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Abstract

Given a set P of points in the plane we are interested in points that are ‘deep’ in
the set in the sense that they have two opposite quadrants both containing many points
of P. We deal with an extremal version of this problem. A pair (a,b) of numbers is
admissible if every point set P contains a point p € P that determines a pair (@, Q°P)
of opposite quadrants, such that () contains at least an a-fraction and Q°P contains at
least a b-fraction of the points of P. We provide a complete description of the set F of
all admissible pairs (a,b). This amounts to identifying three line segments and a point on
the boundary of F.

In higher dimensions we study the maximum a, such that (a,a) is opposite-orthant
admissible. In dimension d we show that 1/(2v) < a < 1/ for y = 22* '2d-1,

Finally we deal with a variant of the problem where the opposite pairs of orthants
need not be determined by a point in P. Again we are interested in values a, such that
all subsets P in R? admit a pair (O, 0°) of opposite orthants both containing at least
an a-fraction of the points. The maximum such value is @ = 1/2¢. Generalizations of the
problem are also discussed.

1 Introduction

A point p = (p1,p2) in the plane defines four quadrants Q1(p), Q2(p), @3(p), and Q4(p)
centered at p, each being the intersection of two halfspaces defined by one horizontal and
one vertical line through p. As usual the quadrants are numbered in counterclockwise order
starting from Q = {(z1,22) € R? : 2y > p; and z3 > po}. There are two pairs of opposite
quadrants (@1, Q3) and (Q2,Q4). We write Q°P to denote the quadrant opposite to @, e.g.,

s* = @1. In the extended abstract of this article, which appeared in the 2010 SOCG
Conference Proceedings [ABF+], we have considered the quadrants to be open. However, our
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results hold for closed quadrants as well. The closed quadrants have the advantage that we
need no assumption about general position.

For a given set P of points we ask for points p € P that are ‘deep’ in the set in the sense
that p has two opposite quadrants both containing many points of P. A pair (Q,Q°P) of
opposite quadrants centered at a point p € P is called (a, b)-admissible if |Q N P| > a(n — 1)
and |Q°® N P| > b(n — 1). Clearly, the admissibility of (a,b) depends on n, the number of
points in P. However, we are interested in the asymptotic behaviour for n — co. We call a
pair (a,b) admissible if every finite point set P contains a point with two opposite quadrants
that are (a, b)-admissible. Thus, (a, b) is not admissible if there exists a number N, such that
for all n > N there is an n-element set P in which no point has two opposite quadrants that
are (a,b)-admissible.

Bronnimann, Lenchner, and Pach [BLP] define the notion of opposite-quadrant depth for
point sets in the plane as the maximum a, such that (a,a) is admissible. They prove that
every set of points in the plane has opposite-quadrant depth at least %. We give a new and
simpler proof of this result below, Theorem 1.1.

In Section 2 we provide a complete description of the set F of all admissible pairs. The
shape of F turns out to be surprisingly complicated (see Figure 3).

In Section 3 we ask for the maximum a, such that (a,a) is admissible in higher dimensions.
In dimension d we obtain upper and lower bounds that differ by a factor of 2. In Section 4
we discuss further generalizations.

The notion of opposite-quadrant depth, resp. opposite-orthant depth, is related to center-
points and some measures of statistical depth, such as hyperplane depth. We refer to [Ede] for
information on centerpoints and to [LPS] for statistical depth. Bronnimann et al. [BLP] also
mention a connection with conflict-free colorings. Related notions of depth have been studied
e.g. in [BPZ1] and [BPZ2].

As a warm up and for the purpose of introducing some convenient notation we now reprove
the main result from [BLP].

Theorem 1.1 ([BLP]).

. . . 1
(1) Any set P of n points in the plane has opposite-quadrant depth at least .
(2) If P is in convex position, then it has opposite-quadrant depth at least ;.

Before starting with the proof let us introduce the following convenie‘nt n?tation. Given
ANP

a set P of n points, the weight of a subset A of the plane is w(A4) = £ —". In terms of
weights, a pair (Q, Q°P) of opposite quadrants at a point p € P is (a, b)-admissible if and only
if w(Q) > a and w(Q°P) > b.

In many cases we will choose a subset P’ of P of some specified weight. When we choose a
set P' C P of weight a we mean that P’ contains exactly |a(n — 1) ] points from P. This way,
the weight of P’ may be less than a, but the addition of any point would result in a weight
which is at least a. The additional point will correspond to that point in P that determines
an admissible pair of quadrants.

Theorem 1.1 is a trivial consequence of the following lemma.

