su
h as hyperplane depth. We refer to [Ede℄ forinformation on 
enterpoints and to [LPS℄ for statisti
al depth. Br�onnimann et al. [BLP℄ alsomention a 
onne
tion with 
on
i
t-free 
olorings. Related notions of depth have been studiede.g. in [BPZ1℄ and [BPZ2℄.As a warm up and for the purpose of introdu
ing some 
onvenient notation we now reprovethe main result from [BLP℄.Theorem 1.1 ([BLP℄).(1) Any set P of n points in the plane has opposite-quadrant depth at least 18 .(2) If P is in 
onvex position, then it has opposite-quadrant depth at least 14 .Before starting with the proof let us introdu
e the following 
onvenient notation. Givena set P of n points, the weight of a subset A of the plane is !(A) = jA\P jn�1 . In terms ofweights, a pair (Q;Qop) of opposite quadrants at a point p 2 P is (a; b)-admissible if and onlyif !(Q) � a and !(Qop) � b.In many 
ases we will 
hoose a subset P 0 of P of some spe
i�ed weight. When we 
hoose aset P 0 � P of weight a we mean that P 0 
ontains exa
tly ba(n�1)
 points from P . This way,the weight of P 0 may be less than a, but the addition of any point would result in a weightwhi
h is at least a. The additional point will 
orrespond to that point in P that determinesan admissible pair of quadrants.Theorem 1.1 is a trivial 
onsequen
e of the following lemma.Lemma 1.2. Every set P in the plane 
ontains a point p, su
h thatmin �!(Q1(p)); !(Q3(p))�+min �!(Q2(p)); !(Q4(p))� � 14 :2



Proof. Given the point set P , 
hoose the sets PL; PR; PB , and PT of weight 14 ea
h 
onsistingof the �rst points in P from the left, right, bottom, and top, respe
tively (see Figure 1). Thatis, we 
hoose the b14(n� 1)
 points from P with the smallest x1-values, the largest x1-values,the smallest x2-values, and the largest x2-values, respe
tively.It follows that P 0 = P n (PL [ PR [ PB [ PT ) 6= ; and we 
laim that every point in P 0has the desired property. Let p be su
h a point and assume that min �!(Q1(p)); !(Q3(p))� =s = !(Q1(p)). Sin
e PT is 
ontained in Q1(p) [ Q2(p) it follows that !(Q2(p)) � 14 � s.Considering PR we obtain !(Q4(p)) � 14 � s. Consequently min �!(Q1(p)); !(Q3(p))� = sand min �!(Q2(p)); !(Q4(p))� � 14 � s, whi
h proves the lemma.
pPL PR 14PT

PB 1414 14Figure 1: An illustration of the proof of Lemma 1.2.Proof of Theorem 1.1. For part one of the theorem it is enough to observe that either s or14 � s is at least 18 . For the se
ond part note that if P is in 
onvex position one of the fourquadrants of p is empty. Therefore, one of the two minima in the lemma is zero and the otherminimum is at least 14 .
Figure 2: Opposite-quadrant depth at most18 .

It is easy to see that the se
ond part of Theorem 1.1 is bestpossible by taking P to be the set of verti
es of a regular n-gon. In[BLP℄ it is shown that the �rst part of Theorem 1.1 is best possiblefor arbitrarily large values of n of the form n = 4 � 3k. The examplein Figure 2 shows a simple 
onstru
tion that proves that the �rstpart of Theorem 1.1 
annot be improved, i.e., we show that forevery " > 0 there exists N("), su
h that for all n � N(") there isan n-element set P with opposite-quadrant depth less than 18 + ".Fix " > 0 and n � 178" + 1. To des
ribe the example we identifya point set in the plane with the indu
ed dominan
e order, that is,we say (x1; x2) � (y1; y2) if x1 � y1 and x2 � y2. Based on thisorder we 
an talk about 
hains and anti
hains of a point set. Theexample of Figure 2 
onsists of eight 
hains ea
h of either bn8 
 ordn8 e points. In the �gure the 
hains are represented by gray segments.Now n � 178" + 1 is equivalent to (18 + ")(n � 1) � n8 + 2, whi
h is stri
tly more than onepoint together with the points in one 
hain. Therefore, if a quadrant at p 
ontains, besidesp, no more than one 
hain, then its weight is less than 18 + ".The eight 
hains 
ome in two groups of four 
hains ea
h. One group is the set of weight12 
onsisting of the �rst points in P from the left (and the bottom) and the other group ofweight 12 
onsists of the �rst points in P from the right (and the top).3



