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5 PSEUDOLINE ARRANGEMENTS

Stefan Felsner and Jacob E. Goodman

INTRODUCTION

Pseudoline arrangements generalize in a natural way arrangements of straight lines,
discarding the straightness aspect, but preserving their basic topological and com-
binatorial properties. Elementary and intuitive in nature, at the same time, by
the Folkman-Lawrence topological representation theorem (see Chapter 6), they
provide a concrete geometric model for oriented matroids of rank 3.

After their explicit description by Levi in the 1920’s, and the subsequent devel-
opment of the theory by Ringel in the 1950’s, the major impetus was given in the
1970’s by Grünbaum’s monograph Arrangements and Spreads, in which a number
of results were collected and a great many problems and conjectures posed about
arrangements of both lines and pseudolines. The connection with oriented ma-
troids discovered several years later led to further work. The theory is by now very
well developed, with many combinatorial and topological results and connections
to other areas as for example algebraic combinatorics, as well as a large number
of applications in computational geometry. In comparison to arrangements of lines
arrangements of pseudolines have the advantage that they are more general and
allow for a purely combinatorial treatment.

Section 5.1 is devoted to the basic properties of pseudoline arrangements, and
Section 5.2 to related structures, such as arrangements of straight lines, configura-
tions (and generalized configurations) of points, and allowable sequences of permu-
tations. (We do not discuss the connection with oriented matroids, however; that is
included in Chapter 6.) In Section 5.3 we discuss the stretchability problem. Sec-
tion 5.4 summarizes some combinatorial results known about line and pseudoline
arrangements, in particular problems related to the cell structure of arrangements.
Section 5.5 deals with results of a topological nature and Section 5.6 with issues of
combinatorial and computational complexity. Section 5.7 with several applications,
including sweeping arrangements and pseudotriangulations.

Unless otherwise noted, we work in the real projective plane P
2.

5.1 BASIC PROPERTIES

GLOSSARY

Arrangement of lines: A labeled set of lines not all passing through the same
point (the latter is called a pencil).

Pseudoline: A simple closed curve whose removal does not disconnect P2.

Arrangement of pseudolines: A labeled set of pseudolines not a pencil, every
pair meeting no more than once (hence exactly once and crossing).
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Isomorphic arrangements: Two arrangements such that the mapping induced
by their labelings is an isomorphism of the cell complexes into which they parti-
tion P

2. (Isomorphism classes of pseudoline arrangements correspond to reori-
entation classes of oriented matroids of rank 3; see Chapter 6.)

Stretchable: A pseudoline arrangement isomorphic to an arrangement of straight
lines. Figure 5.1.1 illustrates what was once believed to be an arrangement of
straight lines, but which was later proven not to be stretchable. We will see in
Section 5.6 that most pseudoline arrangements, in fact, are not stretchable.

FIGURE 5.1.1

An arrangement of 10 pseudolines,
each containing 3 triple points;
the arrangement is nonstretchable.

Vertex: The intersection of two or more pseudolines in an arrangement.

Simple arrangement: An arrangement (of lines or pseudolines) in which there
is no vertex where three or more pseudolines meet.

Euclidean arrangement of pseudolines: An arrangement of x-monotone curves
in the Euclidean plane, every pair meeting exactly once and crossing there. In
this case the canonical labeling of the pseudolines is using 1, . . . , n in upward
order on the left and in downward order on the right.

Wiring diagram: A Euclidean arrangement of pseudolines consisting of piece-
wise linear “wires”. The wires (pseudolines) are horizontal except for small
neighborhoods of their crossings with other wires; see Figure 5.1.2 for an exam-
ple.

FIGURE 5.1.2

A wiring diagram.
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A fundamental tool in working with arrangements of pseudolines, which takes
the place of the fact that two points determine a line, is the following.

THEOREM 5.1.1 Levi Enlargement Lemma [Lev26]

If A = {L1, . . . , Ln} is an arrangement of pseudolines and p, q ∈ P
2 are two distinct

points not on the same member of A, there is a pseudoline L passing through p and q
such that A ∪ {L} is an arrangement.

Theorem 5.1.1 has been shown by Goodman and Pollack [GP81b] not to extend
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to arrangements of pseudohyperplanes. It has, however, been extended in [SH91] to
the case of “2-intersecting curves” with three given points. But it does not extend
to k-intersecting curves with k + 1 given points for k > 2.

The Levi Enlargement Lemma is used to prove generalizations of a number
of convexity results on arrangements of straight lines, duals of statements perhaps
better known in the setting of configurations of points: Helly’s theorem, Radon’s
theorem, Carathéodory’s theorem, Kirchberger’s theorem, the Hahn-Banach theo-
rem, the Krein-Milman theorem, and Tverberg’s generalization of Radon’s theorem
(cf. Chapter 4). To state two of these we need another definition. If A is an ar-
rangement of pseudolines and p is a point not contained in any member of A, L ∈ A
is in the p-convex hull of B ⊂ A if every path from p to a point of L meets some
member of B.

THEOREM 5.1.2 Helly’s theorem for pseudoline arrangements [GP82a]

If A1, . . . ,An are subsets of an arrangement A of pseudolines, and p is a point not
on any pseudoline of A such that, for any i, j, k, A contains a pseudoline in the
p-convex hull of each of Ai,Aj ,Ak, then there is an extension A′ of A containing
a pseudoline lying in the p-convex hull of each of A1, . . . ,An.

THEOREM 5.1.3 Tverberg’s theorem for pseudoline arrangements [Rou88b]

If A = {L1, . . . , Ln} is a pseudoline arrangement with n ≥ 3m − 2, and p is a
point not on any member of A, then A can be partitioned into subarrangements
A1, . . . ,Am and extended to an arrangement A′ containing a pseudoline lying in
the p-convex hull of Ai for every i = 1, . . . ,m.

Some of these convexity theorems, but not all, extend to higher dimensional
arrangements; see [BLS+99, Sections 9.2,10.4] and Section 22.3 of this Handbook.

Planar graphs admit straight line drawings, from this it follows that the pseu-
dolines in an arrangement may be drawn as polygonal lines, with bends only at
vertices. Eppstein [Epp14] investigates such drawings on small grids. Related is
the following by now classical representation, which will be discussed further in
Section 5.2.

THEOREM 5.1.4 [Goo80]

Every arrangement of pseudolines is isomorphic to a wiring diagram.

Theorem 5.1.4 is used in proving the following duality theorem, which extends
to the setting of pseudolines the fundamental duality theorem between lines and
points in the projective plane.