Lemma 1.2. Every set P in the plane contains a point p, such that

| =

min (w(Q1(p)),w(Q3(p))) + min (w(Q2(p)), w(Qa(p))) >



Proof. Given the point set P, choose the sets P, Pr, Pp, and Pr of weight i each counsisting
of the first points in P from the left, right, bottom, and top, respectively (see Figure 1). That
is, we choose the [1(n — 1)] points from P with the smallest z;-values, the largest z;-values,
the smallest xo-values, and the largest xo-values, respectively.

It follows that P' = P\ (P, U Pr U Pg U Pr) # () and we claim that every point in P’
has the desired property. Let p be such a point and assume that min (w(Ql(p)), w(Qg(p))) =
s = w(Q1(p)). Since Pr is contained in Q1(p) U Q2(p) it follows that w(Q2(p)) > 1 — s.
Considering Pr we obtain w(Q4(p)) > 1 —s. Consequently min (w(Q1(p)),w(Q3(p))) = s
and min (w(Q2(p)), w(Q(p))) > T — s, which proves the lemma.

O
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1 1
Figure 1: An illustration of the proof of Lemma 1.2.

Proof of Theorem 1.1. For part one of the theorem it is enough to observe that either s or

i — s is at least %. For the second part note that if P is in convex position one of the four
quadrants of p is empty. Therefore, one of the two minima in the lemma is zero and the other

.. . 1
minimum is at least i 0

It is easy to see that the second part of Theorem 1.1 is best
possible by taking P to be the set of vertices of a regular n-gon. In Ve
[BLP] it is shown that the first part of Theorem 1.1 is best possible /
for arbitrarily large values of n of the form n = 4 - 3¥. The example
in Figure 2 shows a simple construction that proves that the first
part of Theorem 1.1 cannot be improved, i.e., we show that for
every £ > 0 there exists N(e), such that for all n > N(e) there is y,
an n-element set P with opposite-quadrant depth less than % + €. /

Fix e >0 and n > é—z + 1. To describe the example we identify
a point set in the plane with the induced dominance order, that is, Figure 2:  Opposite-
we say (z1,22) < (y1,y2) if 21 < y; and 9 < yy. Based on this quadrant depth at most

1

order we can talk about chains and antichains of a point set. The 3.

example of Figure 2 consists of eight chains each of either [ %] or

[§] points. In the figure the chains are represented by gray segments.

Now n > 1L + 1 is equivalent to (% +€)(n — 1) > 2 + 2, which is strictly more than one

point together with the points in one chain. Therefore, if a quadrant at p contains, besides
p, no more than one chain, then its weight is less than % + €.

The eight chains come in two groups of four chains each. One group is the set of weight
% consisting of the first points in P from the left (and the bottom) and the other group of
weight 1 consists of the first points in P from the right (and the top).



We consider two cases: First for p € P look at the pair (Q2(p),Q4(p)). The chains in
each group are arranged in such a way that Q2(p) and Q4(p) both contain p and an integral
number of chains. But there is no point p with Q2(p) and Q4(p) each containing two chains.

Finally, for every p € P either Q1(p) or Q3(p) contains no more than one chain. Hence
every point has two adjacent quadrants with weight less than % + €.

2 The Set of Admissible Pairs

Recall that a pair (a,b) € [0,1]? is called admissible if every finite point set P in the plane
contains a point p € P, such that there is a quadrant @) centered at p with w(Q) > a and
w(Q°P) > b. For pairs (a,b), (a',b') in [0, 1]? we write (a,b) < (a/,b') if a < a’ and b < V.
In this section we provide a full characterization of the set F of all admissible pairs. We
begin with some easy observations.
e F is symmetric in the sense that if (a,b) € F, then also (b,a) € F.
e F is also monotone decreasing, that is, if (a,b) € F and (0,0) < (a’,b’) < (a,b) then
(') € F.
Figure 3 depicts the half of the set F where a > b, the other half is obtained by reflection
about the diagonal line @ = b. In our analysis, we will determine the part of the boundary of
F shown in the figure. That is, we will always assume that a > b.
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Figure 3: The shape of the set F of admissible pairs. References show where to find the
proofs and constructions.

Theorem 1.1 shows that (%, %) € F and the example from Figure 2 implies that if both a
and b are greater than £, then (a,b) ¢ F.

Though the next proposition does not really contribute to the boundary of F it provides
a good first approximation to the set.

Proposition 2.1. Every pair (a,b) with 3a +5b <1 is in F.



Proof. First note that we only have to prove that every pair
(a,b) with 3a+5b =1 is in F. The proposition then follows
for all pairs (0,0) < (a/,V') < (a,b).