We 
onsider two 
ases: First for p 2 P look at the pair (Q2(p); Q4(p)). The 
hains inea
h group are arranged in su
h a way that Q2(p) and Q4(p) both 
ontain p and an integralnumber of 
hains. But there is no point p with Q2(p) and Q4(p) ea
h 
ontaining two 
hains.Finally, for every p 2 P either Q1(p) or Q3(p) 
ontains no more than one 
hain. Hen
eevery point has two adja
ent quadrants with weight less than 18 + ".2 The Set of Admissible PairsRe
all that a pair (a; b) 2 [0; 1℄2 is 
alled admissible if every �nite point set P in the plane
ontains a point p 2 P , su
h that there is a quadrant Q 
entered at p with !(Q) � a and!(Qop) � b. For pairs (a; b); (a0; b0) in [0; 1℄2 we write (a; b) � (a0; b0) if a � a0 and b � b0.In this se
tion we provide a full 
hara
terization of the set F of all admissible pairs. Webegin with some easy observations.� F is symmetri
 in the sense that if (a; b) 2 F , then also (b; a) 2 F .� F is also monotone de
reasing, that is, if (a; b) 2 F and (0; 0) � (a0; b0) � (a; b) then(a0; b0) 2 F .Figure 3 depi
ts the half of the set F where a � b, the other half is obtained by re
e
tionabout the diagonal line a = b. In our analysis, we will determine the part of the boundary ofF shown in the �gure. That is, we will always assume that a � b.
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Thm. 1.14a+ 2b = 1, 
.f. Thm. 2.53a+ 3b = 1, 
.f. Thm. 2.63a+ 5b = 1, 
.f. Prop. 2.1 Fig. 9Fig. 72a+ 6b = 1, 
.f. Thm. 2.4Fig. 2
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Figure 3: The shape of the set F of admissible pairs. Referen
es show where to �nd theproofs and 
onstru
tions.Theorem 1.1 shows that (18 ; 18) 2 F and the example from Figure 2 implies that if both aand b are greater than 18 , then (a; b) =2 F .Though the next proposition does not really 
ontribute to the boundary of F it providesa good �rst approximation to the set.Proposition 2.1. Every pair (a; b) with 3a+ 5b � 1 is in F .
4



A p2b2bS a+ bZ2a
Figure 4: An illustration of theproof of Proposition 2.1.

Proof. First note that we only have to prove that every pair(a; b) with 3a+5b = 1 is in F . The proposition then followsfor all pairs (0; 0) � (a0; b0) � (a; b).So given a set P of points and a pair (a; b) with 3a +5b = 1, 
hoose the set A of weight 2a 
onsisting of the �rstpoints in P from the left and the set Z of weight a + b
onsisting of the �rst points in P from the right. Considerthe horizontal median point p in the strip S between the setsA and Z. From the assumption it follows that !(S) � 4b(see Figure 4).From !(A) � 2a it follows that one of the left quadrantsof p has weight at least a (w.l.o.g. the upper one Q2(p)). If!(Q4(p)) � b we are done. Hen
e, we may assume that !(Q4(p)) < b. From the weight of Zit then follows that !(Q1(p)) � a. The weight of points below p in S is at least 2b, therefore,!(Q4(p)) < b implies that !(Q3(p)) � b. We have thus found an appropriate pair of oppositequadrants.Setting a = 13 and b = 0 in the above proposition implies that (13 ; 0) is admissable. To seethat (13 + "; 0 + ") is not admissible for any " > 0 it is enough to 
onsider three independent
hains ea
h of weight 13 (The top right of Figure 2 depi
ts four independent 
hains.). In thisexample !(Q(p)) > 13 implies !(Qop(p)) = 0. Therefore:Observation 2.2. Pairs (a; b) with a > 13 and b > 0 are not admissible, i.e., they are notin F .The next observation implies that (12 ; 0) belongs to the boundary of F .Observation 2.3. The pair (12 ; 0) belongs to F . Moreover, for every a > 12 the pair (a; 0)does not belong to F .Proof. Let P be a set of n points in the plane and let p 2 P be the point of P with the largestx1-
oordinate. All points of P n fpg are 
ontained in the se
ond and third quadrant of p.Hen
e, one of these two quadrants has weight at least 12 . This shows that (12 ; 0) belongs to F .To see that (a; 0) does not belong to F for any a > 12 , 
onsider a set P of n points evenlydistributed on a 
ir
le, or equivalently the verti
es of a regular n-gon. It is left to the readerto verify that no point in P has a quadrant of weight greater than 12 .We now get to the 
on
avity at (15 ; 110) on the boundary of F and the two segmentsbounding F that meet in this point.Theorem 2.4. Every pair (a; b) with 2a+ 6b = 1 and a � 14 is in F .Proof. Given a set P of points and a pair (a; b), 
hoose two verti
al lines, su
h that the setA of points to the left of both lines has weight a+ b, the set S in the strip between the lineshas weight 4b and the set Z of points to the right of the two lines has the remaining weighta+ b. Consider the horizontal median point p of the middle set S (see Figure 5).One of the quadrants of p has weight at least 14 . Without loss of generality we assume thatthis is true for Q1(p). The restri
tion 14 � a implies !(Q1(p)) � a. If !(Q3(p)) � b we aredone. Hen
e, we may assume that !(Q3(p)) < b. From the weight of A it then follows that5