THEOREM 5.1.5 [Goo80]

Given an arrangement A of pseudolines and a set S of points in P
2, there is a point

set Â and a pseudoline arrangement Ŝ so that a point p ∈ S lies on a pseudoline
L ∈ A if and only if the dual point L̂ lies on the dual pseudoline p̂.

THEOREM 5.1.6 [AS05]

For Euclidean arrangements, the result of Theorem 5.1.5 holds with the additional
property that the duality preserves above-below relationships as well.
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5.2 RELATED STRUCTURES

GLOSSARY

Circular sequence of permutations: A doubly infinite sequence of permuta-
tions of 1, . . . , n associated with an arrangement A of lines L1, . . . , Ln by sweep-
ing a directed line across A; see Figure 5.2.3 and the corresponding sequence
below.

Local equivalence: Two circular sequences of permutations are locally equivalent
if, for each index i, the order in which it switches with the remaining indices is
either the same or opposite.

Local sequence of unordered switches: In a Euclidean arrangement (wiring
diagram), the permutation αi given by the order in which the remaining pseudo-
lines cross the ith pseudoline of the arrangement. In Figure 5.1.2, for example,
α1 is (2, {3, 5}, 4).

Configuration of points: A (labeled) family S = {p1, . . . , pn} of points, not all
collinear, in P

2.

Order type of a configuration S: The mapping that assigns to each ordered triple
i, j, k in {1, . . . , n} the orientation of the triple (pi, pj , pk).

Combinatorial equivalence: Configurations S and S ′ are combinatorially equiv-
alent if the set of permutations of 1, . . . , n obtained by projecting S onto every
line in general position agrees with the corresponding set for S ′.

Generalized configuration: A finite set of points in P
2, together with an ar-

rangement of pseudolines such that each pseudoline contains at least two of the
points and for each pair of points there is a connecting pseudoline. Also called
a pseudoconfiguration. For an example see Figure 5.2.1.

FIGURE 5.2.1

A generalized configuration of 5 points,
this example is known as the bad pentagon.
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Allowable sequence of permutations: A doubly infinite sequence of permuta-
tions of 1, . . . , n satisfying the three conditions of Theorem 5.2.1. It follows from
those conditions that the sequence is periodic of length ≤ n(n− 1), and that its
period has length n(n− 1) if and only if the sequence is simple, i.e., each move
consists of the switch of a single pair of indices.
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ARRANGEMENTS OF STRAIGHT LINES

Much of the work on pseudoline arrangements has been motivated by problems
involving straight line arrangements. In some cases the question has been whether
known results in the case of lines really depended on the straightness of the lines; for
many (but not all) combinatorial results the answer has turned out to be negative.
In other cases, generalization to pseudolines (or, equivalently, reformulations in
terms of allowable sequences of permutations) has permitted the solution of a more
general problem where none was known previously in the straight case. Finally,
pseudolines have turned out to be more useful than lines for certain algorithmic
applications; this will be discussed in Section 5.7.

For arrangements of straight lines, there is a rich history of combinatorial re-
sults, some of which will be summarized in Section 5.4. Much of this is discussed
in [Grü72].

Line arrangements are often classified by isomorphism type. For (unlabeled)
arrangements of five lines, for example, Figure 5.2.2 illustrates the four possible
isomorphism types, only one of which is simple.

FIGURE 5.2.2

The 4 isomorphism types
of arrangements of 5 lines.

There is a second classification of line arrangements, which has proven quite
useful for certain problems. If a distinguished point not on any line of the arrange-
ment is chosen to play the part of the “vertical point at infinity,” we can think of
the arrangement A as an arrangement of nonvertical lines in the Euclidean plane,
and of P∞ as the “upward direction.” Rotating a directed line through P∞ then
amounts to sweeping a directed vertical line through A from left to right (say).
We can then note the order in which this directed line cuts the lines of A, and we
arrive at a periodic sequence of permutations of 1, . . . , n, known as the circular

sequence of permutations belonging to A (depending on the choice of P∞ and
the direction of rotation). This sequence is actually doubly infinite, since the rota-
tion of the directed line through P∞ can be continued in both directions. For the
arrangement in Figure 5.2.3, for example, the circular sequence is

A : . . . 12345 12,45 21354 135 25314 25,14 52341 234 54321 . . . .

We have indicated the “moves” between consecutive permutations.

THEOREM 5.2.1 [GP84]

A circular sequence of permutations arising from a line arrangement has the fol-
lowing properties:
(i) The move from each permutation to the next consists of the reversal of one

or more nonoverlapping adjacent substrings;

(ii) After a move in which i and j switch, they do not switch again until every
other pair has switched;

(iii) 1, . . . , n do not all switch simultaneously with each other.



6 S. Felsner and J.E. Goodman

FIGURE 5.2.3

An arrangement of 5 lines. A
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If two line arrangements are isomorphic, they may have different circular se-
quences, depending on the choice of P∞ (and the direction of rotation). We do
have, however,

THEOREM 5.2.2 [GP84]

If A and A′ are arrangements of lines in P
2, and Σ and Σ′ are any circular se-

quences of permutations corresponding to A and A′, then A and A′ are isomorphic
if and only if Σ and Σ′ are locally equivalent.

CONFIGURATIONS OF POINTS

Under projective duality, arrangements of lines in P
2 correspond to configurations

of points. Some questions seem more natural in this setting of points, however,
such as the Sylvester-Erdős problem about the existence of a line with only two
points (ordinary line), and Scott’s question whether n noncollinear points always
determine at least 2⌊n/2⌋ directions. These problems are discussed in Chapter 1 of
this Handbook.

Corresponding to the classification of line arrangements by isomorphism type,
it turns out that the “dual” classification of point configurations is by order type.

THEOREM 5.2.3 [GP84]

If A and A′ are arrangements of lines in P
2 and S and S ′ the point sets dual to

them, then A and A′ are isomorphic if and only if S and S ′ have the same (or
opposite) order types.

From a configuration of points one also derives a circular sequence of permuta-
tions in a natural way, by projecting the points onto a rotating line The sequence
for the arrangement in Figure 5.2.3 comes from the configuration in Figure 5.2.4 in
this way. Circular sequences yield a finer classification than order type; the order
types of two point sets may be identical while their circular sequences are different.

It follows from projective duality that

THEOREM 5.2.4 [GP82b]

A sequence of permutations is realizable as the circular sequence of a set of points
if and only if it is realizable as the sequence of an arrangement of lines.