So given a set P of points and a pair (a,b) with 3a +
5b = 1, choose the set A of weight 2a consisting of the first
points in P from the left and the set Z of weight a + b p
consisting of the first points in P from the right. Consider 2b
the horizontal median point p in the strip S between the sets
A and Z. From the assumption it follows that w(S) > 4b
(see Figure 4). Figure 4: An illustration of the

From w(A) > 2a it follows that one of the left quadrants pro6f of Proposition 2.1.
of p has weight at least a (w.l.o.g. the upper one Q3(p)). If
w(Q4(p)) > b we are done. Hence, we may assume that w(Q4(p)) < b. From the weight of Z
it then follows that w(Q1(p)) > a. The weight of points below p in S is at least 2b, therefore,
w(Q4(p)) < b implies that w(Q3(p)) > b. We have thus found an appropriate pair of opposite
quadrants. 0

2a 2 |a+b

Setting a = % and b = 0 in the above proposition implies that (%, 0) is admissable. To see
that (% +¢,0 + ¢) is not admissible for any € > 0 it is enough to consider three independent
chains each of weight % (The top right of Figure 2 depicts four independent chains.). In this
example w(Q(p)) > 5 implies w(Q°P(p)) = 0. Therefore:

Observation 2.2. Pairs (a,b) with a > % and b > 0 are not admissible, i.e., they are not
n F.

The next observation implies that (%, 0) belongs to the boundary of F.

Observation 2.3. The pair (%,0) belongs to F. Moreover, for every a > % the pair (a,0)
does not belong to F.

Proof. Let P be a set of n points in the plane and let p € P be the point of P with the largest

z1-coordinate. All points of P\ {p} are contained in the second and third quadrant of p.

Hence, one of these two quadrants has weight at least % This shows that (%, 0) belongs to F.

To see that (a,0) does not belong to F for any a > %, consider a set P of n points evenly

distributed on a circle, or equivalently the vertices of a regular n-gon. It is left to the reader
1

to verify that no point in P has a quadrant of weight greater than 3. 0O

We now get to the concavity at (%, %0) on the boundary of F and the two segments
bounding F that meet in this point.

Theorem 2.4. Every pair (a,b) with 2a +6b =1 and a < % is in F.

Proof. Given a set P of points and a pair (a,b), choose two vertical lines, such that the set
A of points to the left of both lines has weight a + b, the set S in the strip between the lines
has weight 4b and the set Z of points to the right of the two lines has the remaining weight
a + b. Consider the horizontal median point p of the middle set S (see Figure 5).

One of the quadrants of p has weight at least i. Without loss of generality we assume that
this is true for Q1(p). The restriction 3+ > a implies w(Q1(p)) > a. If w(Qs(p)) > b we are
done. Hence, we may assume that w(Qs(p)) < b. From the weight of A it then follows that



a+b 2% a+b

2b

Figure 5: An illustration of the proof of Theorem 2.4.

w(Q2(p)) > a. Similarly from the weight of points below p in S it follows that w(Q4(p)) > b.
Hence, (Q2,Q4) is an appropriate pair of opposite quadrants. 0

Theorem 2.5. Every pair (a,b) with 4a+2b=1 and & < a is in F.

Proof. In the proof we will need that 2a > 3b, which follows
from 4a +2b =1 and % < a.

Given a set P of points and a pair (a,b), choose two A S 7
vertical lines, such that the set A of points to the left of 2%a—b 2 a — b
both lines has weight 2a — b, the set S in the strip between
the lines has weight 4b and the set Z of points to the right of p
the two lines has the remaining weight 2a — b. Cousider the 2
horizontal median point p of the middle set S (see Figure 6).

One of the quadrants of p has weight at least i. Without
loss of generality we assume that this is true for Q) (p), i.e.,
w(Q1(p)) > % > a. If w(Q3(p)) > b we are done. Hence, we Figure 6: An illustration of the
may assume that w(Q3(p)) < b. From the weight of points proof of Theorem 2.5.
below p it then follows that w(Q4) > b. Since the weight of
A is at least 2a — b > 2b it follows that w(Q2(p)) > b. If one of the quadrants Q2(p) and
Q4(p) has weight at least a we are done. But if w(Q2(p)) < a and w(Q4(p)) < a the points
in the union of the second, third and fourth quadrant of p would have total weight less than
2a + b which contradicts the choice of p. 0O

It remains to show that for i <a < % the boundary of F is a segment supported by

the line 3a + 3b = 1. The following theorem shows that all pairs (a,b) on this segment are
admissible. In Figure 9 we present a point set PP with no point having opposite quadrants
that are (a + €,b + ¢)-admissible for 3a + 3b =1, @ > 1, and any ¢ > 0. The analysis of the
example is given in Proposition 2.7.

Theorem 2.6. Every pair (a,b) with 3a+3b=1 and } <a < % is in F.