A p ZSa+ b a+ b2b2bFigure 5: An illustration of the proof of Theorem 2.4.!(Q2(p)) � a. Similarly from the weight of points below p in S it follows that !(Q4(p)) � b.Hen
e, (Q2; Q4) is an appropriate pair of opposite quadrants.Theorem 2.5. Every pair (a; b) with 4a+ 2b = 1 and 316 � a is in F .
2a� bZp2a� bA S2b2bFigure 6: An illustration of theproof of Theorem 2.5.

Proof. In the proof we will need that 2a � 3b, whi
h followsfrom 4a+ 2b = 1 and 316 � a.Given a set P of points and a pair (a; b), 
hoose twoverti
al lines, su
h that the set A of points to the left ofboth lines has weight 2a� b, the set S in the strip betweenthe lines has weight 4b and the set Z of points to the right ofthe two lines has the remaining weight 2a� b. Consider thehorizontal median point p of the middle set S (see Figure 6).One of the quadrants of p has weight at least 14 . Withoutloss of generality we assume that this is true for Q1(p), i.e.,!(Q1(p)) � 14 � a. If !(Q3(p)) � b we are done. Hen
e, wemay assume that !(Q3(p)) < b. From the weight of pointsbelow p it then follows that !(Q4) � b. Sin
e the weight ofA is at least 2a � b � 2b it follows that !(Q2(p)) � b. If one of the quadrants Q2(p) andQ4(p) has weight at least a we are done. But if !(Q2(p)) < a and !(Q4(p)) < a the pointsin the union of the se
ond, third and fourth quadrant of p would have total weight less than2a+ b whi
h 
ontradi
ts the 
hoi
e of p.It remains to show that for 14 � a � 13 the boundary of F is a segment supported bythe line 3a + 3b = 1. The following theorem shows that all pairs (a; b) on this segment areadmissible. In Figure 9 we present a point set P with no point having opposite quadrantsthat are (a + "; b + ")-admissible for 3a+ 3b = 1, a � 14 , and any " > 0. The analysis of theexample is given in Proposition 2.7.Theorem 2.6. Every pair (a; b) with 3a+ 3b = 1 and 14 � a � 13 is in F .Proof. Given a set P of points and a pair (a; b), 
hoose a verti
al line, su
h that the set A ofpoints to the left of the line has weight a+ b. Choose another verti
al line, su
h that the setZ of points to the right of this line has weight a+ b. The set S in the strip between the linesalso has weight a+ b. This set S is divided verti
ally into a top part T , a middle part M and6



2a+ 6b = 1 anda� 2b � 0 ()a � 15
� 2 anti
hains ofweight a� 2b� 10 
hains ofweight b� 8 short 
hainsea
h of weight a2� 2 long 
hainsea
h of weight b

4a+ 2b = 1 anda2 � b ()a � 15Figure 7: Two examples showing that the pairs (a; b) from Theorem 2.5 and Theorem 2.4 areon the boundary of F . The analysis is again based on a simple 
ase distin
tion. Za+ bp2b2ba� 3bTMBqa+ bA
Figure 8: An illustration of theproof of Theorem 2.6.

a bottom part B, su
h that ea
h of T and B has weight 2b(see Figure 8). The verti
al lines are 
hosen, su
h that theweight of M is (a + b) � 4b = a � 3b. From a � 14 and3a+ 3b = 1 it follows that this weight is non-negative.Suppose one of the quadrants of p or q has weight at leasta. In this 
ase we 
an simply disregard the middle part Mand follow the very same argumentation as in Theorem 2.4to �nd an appropriate pair of opposite quadrants.To see that at least one of the quadrants of p or q hasweight at least a we sum up the weights of the �rst andse
ond quadrant of p and the third and fourth quadrant ofq: !(Q1(p)) + !(Q2(p)) + !(Q3(q)) + !(Q4(q)) � 4a.Proposition 2.7. None of the pairs (a+ "; b+ ") with a � 14 , " > 0, and 3a+3b = 1 is in F .Proof. As in the previous proof we will need that a � 3b � 0, whi
h follows from a � 14 and3a+ 3b = 1.The example 
onsists of four 
hains/anti
hains ea
h of weight 12(a� 3b), a 
ir
le of weighta � 3b and 12 
hains/anti
hains ea
h of weight b (see Figure 9). The total weight of the setS1 
onsisting of an anti
hain and three 
hains is 12(a� 3b) + 3b = 12 (a+3b). Sin
e a� 3b � 0this is at most a.Sin
e the example is invariant under rotations of 90 degrees it is enough to show thatthere is no point p, su
h that (Q1(p); Q3(p)) is (a + "; b + ")-admissible for " > 0. Sin
e weneed !(Q1(p)) > a we 
an't take p from S1 or S2. When 
onsidering p 2 S4 we get strongrestri
tions from the requirement !(Q3(p)) > b. To mat
h this we need to have two of theanti
hains of size b of S4 in Q3(p). Therefore Q1(p) 
an only 
ontain the 
hain of size 12 (a�3b)from S4, whi
h yields !(Q1(p)) � 12(a� 3b) + 12 (a+ 3b) = a, whi
h is not enough.7