The circular sequence of a point configuration can be reconstructed from the
set of permutations obtained by projecting it in the directions that are not spanned
by the points. The corresponding result in higher dimensions is useful (there the
circular sequence generalizes to a somewhat unwieldy cell decomposition of a sphere
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FIGURE 5.2.4

A configuration of 5 points
and its circular sequence.
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with a permutation associated with every cell), since it means that all one really
needs to know is the set of permutations; how they fit together can then be deter-
mined. Chapter 1 of this Handbook is concerned with results and some unsolved
problems on point configurations.

GENERALIZED CONFIGURATIONS

Just as pseudoline arrangements generalize arrangements of straight lines, general-
ized configurations provide a generalization of configurations of points.

For example, a circular sequence for the generalized configuration in Figure 5.2.1,
which is determined by the cyclic order in which the connecting pseudolines meet
a distinguished pseudoline (in this case the “pseudoline at infinity”), is

. . . 12345 34 12435 12 21435 14 24135 35 24513 24 42513 25 45213 13 45231 23 45321 45 54321 . . .

Another generalization of a point configuration is given by an abstraction of the
order type. Intuitively an abstract order type prescribes an orientation clockwise,
collinear, or counterclockwise, for triples of elements (points). The concept can be
formalized by defining a (projective) abstract order type as a reorientation class of
oriented matroids of rank 3. From the Folkman-Lawrence topological representation
theorem it follows that abstract order types and pseudoline arrangements are the
same. When working with abstract order types it is convenient to choose a line
at infinity to get a Euclidean arrangement. In the Euclidean arrangement each
triple of lines forms a subarrangement equivalent to one of the three arrangements
shown in Figure 5.2.5; they tell whether the orientation of the corresponding triple
of ‘points’ is clockwise, collinear or counterclockwise.

FIGURE 5.2.5

The Euclidean arrangements of 3 lines. 3
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Knuth [Knu92] proposed an axiomatization of (Euclidean) abstract order types
in general position (no collinearities) with five axioms. He calls a set together with
a ternary predicate obeying the axioms a CC system.

As in the case of circular sequences and order types we observe that generalized
configurations yield a finer classification than abstract order types.
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ALLOWABLE SEQUENCES

An allowable sequence of permutations is a combinatorial abstraction of the circular
sequence of permutations associated with an arrangement of lines or a configuration
of points. We can define, in a natural way, a number of geometric concepts for allow-
able sequences, such as collinearity, betweenness, orientation, extreme point, convex
hull, semispace, convex n-gon, parallel, etc [GP80a]. Not all allowable sequences
are realizable, however, the smallest example being the sequence corresponding to
Figure 5.2.1. A realization of this sequence would have to be a drawing of the bad
pentagon of Figure 5.2.1 with straight lines, and it is not hard to prove that this
is impossible; a proof of the nonrealizability of a larger class of allowable sequences
can be found in [GP80a].

Allowable sequences provide a means of rephrasing many geometric problems
about point configurations or line arrangements in combinatorial terms. For exam-
ple, Scott’s conjecture on the minimum number of directions determined by n lines
has the simple statement: “Every allowable sequence of permutations of 1, . . . , n
has at least 2⌊n/2⌋ moves in a half-period.” It was proved in this more general
form by Ungar [Ung82], and the proof of the original Scott conjecture follows as a
corollary; see also [Jam85], [BLS+99, Section 1.11], and [AZ99, Chapter 9].

The Erdős-Szekeres problem (see Chapter 1 of this Handbook) looks as follows
in this more general combinatorial formulation:

PROBLEM 5.2.5 Generalized Erdős-Szekeres Problem [GP81a]

What is the minimum n such that for every simple allowable sequence Σ on 1, . . . , n,
there are k indices with the property that each occurs before the other k− 1 in some
term of Σ?

Allowable sequences arise from Euclidean pseudoline arrangements by sweeping
a line across from left to right, just as with an arrangement of straight lines, and
they arise as well from generalized configurations just as from configurations of
points. In fact, the following theorem is just a restatement of Theorem 5.1.5.

THEOREM 5.2.6 [GP84]

Every allowable sequence of permutations can be realized both by an arrangement
of pseudolines and by a generalized configuration of points.

Half-periods of allowable sequences correspond to Euclidean arrangements; they
can be assumed to start with the identity permutation and to end with the reverse
of the identity. If the sequence is simple it is the same as a reduced decomposition

of the reverse of the identity in the Coxeter group of type A (symmetric group).
Theorem 5.6.1 below was obtained in this context.

WIRING DIAGRAMS

Wiring diagrams provide the simplest “geometric” realizations of allowable se-
quences. To realize the sequence

A : . . . 12345 45 12354 12 21354 135 25314 25,14 52341 23 53241 24 53421 34 54321 . . .

for example, simply start with horizontal “wires” labeled 1, . . . , n in (say) increasing
order from bottom to top, and, for each move in the sequence, let the corresponding
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wires cross. This gives the wiring diagram of Figure 5.1.2, and at the end the wires
have all reversed order. (It is then easy to extend the curves in both directions to
the “line at infinity,” thereby arriving at a pseudoline arrangement in P

2.)
We have the following isotopy theorem for wiring diagrams.

THEOREM 5.2.7 [GP85]

If two wiring diagrams numbered 1, . . . , n in order are isomorphic as labeled pseu-
doline arrangements, then one can be deformed continuously to the other (or to its
reflection) through wiring diagrams isomorphic as pseudoline arrangements.

Two arrangements are related by a triangle-flip if one is obtained from the
other by changing the orientation of a triangular face, i.e., moving one of the three
pseudolines that form the face across the intersection of two others.

THEOREM 5.2.8 [Rin57]

Any two simple wiring diagrams numbered 1, . . . , n in order can be obtained from
each other with a sequence of triangle-flips.

This result has well-known counterparts in the terminology of mutations for
oriented matroids and Coxeter relations for reduced decompositions, see [BLS+99,
Section 6.4].

If A and A′ are simple wiring diagrams and there are exactly t triples of lines
such that the orientations of the induced subarrangement in A and A′ differ, then
it may require more than t triangle-flips to get from A to A′; an example is given
in [FZ01].

Wiring diagrams have also been considered in the bi-colored setting. Let L
be a simple wiring diagram consisting of n blue and n red pseudolines, and call
a vertex P balanced if P is the intersection of a blue and a red pseudoline such
that the number of blue pseudolines strictly above P equals the number of red
pseudolines strictly above P (and hence the same holds for those strictly below P
as well).