Proof. Given a set P of points and a pair (a, b), choose a vertical line, such that the set A of
points to the left of the line has weight a + b. Choose another vertical line, such that the set
Z of points to the right of this line has weight a 4+ 0. The set S in the strip between the lines
also has weight a + b. This set S is divided vertically into a top part 7', a middle part M and



e 8 short chains e 10 chains of
each of weight weight b /
e 2 long chains e 2 antichains of /
each of weight b weight a — 2b /7
/ .
/ /7
/ /7
/ /
/ 4a +2b =1 and / S 20+ 6b =1 and
/ 2<b = /7 a—2b>0 <
/7 a < % / a > %
/ /7

Figure 7: Two examples showing that the pairs (a,b) from Theorem 2.5 and Theorem 2.4 are
on the boundary of F. The analysis is again based on a simple case distinction.

a bottom part B, such that each of 7" and B has weight 2b

(see Figure 8). The vertical lines are chosen, such that the 4T 7

weight of M is (a +b) —4b = a — 3b. From a > 1 and 2b

3a + 3b =1 it follows that this weight is non-negative. at+b| 4 a+b
Suppose one of the quadrants of p or ¢ has weight at least M a—3b

a. In this case we can simply disregard the middle part M B p

and follow the very same argumentation as in Theorem 2.4 2b

to find an appropriate pair of opposite quadrants.

To see that at least one of the quadrants of p or ¢ has
weight at least a we sum up the weights of the first and Figure 8: An illustration of the
second quadrant of p and the third and fourth quadrant of proof of Theorem 2.6.

¢ w(Qi(p) +w(Q2(p)) + w(@s(q)) + w(Qa(q)) 2 4a.

Proposition 2.7. None of the pairs (a+¢e,b+¢) witha > 1, >0, and 3a+3b =1 is in F.

Proof. As in the previous proof we will need that a — 3b > 0, which follows from a > % and
3a +3b=1.

The example consists of four chains/antichains each of weight %(a —3b), a circle of weight
a — 3b and 12 chains/antichains each of weight b (see Figure 9). The total weight of the set
Sy consisting of an antichain and three chains is 1 (a — 3b) + 3b = 1(a+ 3b). Since a —3b > 0
this is at most a.

Since the example is invariant under rotations of 90 degrees it is enough to show that
there is no point p, such that (Q1(p),Q3(p)) is (a + €,b + ¢)-admissible for £ > 0. Since we
need w(@Q1(p)) > a we can’t take p from Sy or So. When considering p € S; we get strong
restrictions from the requirement w(Q3(p)) > b. To match this we need to have two of the
antichains of size b of S in Q3(p). Therefore Q1 (p) can only contain the chain of size 3(a—3b)
from S, which yields w(Q1(p)) < £(a — 3b) + $(a + 3b) = a, which is not enough.

7



Any point p from the circle C has w(Q1(p) N C) <

2w(C) = $(a — 3b). This rules out
points from the circle because for such points w(@Q1(p)) < )

+ 1(a + 3b) = a which is
not enough.
The last possibility is to take p € S3. Such a point, however, does not match the require-

ment w(Qs(p)) > b.
Altogether this shows that there is no point with an (a+e¢, b+¢)-admissible pair of opposite

quadrants. 0O

N\

N\
/

e 12 chains/antichains of weight b

e 4 chains/antichains of weight % (a — 3b)
e a circle with equidistributed points of weight a — 3b /

N\
N\
N\

Figure 9: An example showing that there are no admissible pairs (a 4+ £,b + ¢) beyond the
segment 3a + 3b = 1. The analysis is in Proposition 2.7

3 Higher Dimensions

A point p in R¢ defines 2¢ orthants centered at p. Again there is an obvious notion of an
orthant O°P opposite to a given orthant O. The weight w(O) of an orthant O with respect to
a point set P is the fraction of points of P contained in O. For a more formal definition of
the weight we refer to the introduction.



Define the opposite-orthant depth oy for point sets in R? as the maximum a, such that
every point set P C R? contains a point p that determines a pair (O, O°P) of opposite orthants
with w(O) > a and w(O°P) > a. Bronnimann et al. [BLP] have considered «3. They claim
that ag > 1/2016, this however is based on the false assumption that every set of 9 points in
R3 has a point p with two opposite orthants each containing a point from P\ {p}. Indeed,
the least n such that this holds is n = 17. With this correction their proof only yields
a3 > 1/16320. The case d = 3 of the theorem below gives a3 > 1/32.

For a point z € R? and ¢ = 1,...,d define the closed halfspaces H; (z) = {y : y; > z;}
and H; (z) = {y :y; < x;}. A sign vector is a d-tuple o = (01, ...,04) with o; € {+,—}. For
every point z and sign vector o we define the orthant O%(z) =", H ().