Any point p from the 
ir
le C has !(Q1(p) \ C) � 12!(C) = 12(a � 3b). This rules outpoints from the 
ir
le be
ause for su
h points !(Q1(p)) � 12 (a� 3b) + 12(a+ 3b) = a whi
h isnot enough.The last possibility is to take p 2 S3. Su
h a point, however, does not mat
h the require-ment !(Q3(p)) > b.Altogether this shows that there is no point with an (a+"; b+")-admissible pair of oppositequadrants.
� a 
ir
le with equidistributed points of weight a� 3b� 4 
hains/anti
hains of weight 12 (a� 3b)� 12 
hains/anti
hains of weight b

C
S4S3

S2
S1

Figure 9: An example showing that there are no admissible pairs (a + "; b + ") beyond thesegment 3a+ 3b = 1. The analysis is in Proposition 2.73 Higher DimensionsA point p in Rd de�nes 2d orthants 
entered at p. Again there is an obvious notion of anorthant Oop opposite to a given orthant O. The weight !(O) of an orthant O with respe
t toa point set P is the fra
tion of points of P 
ontained in O. For a more formal de�nition ofthe weight we refer to the introdu
tion. 8



De�ne the opposite-orthant depth �d for point sets in Rd as the maximum a, su
h thatevery point set P � Rd 
ontains a point p that determines a pair (O;Oop) of opposite orthantswith !(O) � a and !(Oop) � a. Br�onnimann et al. [BLP℄ have 
onsidered �3. They 
laimthat �3 � 1=2016, this however is based on the false assumption that every set of 9 points inR3 has a point p with two opposite orthants ea
h 
ontaining a point from P n fpg. Indeed,the least n su
h that this holds is n = 17. With this 
orre
tion their proof only yields�3 � 1=16320. The 
ase d = 3 of the theorem below gives �3 � 1=32.For a point x 2 Rd and i = 1; : : : ; d de�ne the 
losed halfspa
es H+i (x) = fy : yi � xigand H�i (x) = fy : yi � xig. A sign ve
tor is a d-tuple � = (�1; : : : ; �d) with �i 2 f+;�g. Forevery point x and sign ve
tor � we de�ne the orthant O�(x) = TiH�ii (x).Theorem 3.1 (Lower Bound). In Rd , the opposite-orthant depth �d is at least 2�(2d�1+d).Proof. A set of points is t-good if it 
ontains no point determining a pair of opposite orthantsea
h 
ontaining t + 2 or more points from P . We will prove that jP j > 22d�1(t 2d) impliesthat P is not t-good. Hen
e �d(t22d�1+d + 1) � t + 2, whi
h yields the bound stated in thetheorem.Let P be a t-good set. One of the orthants from ea
h pair of opposite orthants determinedby p 2 P is small in the sense that it 
ontains at most t points from P n fpg. The patternassigned to p is a 
olle
tion �(p) of 2d�1 sign ve
tors, su
h that� O�(p) is small for ea
h � 2 �(p) and for ea
h pair (O�; O��) of opposite orthants deter-mined by p either � or �� is in �(p).For a given pattern � we 
olle
t all points p 2 P with �(p) = � in a set P�. Figure 10 showsan example. x2
x1Figure 10: A 2-good set of 9 points in the plane. Small quadrants of points are indi
ated bygray angles. The white points may get the pattern � = f(+;+); (+;�)g assigned.We have partitioned the points of P a

ording to their pattern. The upper bound on thesize of any t-good set P follows from 
ounting the possible patterns and bounding the numberof points in ea
h 
lass P�.There are 2d sign ve
tors paired up in 2d�1 pairs �; �� belonging to pairs of oppositeorthants. A pattern is a sele
tion of one sign ve
tor from ea
h su
h pair, therefore:� There are at most 22d�1 di�erent patterns.9