THEOREM 5.2.9 [PP01]

A simple wiring diagram consisting of n blue and n red pseudolines has at least n
balanced vertices, and this result is tight.

LOCAL SEQUENCES AND CLUSTERS OF STARS

The following theorem (proved independently by Streinu and by Felsner and Weil)
solves the “cluster of stars” problem posed in [GP84]; we state it here in terms of
local sequences of wiring diagrams, as in [FW01].

THEOREM 5.2.10 [Str97, FW01]

A set (αi)i=1,...,n with each αi a permutation of {1, . . . , i − 1, i + 1, . . . , n}, is the
set of local sequences of unordered switches of a simple wiring diagram if and only
if for all i < j < k the pairs {i, j}, {i, k}, {j, k} appear all in natural order or all
in inverted order in αk, αj, αi (resp.).
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HIGHER DIMENSIONS

Just as isomorphism classes of pseudoline arrangements correspond to oriented ma-
troids of rank 3, the corresponding fact holds for higher-dimensional arrangements,
known as arrangements of pseudohyperplanes: they correspond to oriented ma-
troids of rank d+ 1 (see Theorem 6.2.4 in Chapter 6 of this Handbook).

It turns out, however, that in higher dimensions, generalized configurations of
points are (surprisingly) more restrictive than such oriented matroids; thus it is
only in the plane that “projective duality” works fully in this generalized setting;
see [BLS+99, Section 5.3].

5.3 STRETCHABILITY

STRETCHABLE AND NONSTRETCHABLE ARRANGEMENTS

Stretchability can be described in either combinatorial or topological terms:

THEOREM 5.3.1 [BLS+99, Section 6.3]

Given an arrangement A or pseudolines in P
2, the following are equivalent.

(i) The cell decomposition induced by A is isomorphic to that induced by some
arrangement of straight lines;

(ii) Some homeomorphism of P2 to itself maps every Li ∈ A to a straight line.

FIGURE 5.3.1

An arrangement that violates
the theorem of Pappus.
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Among the first examples observed of a nonstretchable arrangement of pseu-
dolines was the non-Pappus arrangement of 9 pseudolines constructed by Levi: see
Figure 5.3.1. Since Pappus’s theorem says that points p, q, and r must be collinear
if the pseudolines are straight, the arrangement in Figure 5.3.1 is clearly nonstretch-
able. A second example, involving 10 pseudolines, can be constructed similarly by
violating Desargues’s theorem.

Ringel showed how to convert the non-Pappus arrangement into a simple ar-
rangement that was still nonstretchable. A symmetric drawing of it is shown in
Figure 5.3.2.

Using allowable sequences, Goodman and Pollack proved the conjecture of
Grünbaum that the non-Pappus arrangement has the smallest size possible for
a nonstretchable arrangement:
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FIGURE 5.3.2

A simple nonstretchable arrangement
of 9 pseudolines.

THEOREM 5.3.2 [GP80b]

Every arrangement of 8 or fewer pseudolines is stretchable.

In addition, Richter-Gebert proved that the non-Pappus arrangement is unique
among simple arrangements of the same size.

THEOREM 5.3.3 [Ric89]

Every simple arrangement of 9 pseudolines is stretchable, with the exception of the
simple non-Pappus arrangement.

The “bad pentagon” of Figure 5.2.1, with extra points inserted to “pin down”
the intersections of the sides and corresponding diagonals, provides another exam-
ple of a nonstretchable arrangement. The bad pentagon was generalized in [GP80a]
yielding an infinite family of nonstretchable arrangements that were proved, by
Bokowski and Sturmfels [BS89a], to be “minor-minimal.” This shows that stretch-
ability of simple arrangements cannot be guaranteed by the exclusion of a finite
number of “forbidden” subarrangements. A similar example was found by Haiman
and Kahn; see [BLS+99, Section 8.3].

As for arrangements of more than 8 pseudolines, we have

THEOREM 5.3.4 [GPWZ94]

Let A be an arrangement of n pseudolines. If some face of A is bounded by at least
n− 1 pseudolines, then A is stretchable.

Finally, Shor shows in [Sho91] that even if a stretchable pseudoline arrangement
has a symmetry, it may be impossible to realize this symmetry in any stretching.

THEOREM 5.3.5 [Sho91]

There exists a stretchable, simple pseudoline arrangement with a combinatorial sym-
metry such that no isomorphic arrangement of straight lines has the same combi-
natorial symmetry.
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COMPUTATIONAL ASPECTS

Along with the Universality Theorem (Theorem 5.5.7 below), Mnëv proved that the
problem of determining whether a given arrangement of n pseudolines is stretchable
is NP-hard, in fact as hard as the problem of solving general systems of polynomial
equations and inequalities over R (cf. Chapter 38 of this Handbook):

THEOREM 5.3.6 [Mnë85, Mnë88]

The stretchability problem for pseudoline arrangements is polynomially equivalent
to the “existential theory of the reals” decision problem.

Shor [Sho91] presents a more compact proof of the NP-hardness result, by
encoding a “monotone 3-SAT” formula in a family of suitably modified Pappus
and Desargues configurations that turn out to be stretchable if and only if the
corresponding formula is satisfiable. (See also [Ric96a].)

The following result provides an upper bound for the realizability problem.

THEOREM 5.3.7 [BLS+99, Sections 8.4,A.5]

The stretchability problem for pseudoline arrangements can be decided in singly
exponential time and polynomial space in the Turing machine model of complexity.
The number of arithmetic operations needed is bounded above by 24n logn+O(n).

The NP-hardness does not mean, however, that it is pointless to look for algo-
rithms to determine stretchability, particularly in special cases. Indeed, a good deal
of work has been done on this problem by Bokowski, in collaboration with Guedes
de Oliveira, Pock, Richter-Gebert, Scharnbacher, and Sturmfels. Four main algo-
rithmic methods have been developed to test for the realizability (or nonrealizabil-
ity) of an oriented matroid, i.e., in the rank 3 case, the stretchability (respectively
nonstretchability) of a pseudoline arrangement:

(i) The inequality reduction method: this attempts to find a relatively small
system of inequalities that still carries all the information about a given ori-
ented matroid.

(ii) The solvability sequence method: this attempts to find an elimination
order with special properties for the coordinates in a potential realization of
an order type.

(iii) The final polynomial method: this attempts to find a bracket polynomial
(cf. Chapter 62) whose existence will imply the nonrealizability of an order
type.

(iv) Bokowski’s’s rubber-band method: an elementary heuristic that has proven
surprisingly effective in finding realizations [Bok08].