Theorem 3.1 (Lower Bound). In R?, the opposite-orthant depth oy is at least 2~ (27 +d)
Proof. A set of points is t-good if it contains no point determining a pair of opposite orthants
each containing ¢ + 2 or more points from P. We will prove that |P| > 22d71(t 24) implies
that P is not ¢t-good. Hence ad(t22d71+d + 1) > t+ 2, which yields the bound stated in the
theorem.

Let P be a t-good set. One of the orthants from each pair of opposite orthants determined
by p € P is small in the sense that it contains at most ¢ points from P\ {p}. The pattern
assigned to p is a collection ¢(p) of 2¢~! sign vectors, such that

e 0%(p) is small for each o € ¢(p) and for each pair (07, 07) of opposite orthants deter-
mined by p either o or ¢ is in ¢(p).

For a given pattern ¢ we collect all points p € P with ¢(p) = ¢ in a set P,. Figure 10 shows
an example.

To A

4!

Figure 10: A 2-good set of 9 points in the plane. Small quadrants of points are indicated by
gray angles. The white points may get the pattern ¢ = {(+, +), (+, —)} assigned.

We have partitioned the points of P according to their pattern. The upper bound on the
size of any t-good set P follows from counting the possible patterns and bounding the number
of points in each class Py.
2¢=1 pairs 0,6 belonging to pairs of opposite
orthants. A pattern is a selection of one sign vector from each such pair, therefore:

There are 2¢ sign vectors paired up in

e There are at most 22°~" different patterns.



For any p and o let vy (p) = [0?(p) N (P \ {p})|. Define the score of p as s(p) = 3_,c () Vo (P)-
From the definition of ¢(p) it follows that v,(p) < t for all ¢ € ¢(p), hence, s(p) < t2¢1.
Note that the score of p is the number of points in the small orthants O7(p) with o € ¢(p).

Consider two points p,q and note that ¢ € O%(p) if and only if p € O7(q). Suppose p
and g both belong to Py, since one of o and & is in ¢ we note that either p is counted in the
score of g or ¢ is counted in the score of p. From this we obtain:

|P¢|(|P2¢| — 1) _ <|1:2)¢|> < Z S(p) < Z t2d71 — |P¢|t2d71'

p€P¢ p€P¢

To reduce the upper bound on ) s(p) by one observe that for each o € ¢ there are points in
P, with v,(p) < t. This yields the following bound on |Py|:

e For each class Py we have |Py| < 2¢24-1,

Combining the bounds for the number of patterns and the size of the classes we find that a
t-good set P has at most 22°' (¢2¢) points. 0

The upper bound on the opposite-orthant depth «y presented in the following theorem is
only a factor of two apart from the lower bound of Theorem 3.1. It is evident that the lower
bound is not tight. In dimension 2 the upper and lower bounds yield 1—16 < ag < %. From
Theorem 1.1 and the example of Figure 2 we know that oy = %. Indeed we suspect that in
all dimensions the upper bound gives the true value of «y.

Theorem 3.2 (Upper Bound). In R?, the opposite-orthant depth ag is at most 9—(2/7 +d-1)
Proof. We have to construct large point sets with small opposite-orthant depth. The con-
struction is in two steps. In the first step we build a set Py of 227! points, such that for
any point p € Py and any pair (O, O°P) of opposite orthants at p either O N Py or O°P N P
equals {p}. In the second step we replace each point of Py with a carefully chosen set of ¢ 2¢~!
points, such that the depth remains bounded by ¢ + 1. Hence ¢t +2 > ozd(22d_1 t29=1), which
yields the bound stated in the theorem.

Let o be a sign vector and & be the sign vector of the orthant opposite to O?. Based on
o we define a binary relation on P, let p ~, ¢ if p € O7(q) or p € 0?(q), i.e., g € O7(p).

A set M of points in R? is monotone if there is a sign vector o, such that p ~, ¢ for
all p,q € M. Equivalently, M is monotone if there is an ordering of the points so that
each coordinate is increasing or decreasing in this order. Repeated application of the Erdés-
Szekeres lemma implies that any n points in R¢ contain a monotone subset of size at least
n2d+1. It is a widely known fact that this bound is best possible. A detailed construction of
tight examples can be found e.g. in [Lit]. Due to this result there is a set Py of 92" points
that does not contain a monotone subset of size three. Hence, for every p € Py and every pair
of opposite orthants (O, O°P) determined by p at least one of the orthants contains no point
of Py \ {p}.