For any p and � let v�(p) = jO�(p)\ (P nfpg)j. De�ne the s
ore of p as s(p) =P�2�(p) v�(p).From the de�nition of �(p) it follows that v�(p) � t for all � 2 �(p), hen
e, s(p) � t 2d�1.Note that the s
ore of p is the number of points in the small orthants O�(p) with � 2 �(p).Consider two points p; q and note that q 2 O�(p) if and only if p 2 O��(q). Suppose pand q both belong to P�, sin
e one of � and �� is in � we note that either p is 
ounted in thes
ore of q or q is 
ounted in the s
ore of p. From this we obtain:jP�j(jP�j � 1)2 = �jP�j2 � � Xp2P� s(p) � Xp2P� t 2d�1 = jP�j t 2d�1:To redu
e the upper bound on P s(p) by one observe that for ea
h � 2 � there are points inP� with v�(p) < t. This yields the following bound on jP�j:� For ea
h 
lass P� we have jP�j � 2 t 2d�1.Combining the bounds for the number of patterns and the size of the 
lasses we �nd that at-good set P has at most 22d�1(t 2d) points.The upper bound on the opposite-orthant depth �d presented in the following theorem isonly a fa
tor of two apart from the lower bound of Theorem 3.1. It is evident that the lowerbound is not tight. In dimension 2 the upper and lower bounds yield 116 � �2 � 18 . FromTheorem 1.1 and the example of Figure 2 we know that �2 = 18 . Indeed we suspe
t that inall dimensions the upper bound gives the true value of �d.Theorem 3.2 (Upper Bound). In Rd , the opposite-orthant depth �d is at most 2�(2d�1+d�1).Proof. We have to 
onstru
t large point sets with small opposite-orthant depth. The 
on-stru
tion is in two steps. In the �rst step we build a set P0 of 22d�1 points, su
h that forany point p 2 P0 and any pair (O;Oop) of opposite orthants at p either O \ P0 or Oop \ P0equals fpg. In the se
ond step we repla
e ea
h point of P0 with a 
arefully 
hosen set of t 2d�1points, su
h that the depth remains bounded by t+ 1. Hen
e t+ 2 � �d(22d�1 t 2d�1), whi
hyields the bound stated in the theorem.Let � be a sign ve
tor and �� be the sign ve
tor of the orthant opposite to O�. Based on� we de�ne a binary relation on P , let p �� q if p 2 O�(q) or p 2 O��(q), i.e., q 2 O�(p).A set M of points in Rd is monotone if there is a sign ve
tor �, su
h that p �� q forall p; q 2 M . Equivalently, M is monotone if there is an ordering of the points so thatea
h 
oordinate is in
reasing or de
reasing in this order. Repeated appli
ation of the Erd}os-Szekeres lemma implies that any n points in Rd 
ontain a monotone subset of size at leastn 12d�1 . It is a widely known fa
t that this bound is best possible. A detailed 
onstru
tion oftight examples 
an be found e.g. in [Lit℄. Due to this result there is a set P0 of 22d�1 pointsthat does not 
ontain a monotone subset of size three. Hen
e, for every p 2 P0 and every pairof opposite orthants (O;Oop) determined by p at least one of the orthants 
ontains no pointof P0 n fpg.An orthant O�(p) de�ned by p 2 P0 is small if O�(p) \ P0 = fpg. As in the proof of theprevious theorem we 
olle
t sign ve
tors of small orthants of p 2 P0 in a pattern �(p). Re
allthat �(p) 
ontains the sign ve
tor of one of ea
h pair of opposite orthants. We 
onstru
t theset P by repla
ing ea
h point p 2 P0 by a set Q(p) of t 2d�1 points, su
h that q 2 Q(p) and� 2 �(p) implies jO�(q) \ P j = jO�(q) \ Q(p)j � t + 1, i.e., the orthant O�(q) is t-small forall � 2 �(p). 10



For ea
h p 2 P0 �x a `small' box B(p) 
ontaining p, su
h that every 
hoi
e of one pointfrom ea
h of these boxes yields a set with the same property as P0. Formally, for p; q 2 P0with p �� q we require that p0 �� q0 for all p0 2 B(p) and q0 2 B(q). For the 
onstru
tionof Q(p) in the box B(p) it is 
onvenient to think of B(p) as an open set. To begin withlet �0; �1; �2; : : : be an ordering of the 2d�1 sign ve
tors in �(p). Starting with S0 = ; weindu
tively de�ne subboxes Si for i = 1; : : : ; 2d�1 � 1 of B0 = B(p) as follows: If Si�1 andBi�1 are de�ned 
hoose a point si in Bi�1 and let Si = O�i(si)\Bi�1 and Bi = O ��i(si)\Bi�1.Finally, let S2d�1 = B2d�1�1. An example is given in Figure 11.