Not every realizable order type has a solvability sequence, but it turns out
that every nonrealizable one does have a final polynomial, and an algorithm due
to Lombardi [Lom90] can be used to find one. Fukuda et al. [FMM13] have refined
the techniques and used them successfully for the enumeration of realizable oriented
matroids with small parameters.

All of these methods extend to higher dimensions. For details about the first
three, see [BS89b].
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DISTINCTIONS BETWEEN LINES AND PSEUDOLINES

The asymptotic number of pseudoline arrangements is strictly larger than the
number of line arrangements; see Table 5.6.2 below. Nevertheless, we know only
very few combinatorial properties or algorithmic problems that can be used to
distinguish between line and pseudoline arrangements.

Combinatorial properties of this type are given by the number of triangles in
nonsimple arrangements.

The first such example was given by Roudneff in [Rou88a]. He proved the
following statement that had been conjectured of Grünbaum: An arrangement of n
lines with only n triangles is simple. However, there exist nonsimple arrangements
of n pseudolines with only n triangles. An example of such an arrangement is
obtained by “collapsing” the central triangle in Figure 5.3.2.

Felsner and Kriegel [FK99] describe examples of nonsimple Euclidean pseu-
doline arrangements with only 2n/3 triangles; see Figure 5.3.3. A theorem of
Shannon [Sha79] (see also [Fel04, Thm. 5.18]), however, asserts that a Euclidean
arrangement of n lines has at least n−2 triangles. Hence the examples from [FK99]
are nonstretchable.

FIGURE 5.3.3

A nonsimple Euclidean arrangement
of 12 pseudolines with 8 triangles.

Recently applications of the polynomial method to problems in incidence ge-
ometry have led to some breakthroughs cf. Chapter 7. The improved bounds
apply only to line arrangements. This may open the door to a range of additional
properties that distinguish between lines and pseudolines. Candidates could be
the number of ordinary points or the constant for the strong Dirac conjecture;
see [LPS14].

Another candidate problem where pseudolines and lines may behave differently
is the maximum length of x-monotone paths, see Theorem 5.4.14.

Steiger and Streinu [SS94] consider the problem of x-sorting line or pseudoline
intersections, i.e., determining the order of the x-coordinates of the intersections of
the lines or pseudolines in a Euclidean arrangement. They prove that in comparison-
based sorting the vertices of a simple arrangement of n lines can be x-sorted with
O(n2) comparisons while the x-sorting of vertices of a simple arrangement of n pseu-
dolines requires at least Ω(n2 logn) comparisons. The statement for pseudolines is
a corollary of Theorem 5.6.1, i.e., based on the number of possible x-sortings.
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5.4 COMBINATORIAL RESULTS

In this section we survey combinatorial results. This includes several results that
update Grünbaum’s comprehensive 1972 survey [Grü72]. For a discussion of levels
in arrangements (dually, k-sets), see Chapters 30 and 1, respectively. Erdős and
Purdy [EP95] survey related material with an emphasis on extremal problems.

GLOSSARY

Simplicial arrangement: An arrangement of lines or pseudolines in which every
cell is a triangle.

Near-pencil: An arrangement with all but one line (or pseudoline) concurrent.

Projectively unique: A line arrangement A with the property that every iso-
morphic line arrangement is the image of A under a projective transformation.

RELATIONS AMONG NUMBERS OF VERTICES, EDGES, AND FACES

THEOREM 5.4.1 Euler

If fi(A) is the number of faces of dimension i in the cell decomposition of P
2

induced by an arrangement A, then f0(A)− f1(A) + f2(A) = 1.

In addition to Euler’s formula, the following inequalities are satisfied for
arbitrary pseudoline arrangements (here, n(A) is the number of pseudolines in
the arrangement A). We state the results for projective arrangements. Similar
inequalities for Euclidean arrangements can easily be derived.

THEOREM 5.4.2 [Grü72, SE88]

(i) 1+f0(A) ≤ f2(A) ≤ 2f0(A)−2, with equality on the left for precisely the sim-
ple arrangements, and on the right for precisely the simplicial arrangements;

(ii) n(A) ≤ f0(A) ≤
(

n(A)
2

)

, with equality on the left for precisely the near-pencils,
and on the right for precisely the simple arrangements;

(iii) For n ≫ 0, every f0 satisfying n3/2 ≤ f0 ≤
(

n
2

)

, with the exceptions of
(

n
2

)

− 3

and
(

n
2

)

− 1, is the number of vertices of some arrangement of n pseudolines
(in fact, of straight lines);

(iv) 2n(A) − 2 ≤ f2(A) ≤
(

n(A)
2

)

+ 1, with equality on the left for precisely the
near-pencils, and on the right for precisely the simple arrangements;

(v) f2(A) ≥ 3n(A)− 6 if A is not a near-pencil.

There are gaps in the possible values for f2(A), as shown by Theorem 5.4.3.
This proves a conjecture of Grünbaum which was generalized by Purdy, it refines
Theorem 5.4.2(iv).
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THEOREM 5.4.3 [Mar93]

There exists an arrangement A of n pseudolines with f2(A) = f if and only if, for
some integer k with 1 ≤ k ≤ n−2, we have (n−k)(k+1)+

(

k
2

)

−min (n−k,
(

k
2

)

) ≤

f ≤ (n − k)(k + 1) +
(

k
2

)

. Moreover, if A exists, it can be chosen to consist of
straight lines.

Finally, the following result (proved in the more general setting of geometric
lattices) gives a complete set of inequalities for the flag vectors (n(A), f0(A), i(A)).
The component i(A) is the number of vertex–pseudoline incidences in the arrange-
ment A.

THEOREM 5.4.4 [Nym04]

The closed convex set generated by all flag vectors of arrangements of pseudolines is
characterized by the following set of inequalities: n ≥ 3, f0 ≥ n, i ≥ 2f0, i ≤ 3f0−3,
and (k − 1)i − kn − (2k − 3)f0 +

(

k+1
2

)

≥ 0, for all k ≥ 3. Moreover, this set of
inequalities is minimal.

THE NUMBER OF CELLS OF DIFFERENT SIZES

It is easy to see by induction that a simple arrangement of more than 3 pseudo-
lines must have at least one nontriangular cell. This observation leads to many
questions about numbers of cells of different types in both simple and nonsimple
arrangements, some of which have not yet been answered satisfactorily.

On the minimum number of triangles, we have a classical result of Levi.

THEOREM 5.4.5 [Lev26]

In any arrangement of n ≥ 3 pseudolines, every pseudoline borders at least 3 tri-
angles. Hence every arrangement of n pseudolines determines at least n triangles.