An orthant O%(p) defined by p € Py is small if O7 (p) N Py = {p}. As in the proof of the
previous theorem we collect sign vectors of small orthants of p € Py in a pattern ¢(p). Recall
that ¢(p) contains the sign vector of one of each pair of opposite orthants. We construct the
set P by replacing each point p € Py by a set Q(p) of 297! points, such that ¢ € Q(p) and
o € ¢(p) implies |07 (¢) N P| = |0%(q) N Q(p)| < t+1, i.e., the orthant O7(q) is t-small for
all o € ¢(p).

10



For each p € Py fix a ‘small’ box B(p) containing p, such that every choice of one point
from each of these boxes yields a set with the same property as Py. Formally, for p,q € B
with p ~, g we require that p’ ~, ¢’ for all p’ € B(p) and ¢’ € B(q). For the construction
of Q(p) in the box B(p) it is convenient to think of B(p) as an open set. To begin with
let 0g,01,09,... be an ordering of the 2771 sign vectors in ¢(p). Starting with Sy = 0 we
inductively define subboxes S; for i = 1,...,29° 1 — 1 of By = B(p) as follows: If S;_; and
B; 1 are defined choose a point s; in B; 1 and let S; = 0% (s;)NB;_1 and B; = O% (s;)NB; 1.
Finally, let Sya—1 = Bya-1_;. An example is given in Figure 11.

S1

T3

= T2
I

\

Sa

Figure 11: A point set Q(p). The points of Q(p) are aligned along diagonals of the subboxes
S; as indicated by the black bars. The pattern ¢(p) of the point replaced by Q(p) is op =
(_7+7 _)7 01 = (_7+7 +)7 02 = (_7 g _) and o3 = (+7 +, _)'

From the construction rules it follows that for ¢« < j and any points p; € S; and p; € §;
we have p; = O% (p;) and consequently p; = O (p;). This shows that inserting ¢ points into
each S; such that any two of these points are in relation oy yields a set Q(p) with the desired
properties.

e |Q(p)| =291
e [07(q)NP|=107(¢q) NQ(p)| < t+ 1 for all ¢ € Q(p) and o € ¢(p).

This completes the construction of a t-good set I” and the proof of the upper bound on «ay.

4 Further Generalizations

The set F of all admissible pairs was defined as the set of all pairs (a, b) such that every set P
of n points in the plane contains a point p € P that determines two opposite quadrants with
weights at least ¢ and b. What if we do not require the point p to belong to the set P, and only
look for a point z in the plane with the same property of two opposite quadrants determined
by it. It is not hard to see that (a,b) is admissible in this model whenever, a +b < 1/2. In
addition we have the admissible pairs (a,0) for all a < 1. A set of points uniformly distributed
on a circle C shows that this is the complete description of the set of admissible pairs. Indeed,
it is not hard to check that for any point z in the plane, surrounded by C, the horizontal and
vertical lines through z determine four quadrants such that the measure of the union of any
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two opposite ones is at exactly % If the point z is not surrounded by C, then the measure of
one quadrant is equal to 0 while the opposite quadrant has measure at least %

One way to generalize the setting is by counsidering two opposite quadrants determined
by a vertical and a horizontal line as a diagonal in the 2-by-2 array of cells determined by
these two lines. Then it is natural to consider n — 1 vertical lines and n — 1 horizontal lines
and to find a generalized diagonal of cells in the n-by-n arrangement of cells, determined by
these lines, such that each of the cells contains ‘many’ points of P. By a generalized diagonal
we mean a set of n cells, such that no two are in the same row or in the same column (see
Figure 12).

Figure 12: A continuous measure split into cells by four vertical and four horizontal lines. A
generalized diagonal is illustrated in the dotted squares.

Since we do not require the vertical and horizontal lines to intersect in points of the set
in question, it is equivalent to consider a continuous probability measure in the plane and
to look for n — 1 vertical lines and n — 1 horizontal lines and a generalized diagonal in the
arrangement of the n-by-n cells, determined by these lines, such that each of the cells has
‘large’ measure (see Figure 12). This naturally generalizes to higher dimensions as well. The
following theorem gives a partial answer to this problem in any dimension d:

Theorem 4.1. Let p1 be a continuous probability measure in [0,1]%. Let n be a positive integer
and let a1,...,an be a sequence of positive real numbers, such that > | ; = #. Then
there exist numbers x; j, where 1 <1 < d and 0 < j < n, and d permutations m,...,7q on
{1,...,n} with the following properties:

1. Forevery1 <1 <d, 7;0=0<z;1 <...<ZTipn1 <Tjp=1
2. For every 1 < j <mn, we have p([T1 1, (j)—1,T1,m )] X -+ X [Tamy()—1> Tama()]) = -

Remark. Intuitively, the numbers z; ; in Theorem 4.1 define the d dimensional array of nd
cells generated by the hyper-planes H; j = {(z1,...,24) € R | z; = xij}, foralll1 <i<n
and 1 < j < d. The theorem then says that there exists such an array (while the measure p
is given) that contains a generalized diagonal of n boxes with measures of at least a, ..., ay,
respectively.
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Proof. In fact, the proof is not much more complicated than the statement of the theorem.
The proof goes by induction on d. For d = 1 simply define x19 = 0 and for every 1 < j <n
let 21 ; = 21,1 +«;. In this case 7y : [n] = [n] can be chosen to be the identity permutation.