S2
S4 S3 x2 x1x3

S1

Figure 11: A point set Q(p). The points of Q(p) are aligned along diagonals of the subboxesSi as indi
ated by the bla
k bars. The pattern �(p) of the point repla
ed by Q(p) is �0 =(�;+;�), �1 = (�;+;+), �2 = (�;�;�) and �3 = (+;+;�).From the 
onstru
tion rules it follows that for i < j and any points pi 2 Si and pj 2 Sjwe have pj = O ��i(pi) and 
onsequently pi = O�i(pj). This shows that inserting t points intoea
h Si su
h that any two of these points are in relation �0 yields a set Q(p) with the desiredproperties.� jQ(p)j = t 2d�1� jO�(q) \ P j = jO�(q) \Q(p)j � t+ 1 for all q 2 Q(p) and � 2 �(p).This 
ompletes the 
onstru
tion of a t-good set P and the proof of the upper bound on �d.4 Further GeneralizationsThe set F of all admissible pairs was de�ned as the set of all pairs (a; b) su
h that every set Pof n points in the plane 
ontains a point p 2 P that determines two opposite quadrants withweights at least a and b. What if we do not require the point p to belong to the set P , and onlylook for a point z in the plane with the same property of two opposite quadrants determinedby it. It is not hard to see that (a; b) is admissible in this model whenever, a + b � 1=2. Inaddition we have the admissible pairs (a; 0) for all a � 1. A set of points uniformly distributedon a 
ir
le C shows that this is the 
omplete des
ription of the set of admissible pairs. Indeed,it is not hard to 
he
k that for any point z in the plane, surrounded by C, the horizontal andverti
al lines through z determine four quadrants su
h that the measure of the union of any11



two opposite ones is at exa
tly 12 . If the point z is not surrounded by C, then the measure ofone quadrant is equal to 0 while the opposite quadrant has measure at least 12 .One way to generalize the setting is by 
onsidering two opposite quadrants determinedby a verti
al and a horizontal line as a diagonal in the 2-by-2 array of 
ells determined bythese two lines. Then it is natural to 
onsider n� 1 verti
al lines and n� 1 horizontal linesand to �nd a generalized diagonal of 
ells in the n-by-n arrangement of 
ells, determined bythese lines, su
h that ea
h of the 
ells 
ontains `many' points of P . By a generalized diagonalwe mean a set of n 
ells, su
h that no two are in the same row or in the same 
olumn (seeFigure 12).

Figure 12: A 
ontinuous measure split into 
ells by four verti
al and four horizontal lines. Ageneralized diagonal is illustrated in the dotted squares.Sin
e we do not require the verti
al and horizontal lines to interse
t in points of the setin question, it is equivalent to 
onsider a 
ontinuous probability measure in the plane andto look for n � 1 verti
al lines and n � 1 horizontal lines and a generalized diagonal in thearrangement of the n-by-n 
ells, determined by these lines, su
h that ea
h of the 
ells has`large' measure (see Figure 12). This naturally generalizes to higher dimensions as well. Thefollowing theorem gives a partial answer to this problem in any dimension d:Theorem 4.1. Let � be a 
ontinuous probability measure in [0; 1℄d. Let n be a positive integerand let �1; : : : ; �n be a sequen
e of positive real numbers, su
h that Pni=1 �i = 1nd�1 . Thenthere exist numbers xi;j, where 1 � i � d and 0 � j � n, and d permutations �1; : : : ; �d onf1; : : : ; ng with the following properties:1. For every 1 � i � d, xi;0 = 0 < xi;1 < : : : < xi;n�1 < xi;n = 1.2. For every 1 � j � n, we have �([x1;�1(j)�1; x1;�1(j)℄� : : :� [xd;�d(j)�1; xd;�d(j)℄) � �j.Remark. Intuitively, the numbers xi;j in Theorem 4.1 de�ne the d dimensional array of nd
ells generated by the hyper-planes Hi;j = f(x1; : : : ; xd) 2 Rd j xi = xi;jg, for all 1 � i � nand 1 � j � d. The theorem then says that there exists su
h an array (while the measure �is given) that 
ontains a generalized diagonal of n boxes with measures of at least �1; : : : ; �n,respe
tively. 12