This minimum is achieved by the “cyclic arrangements” of lines generated by
regular polygons, as in Figure 5.4.1.

FIGURE 5.4.1

A cyclic arrangement of 9 lines.

Grünbaum [Grü72] asked for the maximum number of triangles and provided
the upper bound of ⌊n(n − 1)/3⌋ for the simple case. Harborth [Har85] intro-
duced the doubling method to construct infinite families of simple arrangements of
pseudolines attaining the upper bound. Roudneff [Rou96] proved that the upper
bound also holds for nonsimple arrangements. Forge and Ramı́rez Alfonśın [FR98]
constructed infinite families of line arrangements attaining the upper bound.

Already Grünbaum knew that his upper bound could not be attained for all
values of n. Building on results from [BBL08], Blanc proved



16 S. Felsner and J.E. Goodman

THEOREM 5.4.6 [Bla11]

If A is a simple arrangement of n pseudolines, with n ≥ 4 and p3(A) is the number
of triangles in A, then

p3(A) ≤















(n(n− 1))/3 if n ≡ 0, 4 (mod 6)

(n(n− 2)− 2)/3 if n ≡ 1 (mod 6)

(n(n− 1)− 5)/3 if n ≡ 2 (mod 6)

(n(n− 2))/3 if n ≡ 3, 5 (mod 6)

Furthermore, each of these bound is tight for infinitely many integers n, and for
n 6≡ 2 (mod 6) a family of straight line arrangements attaining the bound is known.

For arrangements in the Euclidean plane R
2, on the other hand, we have

THEOREM 5.4.7 [FK99]

(i) Every simple arrangement of n pseudolines in R2 contains at least n − 2
triangles, with equality achieved for all n ≥ 3.

(ii) Every arrangement of n pseudolines in R
2 contains at least 2n/3 triangles,

with equality achieved for all n ≡ 0 (mod 3).

Regarding the maximum number of triangles in simple Euclidean arrangements
of n pseudolines Blanc proves a theorem similar to Theorem 5.4.6 that improves on
the upper bound of n(n− 2)/3 depending on the residue modulo six.

The following result disproved a conjecture of Grünbaum

THEOREM 5.4.8 [LRS89]

There is a simple arrangement of straight lines containing no two adjacent triangles.

The proof involved finding a pseudoline arrangement with this property, then
showing (algebraically, using Bokowski’s “inequality reduction method”—see Sec-
tion 5.3) that the arrangement, which consists of 12 pseudolines, is stretchable.

The following general problem was posed by Grünbaum [Grü72].

PROBLEM 5.4.9

What is the maximum number of k-sided cells in an arrangement of n pseudolines,
for k > 3?

Some results about quadrilaterals have been obtained.

THEOREM 5.4.10 [Grü72, Rou87, FR01]

(i) Every arrangement of n ≥ 5 pseudolines contains at most n(n− 3)/2 quadri-
laterals. For straight line arrangements, this bound is achieved by a unique
arrangement for each n.

(ii) A pseudoline arrangement containing n(n−3)/2 quadrilaterals must be simple.

There are infinitely many simple pseudoline arrangements with no quadrilat-
erals, contrary to what was once believed. The following result implies, however,
that there must be many quadrilaterals or pentagons in every simple arrangement.

THEOREM 5.4.11 [Rou87]

Every pseudoline in a simple arrangement of n > 3 pseudolines borders at least 3
quadrilaterals or pentagons. Hence, if p4 is the number of quadrilaterals and p5 the
number of pentagons in a simple arrangement, we have 4p4 + 5p5 ≥ 3n.
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Leaños et al. [LLM+07] study simple Euclidean arrangements of pseudolines
without faces of degree ≥ 5. They show that they have exactly n− 2 triangles and
(n− 2)(n− 3)/2 quadrilaterals. Moreover, all these arrangements are stretchable.

SIMPLICIAL ARRANGEMENTS

Simplicial arrangements were first studied by Melchior [Mel41]. Grünbaum [Grü71]
listed 90 “sporadic” examples of simplicial arrangements together with the following
three infinite families

THEOREM 5.4.12 [Grü72]

Each of the following arrangements is simplicial:

(i) the near-pencil of n lines;

(ii) the sides of a regular n-gon, together with its n axes of symmetry;

(iii) the arrangement in (ii), together with the line at infinity, for n even.

In [Grü09] Grünbaum presented his collection from 1971 with corrections and in
a more user-friendly way. Subsequently, Cuntz [Cun12] did an exhaustive computer
enumeration of all simplicial arrangements with up to 27 pseudolines. As a result
he found four additional sporadic examples.

On the other hand, additional infinite families of (nonstretchable) simplicial ar-
rangements of pseudolines are known, which are constructible from regular polygons
by extending sides, diagonals, and axes of symmetry and modifying the resulting
arrangement appropriately. More recently Berman [Ber08] elaborated an idea of
Eppstein to generate simplicial arrangements of pseudolines with rotational symme-
try. The key idea is to collect segments contributed by the pseudolines of an orbit in
a wedge of symmetry, they can be interpreted as (pseudo)light-beams between two
mirrors. The method, also described in [Grü13], was used by Lund et al. [LPS14]
to construct counterexamples for the strong Dirac conjecture. Figure 5.4.2 shows
an example.

FIGURE 5.4.2

A simplicial arrangement of 25
pseudolines (including line at infinity).
Each pseudoline is incident to ≤ 10 vertices.
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One of the most important problems on arrangements is the following.

PROBLEM 5.4.13 [Grü72]

Classify all simplicial arrangements of pseudolines. Which of these are stretchable?
In particular, are there any infinite families of simplicial line arrangements besides
the three of Theorem 5.4.12?

It has apparently not been disproved that every (pseudo)line arrangement is a
subarrangement of a simplicial (pseudo)line arrangement.

PATHS IN PSEUDOLINE ARRANGEMENTS

A monotone path π of a Euclidean arrangement A is a collection of edges and
vertices of A such that each vertical line contains exactly one point of π. The length
of π is defined as the number of vertices where π changes from one support line to
another. Edelsbrunner and Guibas [EG89] have shown that the maximum length
of a monotone path in an arrangement of n pseudolines can be computed via a
topological sweep. They also asked for the maximum length λn of a monotone path
where the maximum is taken over all arrangements of n lines. Matoušek [Mat91]
proved that λn is Ω(n5/3). This was raised to Ω(n7/4) by Radoičić and Tóth [RT03],
they also showed λn ≤ 5n2/12.