For d > 1, let of = nay; for every 1 < j < n. Observe that 2?21 o = #. Let p' denote
the measure p projected along the last dimension. That is, g/ is a continuous probability
measure on [0, 1] defined by p'([a1,b1] % ... X [ag_1,bq_1]) = p([a1,b1] X ... X [@g_1,bq 1] X
0,1]).

By the induction hypothesis there exist numbers z; ;, where 1 <4 < d—1and 0 < j < mn,
and d — 1 permutations 7y, ...,mg_1 on the elements {1,...,n}, with the following properties:

1. Forevery 1 <¢<d—-1mzi0=0<wj1 <...<Tjp1 <Tjp=1.

2. For every 1 < j < n we have p'([21 7,(j)—1, 1,0 ()] X+ X [Td—1,74 1) =1 Ta—1,m4 1 ()]) =
!

o

We now define the sequence x40,q1...,%4, and the permutation 74 as follows. We

put x40 = 0. x4, is defined to be the minimum number greater than z4g, such that there

exists some j between 1 and n with u([21 7, j)—1, T1m ()] X -+ X [Ta—1,7y 1()—1> Ta—1,mg_1(j)] ¥

(40, %4.1])) = aj. We set mq(j) = 1. From the choice of j and x4, it follows that for every

1 <k <nwehave p([T1 5, k)1, T1m (k)] X X [Ta- 10y (k)1 Td— 1,001 ()] X [Td,0, Ta]) < g
) ( ) ) ( ) sTtd 1( ) sTd ].( )

For 1 < k < n we define x4 to be the minimum number greater than x4;_1, such that
there exists some j between 1 and n, such that j is different from each of 7, *(1),..., 7, (k—1)
and pu([z1 5, ()=1, T1m ()] X - X Zamtrg 1 ()—1 Ta—1,mg_r ()] X [Tdk—1,Tak]) = ;. We set
ma(j) = k.

Finally, we let 24, = 1 and set m4(j) = n, where j is the only index between 1 and n that

is not one of 7, *(1),...,m, (n — 1).
It is straight forward to check that the numbers z; ; where 1 <¢ < dand 0 < j <n and
M, ..., mq satisfy the requirements of the theorem. 0

Recall that when d = 2 and n = 2, the example where the measure y is evenly distributed
on a circle C' shows that the result in Theorem 4.1 is best possible apart from the case
where a; = 0 for some 7. As we shall see later (Theorem 4.3) the result is not best possible
in dimension d > 2. However, when the values «; in Theorem 4.1 are all equal, then the
result is indeed best possible in any dimension. This is a consequence of the following simple
proposition.

Proposition 4.2. Let A be the standard Lebesgue measure on [0, l]d and let n be a positive
integer. Then one cannot find numbers x; j, where 1 <4 < d and 0 < j < n, such that the
arrangement of n® bounded cells determined by the hyperplanes Hij={z: 2 =z} has a
generalized diagonal, such that each cell of the generalized diagonal has measure strictly larger
than 1/n4.

Proof. Assume to the contrary that there are numbers x; ; and permutations 7;, such that
for each j A([71 5, (j)=1> T1,m ()] X -+ X [Tdmy(j)=1> Tdma()]) > n—ld. We will use the arithmetic
and geometric mean inequality, by which, for every d positive numbers ay,...,aq we have

ai+ - +ag

1
> - d.
¥ (arag---aq)
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For every 1 <i < dand 1 < j < nput a;j = Zj5,(j) — Tim(j)-1- Forevery 1 <i < d
we may assume that z;0 = 0 and z;, = 1, hence, Z?Zl a;; = 1. On the other hand, our
assumption on the measure and the cells of the generalized diagonal imply H?Zl ajj > n—ld for
every 1 < 7 < n. Therefore, by the means inequality, for every 1 < 7 < n we have:

d © o d
Y aig>d([J a7 > .
i=1 i=1

This yields the desired contradiction:

n d n d

d n
1=32 0= 35 g > 35 =
j=11i=

i=1 j=1 1

O

The following theorem shows that when d = 3 and n = 2 one can obtain a better result
in Theorem 4.1 in the case where a; and w9y are different. We include this theorem mostly
for the method of proof and for showing that Theorem 4.1 is not tight in general. We state
the theorem in the discrete form.