Proof. In fa
t, the proof is not mu
h more 
ompli
ated than the statement of the theorem.The proof goes by indu
tion on d. For d = 1 simply de�ne x1;0 = 0 and for every 1 � j � nlet x1;j = x1;j�1+�j. In this 
ase �1 : [n℄! [n℄ 
an be 
hosen to be the identity permutation.For d > 1, let �0j = n�j for every 1 � j � n. Observe thatPnj=1 �0j = 1nd�2 . Let �0 denotethe measure � proje
ted along the last dimension. That is, �0 is a 
ontinuous probabilitymeasure on [0; 1℄d�1 de�ned by �0([a1; b1℄� : : :� [ad�1; bd�1℄) = �([a1; b1℄� : : :� [ad�1; bd�1℄�[0; 1℄).By the indu
tion hypothesis there exist numbers xi;j, where 1 � i � d� 1 and 0 � j � n,and d�1 permutations �1; : : : ; �d�1 on the elements f1; : : : ; ng, with the following properties:1. For every 1 � i � d� 1 xi;0 = 0 < xi;1 < : : : < xi;n�1 < xi;n = 1.2. For every 1 � j � n we have �0([x1;�1(j)�1; x1;�1(j)℄�: : :�[xd�1;�d�1(j)�1; xd�1;�d�1(j)℄) ��0j .We now de�ne the sequen
e xd;0; xd;1 : : : ; xd;n and the permutation �d as follows. Weput xd;0 = 0. xd;1 is de�ned to be the minimum number greater than xd;0, su
h that thereexists some j between 1 and n with �([x1;�1(j)�1; x1;�1(j)℄� : : :� [xd�1;�d�1(j)�1; xd�1;�d�1(j)℄�[xd;0; xd;1℄) = �j. We set �d(j) = 1. From the 
hoi
e of j and xd;1 it follows that for every1 � k � n we have �([x1;�1(k)�1; x1;�1(k)℄�: : :�[xd�1;�d�1(k)�1; xd�1;�d�1(k)℄�[xd;0; xd;1℄) � �k.For 1 < k � n we de�ne xd;k to be the minimum number greater than xd;k�1, su
h thatthere exists some j between 1 and n, su
h that j is di�erent from ea
h of ��1d (1); : : : ; ��1d (k�1)and �([x1;�1(j)�1; x1;�1(j)℄ � : : : � [xd�1;�d�1(j)�1; xd�1;�d�1(j)℄ � [xd;k�1; xd;k℄) = �j . We set�d(j) = k.Finally, we let xd;n = 1 and set �d(j) = n, where j is the only index between 1 and n thatis not one of ��1d (1); : : : ; ��1d (n� 1).It is straight forward to 
he
k that the numbers xi;j where 1 � i � d and 0 � j � n and�1; : : : ; �d satisfy the requirements of the theorem.Re
all that when d = 2 and n = 2, the example where the measure � is evenly distributedon a 
ir
le C shows that the result in Theorem 4.1 is best possible apart from the 
asewhere �i = 0 for some i. As we shall see later (Theorem 4.3) the result is not best possiblein dimension d > 2. However, when the values �i in Theorem 4.1 are all equal, then theresult is indeed best possible in any dimension. This is a 
onsequen
e of the following simpleproposition.Proposition 4.2. Let � be the standard Lebesgue measure on [0; 1℄d and let n be a positiveinteger. Then one 
annot �nd numbers xi;j, where 1 � i � d and 0 � j � n, su
h that thearrangement of nd bounded 
ells determined by the hyperplanes Hi;j = fz : zi = xi;jg has ageneralized diagonal, su
h that ea
h 
ell of the generalized diagonal has measure stri
tly largerthan 1=nd.Proof. Assume to the 
ontrary that there are numbers xi;j and permutations �i, su
h thatfor ea
h j �([x1;�1(j)�1; x1;�1(j)℄� : : : � [xd;�d(j)�1; xd;�d(j)℄) > 1nd . We will use the arithmeti
and geometri
 mean inequality, by whi
h, for every d positive numbers a1; : : : ; ad we havea1 + � � � + add � (a1a2 � � � ad) 1d :13