THEOREM 5.4.14 [BRS+05]

The maximum length λn of a monotone path in an arrangement of n lines is
Ω(n2/2c

√
log n), for some constant c > 0.

Dumitrescu [Dum05] studied arrangements with a restricted number of slopes.
One of his results is that if there are at most 5 slopes, then the length of a monotone
path is O(n5/3). Together with the construction of Matoušek we thus know that
the maximum length of a monotone path in arrangements with at most 5 slopes is
in Θ(n5/3).

Matoušek [Mat91] showed that in the less restrictive setting of arrangements
of pseudolines there are arrangements with n pseudolines which have a monotone
path of length Ω(n2/ logn).

For related results on k-levels in arrangements, see Chapter 24.

A dual path of an arrangement is a path in the dual of the arrangement,
i.e., a sequence of cells such that any two consecutive cells of the sequence share
a boundary edge. A dual path in an arrangement with lines colored red and blue
is an alternating dual path if the path alternatingly crosses red and blue lines.
Improving on work by Aichholzer et al. [ACH+14], the following has been obtained
by Hoffmann, Kleist, and Miltzow.

THEOREM 5.4.15 [HKM15]

Every arrangement of n lines has a dual path of length n2/3−O(n) and there are
arrangements with a dual path of length n2/3 +O(n).
Every bicolored arrangement has an alternating dual path of length Ω(n) and there
are arrangements with 3k red and 2k blue lines where every alternating dual path
has length at most 14k.
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COMPLEXITY OF SETS OF CELLS IN AN ARRANGEMENT

The zone of a line ℓ in A is the collection of all faces that have a segment of ℓ
on their boundary. The complexity of the zone of ℓ is the sum of the degrees of all
faces in the zone of ℓ.

THEOREM 5.4.16 Zone Theorem [BEPY91, Pin12]

The sum of the numbers of sides in all the cells of an arrangement of n+1 pseudo-
lines that are supported by one of the pseudolines is at most 19n/2− 3; this bound
is tight.

For general sets of faces, on the other hand, Canham proved

THEOREM 5.4.17 [Can69]

If F1, . . . , Fk are any k distinct faces of an arrangement of n pseudolines, then
∑k

i=1 p(Fi) ≤ n + 2k(k − 1), where p(F ) is the number of sides of a face F . This
is tight for 2k(k − 1) ≤ n.

For 2k(k−1) > n, this was improved by Clarkson et al. to the following result,
with simpler proofs later found by Székely and by Dey and Pach; the tightness fol-
lows from a result of Szemerédi and Trotter, proved independently by Edelsbrunner
and Welzl.

THEOREM 5.4.18 [ST83, EW86, CEG+90, Szé97, DP98]

The total number of sides in any k distinct cells of an arrangement of n pseudolines
is O(k2/3n2/3 + n). This bound is (asymptotically) tight in the worst case.

There are a number of results of this kind for arrangements of objects in the
plane and in higher dimensions; see Chapter 30, as well as [CEG+90] and [PS09].

5.5 TOPOLOGICAL PROPERTIES

GLOSSARY

Topological projective plane: P
2, with a distinguished family L of pseudolines

(its “lines”), is a topological projective plane if, for each p, q ∈ P
2, exactly one

Lp,q ∈ L passes through p and q, with Lp,q varying continuously with p and q.

Isomorphism of topological projective planes: A homeomorphism that maps
“lines” to “lines.”

Universal topological projective plane: One containing an isomorphic copy
of every pseudoline arrangement.

Topological sweep: If A is a pseudoline arrangement in the Euclidean plane
and L ∈ A, a topological sweep of A “starting at L” is a continuous family of
pseudolines including L, each compatible with A, which forms a partition of the
plane.

Basic semialgebraic set: The set of solutions to a finite number of polynomial
equations and strict polynomial inequalities in Rd. (This term is sometimes used
even if the inequalities are not necessarily strict.)
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GRAPH AND HYPERGRAPH PROPERTIES

An arrangement of pseudolines can be interpreted as a graph drawn crossing
free in the projective plane. Hence, it is natural to study graph-theoretic properties
of arrangements.

THEOREM 5.5.1 [FHNS00]

The graph of a simple projective arrangement of n ≥ 4 pseudolines is 4-connected.

Using wiring diagrams, the same authors prove

THEOREM 5.5.2 [FHNS00]

Every projective arrangement with an odd number of pseudolines can be decom-
posed into two edge-disjoint Hamiltonian paths (plus two unused edges), and the
decomposition can be found efficiently.

Harborth and Möller [HM02] identified a projective arrangements of 6 lines
that admits no decomposition into two Hamiltonian cycles.

Bose et al. [BCC+13] study the maximum size of independent sets and ver-
tex cover as well as the chromatic numbers of three hypergraphs defined by ar-
rangements. They consider the hypergraphs given by the line-cell, vertex-cell and
cell-zone incidences, respectively.

THEOREM 5.5.3 [BCC+13, APP+14]

The lines of every arrangement of n pseudolines in the plane can be colored with
O(

√

n/ logn) colors so that no face of the arrangement is monochromatic. There

are arrangements requiring at least Ω( logn
log log n ) colors.

Let P be a set of points in the plane and let α(P ) be the maximum size of
a subset S of P such that S is in general position. Let α4(n) be the minimum
of α(P ) taken over all sets P of n points in the plane with no four points on a
line. Any improvement of the upper bound in the above theorem would imply an
improvement on the known lower bound for α4(n). The study of α4(n) was initiated
by Erdős, see [APP+14] for details.

EMBEDDING IN LARGER STRUCTURES

In [Grü72], Grünbaum asked a number of questions about extending pseudoline
arrangements to more complex structures. The strongest result known about such
extendibility is the following, which extends results of Goodman, Pollack, Wenger,
and Zamfirescu [GPWZ94].

THEOREM 5.5.4 [GPW96]

There exist uncountably many pairwise nonisomorphic universal topological projec-
tive planes.

In particular, this implies the following statements, all of which had been con-
jectured in [Grü72].

(i) Every pseudoline arrangement can be extended to a topological projective
plane.
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(ii) There exists a universal topological projective plane.

(iii) There are nonisomorphic topological projective planes such that every ar-
rangement in each is isomorphic to some arrangement in the other.

Theorem 5.5.4 also implies the following result, established earlier by Snoeyink
and Hershberger (and implicitly by Edmonds, Fukuda, and Mandel; see [BLS+99,
Section 10.5]).