Theorem 4.3. Let P be a finite set of points in R3. We assume that no two points in P
have a coordinate in common. Let ap < % and ay = % — 3ay. Then there exists a point
z = (21,22,23) € R, such that the planes {x; = 2z} for i = 1,2,3 determine two opposite
orthants, one of weight at least cc; and the other of weight at least ao.

Proof. Let 0 < e < = be given. Define numbers a;” and a"' for 1 = 1,2, 3, such that the weight
of each of the sets A7 ={p € P:p; <a;} and A+ = {p € P:p; > af} is precisely ( €).

For every 7 = 0, 1, 2,3, let F; denote the set of all points in P that belong to precisely ¢
of the six sets A7. Clearly, |Py| + |P1| + |P2| + | P3| = |P|. Moreover, |Pi| + 2|P2| + 3| P3| =
Yio [A7] = (1 + 6€)|P|. Hence, |Ps| + 2|Ps| > 6¢|P|.

For (i,0) # (j,7) define A7 = A7 N A7 and note that > .. -y |A7]| = |P2| + 3| P5| =
6e|P|. Since A; N Ai+ =10 there are only twelve potentlally non—empty sets A7/ and the
pigeonhole principle implies that one of them has weight at least 112 be = ée.

Without loss of generality assume that the weight of At; is at least %e. Observe that
+ + + + + + 1 1 1.3
A7 UA; [ = AT+ 47| — AT n A7 ] < (5 +alPl + (5 +€)IP|——€|P| (5 + 397l

Therefore, P\ (A] U AJ) has weight at least % -

We are ready to define the desired point z = (21, 22, 23). Welet z; = oz1 and z9 = a2 Note
that the two hyperplanes {z1 = 21} and {z2 = 23} partition P into the four sets A} N A,
AP\ AS, Af \ AT and P\ (A} U A7),

Let s be the median of all z3-coordinates of points in A N AJ. Let ¢ be the median of
all x3-coordinates of points in P\ (A] U AJ). Let 23 be any number between s and ¢. Then
23 separates between at least half of the z3-coordinates of points in A] N AJ and at least
half of the x3-coordinates of the points in P\ (4] U AJ). This means that z = (21, 22, 23)
determines two opposite orthants in R3 one of weight at least %e and the other of weight at
least (% — % ). With € = 40 we have 2 3 - %e = 3 — 3aq = oy and hence the desired result. 5
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We will now show that Theorem 4.3 is nearly tight when «; is close to 0 (and thus «y is
close to %) The following construction of a set P C R?® of n = 3m points has the property
that for any point z and any two opposite orthants, determined by z, such that each contains
at least one point of P, there are at most m = %n points of P in each of these orthants.

Let S be the following set of m vectors in R?, very close to the origin: S = {ﬁ(l, 1,1) ]
i=0,1,...,m—1}. Wedefine A, B, and C to be the set S translated by (-1,0,1), (0,1, —1),
and (1,—1,0) respectively. Finally we let P = AU B U C. Note that P is a set of n = 3m
points in R? no two of which share the same x1, z2, or z3 coordinates.

Let z = (z1,29,23) be any point in R3. Assume that R and T are two opposite orthants
determined by z, each containing at least one point of P. We claim that R (and therefore
also T') cannot contain more than m points of P. To see this assume that 7' contains a point
pa = (a1, a2,a3) from A (the other two cases where T' contains a point from B or from C' are
very similar). If z; < aj, then 7" must lie in the half-space {z; > z;} and therefore R lies in
the half-space {z; < z1} and hence may contain only points of A. In particular it contains at
most m points of P.

Similarly, if z3 > a3, then R may contain only points of A and we are done. Therefore,
z1 > a1 and z3 < ag. This implies that no point of A belongs to R. Now, if z5 > a9, then no
point of C' may belong to R and hence R may contain only points of B and in particular at
most m points of P. On the other hand, if zo < a9, then no point of B may belong to R and
hence R may contain only points of C' and in particular at most m points of P.

5 Conclusion

We gave a complete description of the set F of all admissible pairs (a, b) in the plane. This was
done by identifying three line segments and the points (%, %) and (0,1) from the boundary
of F.

In higher dimensions we were interested in the maximum number «g4, such that (a4, ag)
is admissible. We think that our upper bound on «g is tight, the lower bound leaves room
for improvements. It would be interesting to get more information about the set Fy of all
admissible pairs (a,b) for RY.

In the relaxed setting, where the point determining a pair of opposite orthants need
not belong to the point set we could determine the diagonal entry precisely, it is (2%, 2%)
This follows from more general bounds on generalized diagonals. In this case we have some
additional results concerning admissible pairs (a, b). There remain many questions to be asked
and answered.
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