For every 1 � i � d and 1 � j � n put ai;j = xi;�i(j) � xi;�i(j)�1. For every 1 � i � dwe may assume that xi;0 = 0 and xi;n = 1, hen
e, Pnj=1 ai;j = 1. On the other hand, ourassumption on the measure and the 
ells of the generalized diagonal implyQdi=1 ai;j > 1nd forevery 1 � j � n. Therefore, by the means inequality, for every 1 � j � n we have:dXi=1 ai;j � d( dYi=1 ai;j) 1d > dn:This yields the desired 
ontradi
tion:d = dXi=1 nXj=1 ai;j = nXj=1 dXi=1 ai;j > nXj=1 dn = d:The following theorem shows that when d = 3 and n = 2 one 
an obtain a better resultin Theorem 4.1 in the 
ase where �1 and �2 are di�erent. We in
lude this theorem mostlyfor the method of proof and for showing that Theorem 4.1 is not tight in general. We statethe theorem in the dis
rete form.Theorem 4.3. Let P be a �nite set of points in R3 . We assume that no two points in Phave a 
oordinate in 
ommon. Let �1 � 112 and �2 = 13 � 3�1. Then there exists a pointz = (z1; z2; z3) 2 R3 , su
h that the planes fxi = zig for i = 1; 2; 3 determine two oppositeorthants, one of weight at least �1 and the other of weight at least �2.Proof. Let 0 < � < 13 be given. De�ne numbers a�i and a+i for i = 1; 2; 3, su
h that the weightof ea
h of the sets A�i = fp 2 P : pi � a�i g and A+i = fp 2 P : pi � a+i g is pre
isely (16 + �).For every i = 0; 1; 2; 3, let Pi denote the set of all points in P that belong to pre
isely iof the six sets A�i . Clearly, jP0j + jP1j + jP2j + jP3j = jP j. Moreover, jP1j + 2jP2j + 3jP3j =Pi;� jA�i j = (1 + 6�)jP j. Hen
e, jP2j+ 2jP3j � 6�jP j.For (i; �) 6= (j; �) de�ne A��ij = A�i \A�j and note that P(i;�)6=(j;�) jA��ij j = jP2j+ 3jP3j �6�jP j. Sin
e A�i \ A+i = ; there are only twelve potentially non-empty sets A��ij and thepigeonhole prin
iple implies that one of them has weight at least 1126� = 12�.Without loss of generality assume that the weight of A++1;2 is at least 12�. Observe thatjA+1 [A+2 j = jA+1 j+ jA+2 j � jA+1 \A+2 j � (16 + �)jP j+ (16 + �)jP j � 12�jP j = (13 + 32�)jP j:Therefore, P n (A+1 [A+2 ) has weight at least 23 � 32�.We are ready to de�ne the desired point z = (z1; z2; z3). We let z1 = a+1 and z2 = a+2 . Notethat the two hyperplanes fx1 = z1g and fx2 = z2g partition P into the four sets A+1 \ A+2 ,A+1 n A+2 , A+2 n A+1 and P n (A+1 [A+2 ).Let s be the median of all x3-
oordinates of points in A+1 \ A+2 . Let t be the median ofall x3-
oordinates of points in P n (A+1 [A+2 ). Let z3 be any number between s and t. Thenz3 separates between at least half of the x3-
oordinates of points in A+1 \ A+2 and at leasthalf of the x3-
oordinates of the points in P n (A+1 [ A+2 ). This means that z = (z1; z2; z3)determines two opposite orthants in R3 one of weight at least 14� and the other of weight atleast (13 � 34�). With � = 4�1 we have 13 � 34� = 13 � 3�1 = �2 and hen
e the desired result.14



We will now show that Theorem 4.3 is nearly tight when �1 is 
lose to 0 (and thus �2 is
lose to 13). The following 
onstru
tion of a set P � R3 of n = 3m points has the propertythat for any point z and any two opposite orthants, determined by z, su
h that ea
h 
ontainsat least one point of P , there are at most m = 13n points of P in ea
h of these orthants.Let S be the following set of m ve
tors in R3 , very 
lose to the origin: S = f i100m (1; 1; 1) ji = 0; 1; : : : ;m�1g. We de�ne A, B, and C to be the set S translated by (�1; 0; 1), (0; 1;�1),and (1;�1; 0) respe
tively. Finally we let P = A [ B [ C. Note that P is a set of n = 3mpoints in R3 no two of whi
h share the same x1; x2, or x3 
oordinates.Let z = (z1; z2; z3) be any point in R3 . Assume that R and T are two opposite orthantsdetermined by z, ea
h 
ontaining at least one point of P . We 
laim that R (and thereforealso T ) 
annot 
ontain more than m points of P . To see this assume that T 
ontains a pointpA = (a1; a2; a3) from A (the other two 
ases where T 
ontains a point from B or from C arevery similar). If z1 < a1, then T must lie in the half-spa
e fx1 > z1g and therefore R lies inthe half-spa
e fx1 < z1g and hen
e may 
ontain only points of A. In parti
ular it 
ontains atmost m points of P .Similarly, if z3 > a3, then R may 
ontain only points of A and we are done. Therefore,z1 > a1 and z3 < a3. This implies that no point of A belongs to R. Now, if z2 > a2, then nopoint of C may belong to R and hen
e R may 
ontain only points of B and in parti
ular atmost m points of P . On the other hand, if z2 < a2, then no point of B may belong to R andhen
e R may 
ontain only points of C and in parti
ular at most m points of P .5 Con
lusionWe gave a 
omplete des
ription of the set F of all admissible pairs (a; b) in the plane. This wasdone by identifying three line segments and the points (18 ; 18 ) and (0; 12) from the boundaryof F .In higher dimensions we were interested in the maximum number �d, su
h that (�d; �d)is admissible. We think that our upper bound on �d is tight, the lower bound leaves roomfor improvements. It would be interesting to get more information about the set Fd of alladmissible pairs (a; b) for Rd .In the relaxed setting, where the point determining a pair of opposite orthants neednot belong to the point set we 
ould determine the diagonal entry pre
isely, it is ( 12d ; 12d ).This follows from more general bounds on generalized diagonals. In this 
ase we have someadditional results 
on
erning admissible pairs (a; b). There remain many questions to be askedand answered.Referen
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