THEOREM 5.5.5 Sweeping Theorem [SH91]

A pseudoline arrangement A in the Euclidean plane can be swept by a pseudoline,
starting at any L ∈ A.

PROBLEM 5.5.6 [Grü72]

Which arrangements are present (up to isomorphism) in every topological projective
plane?

MOVING FROM ONE ARRANGEMENT TO ANOTHER

In [Rin56], Ringel asked whether an arrangement A of straight lines could always
be moved continuously to a given isomorphic arrangement A′ (or to its reflection)
so that all intermediate arrangements remained isomorphic. This question, which
became known as the “isotopy problem” for arrangements, was eventually solved
by Mnëv, and (independently, since news of Mnëv’s results had not yet reached
the West) by White in the nonsimple case, then by Jaggi and Mani-Levitska in the
simple case [BLS+99]. Mnëv’s results are, however, by far stronger.

THEOREM 5.5.7 Mnëv’s Universality Theorem [Mnë85]

If V is any basic semialgebraic set defined over Q, there is a configuration S of
points in the plane such that the space of all configurations of the same order type
as S is stably equivalent to V . If V is open in some R

n, then there is a simple
configuration S with this property.

From this it follows that the space of line arrangements isomorphic to a given
one may have the homotopy type of any semialgebraic variety, and in particular
may be disconnected, which gives a (very strongly) negative answer to the isotopy
question. For a further generalization of Theorem 5.5.7, see [Ric96a].

The line arrangement of smallest size known for which the isotopy conjecture
fails consists of 14 lines in general position and was found by Suvorov [Suv88]; see
also [Ric96b]. Special cases where the isotopy conjecture does hold include:

(i) every arrangement of 9 or fewer lines in general position [Ric89], and
(ii) an arrangement of n lines containing a cell bounded by at least n−1 of them.

There are also results of a more combinatorial nature about the possibility of
transforming one pseudoline arrangement to another. Ringel [Rin56, Rin57] proved

THEOREM 5.5.8 Ringel’s Homotopy Theorem

If A and A′ are simple arrangements of pseudolines, then A can be transformed to
A′ by a finite sequence of steps each consisting of moving one pseudoline continu-
ously across the intersection of two others (triangle flip). If A and A′ are simple
arrangements of lines, this can be done within the space of line arrangements.
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The second part of Theorem 5.5.8 has been generalized by Roudneff and Sturm-
fels [RS88] to arrangements of planes; the first half is still open in higher dimensions.

Ringel also observed that the isotopy property does hold for pseudoline ar-
rangements.

THEOREM 5.5.9 [Rin56]

If A and A′ are isomorphic arrangements of pseudolines, then A can be deformed
continuously to A′ through isomorphic arrangements.

Ringel did not provide a proof of this observation, but one method of proving
it is via Theorem 5.2.7, together with the following isotopy result.

THEOREM 5.5.10 [GP84]

Every arrangement of pseudolines can be continuously deformed (through isomor-
phic arrangements) to a wiring diagram.

5.6 COMPLEXITY ISSUES

THE NUMBER OF ARRANGEMENTS

Various exact values, as well as bounds, are known for the number of equivalence
classes of the structures discussed in this chapter. Early work in this direction is
documented in [Grü72, GP80a, Ric89, Knu92, Fel97, BLS+99]. Table 5.6.1 shows
the values for n ≤ 11, additional values are known for rows 3, 6, and 7.

TABLE 5.6.1 Exact numbers known for low n.

3 4 5 6 7 8 9 10 11

Arr’s of n lines 1 2 4 17 143 4890 460779 [FMM13]

Simple arr’s of n lines 1 1 1 4 11 135 4381 312114 41693377 [AK07]

Simplicial arr’s of n lines 1 1 1 2 2 2 2 4 2 [Grü09]

Arr’s of n pseudolines 1 2 4 17 143 4890 461053 95052532 [Fin]

Simple arr’s of n p’lines 1 1 1 4 11 135 4382 312356 41848591 [AK07]

Simplicial arr’s of n p’lines 1 1 1 2 2 2 2 4 2 [Cun12]

Simple Eucl. arr’s of n p’lines 2 8 62 908 24698 1232944 112018190 18410581880 5449192389984 [KSYM11]

Simple Eucl. config’s 1 2 3 16 135 3315 158817 14309547 2334512907 [AAK01]

Simple Eucl. gen’d config’s 1 2 3 16 135 3315 158830 14320182 2343203071 [AAK01]

The only exact formula known for arbitrary n follows from Stanley’s formula:

THEOREM 5.6.1 [Sta84]

The number of simple allowable sequences on 1, . . . , n containing the permutation
123 . . . n is

(

n
2

)

!

1n−13n−25n−3 · · · (2n− 3)1
.
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For n arbitrary, Table 5.6.2 indicates the known asymptotic bounds.

TABLE 5.6.2 Asymptotic bounds for large n (all logarithms are base 2).

EQUIVALENCE CLASS LOWER BOUND UPPER BOUND

Isom classes of simple (labeled) arr’s of n p’lines 2.1887n
2

2.6571n
2

[FV11]

Isom classes of (labeled) arr’s of n p’lines ” 21.0850n
2

[BLS+99, p. 270]

Order types of (labeled) n pt configs (simple or not) 24n log n+Ω(n) 24n log n+O(n) [GP93, p. 122]

Comb’l equiv classes of (labeled) n pt configs 27n log n 28n log n [GP93, p. 123]

CONJECTURE 5.6.2 [Knu92]

The number of isomorphism classes of simple pseudoline arrangements is 2(
n

2)+o(n2).

Consider simple Euclidean arrangements with n + 1 pseudolines. Removing
pseudoline n+1 from such an arrangement yields an arrangement of n pseudolines,
the derived arrangement. Call A and A′ equivalent if they have the same derived
arrangement. Let γn be the maximum size of an equivalence class of arrangements
with n + 1 pseudolines. Dually, γn is the maximum number of extensions of an
arrangement of n pseudolines. Knuth proved that γn ≤ 3n and suggested that
γn ≤ n2n might be true. This inequality would imply Conjecture 5.6.2. In the
context of social choice theory, γn ≤ n2n was also conjectured by Fishburn and
by Galambos and Rainer. This conjecture was disproved by Ondřej Bı́lka in 2010.
The current bounds on γn are 2.076n ≤ γn ≤ 4n 2.487n, see [FV11].

HOW MUCH SPACE IS NEEDED TO SPECIFY AN ARRANGEMENT?

Allowable sequences of 1, . . . , n can be encoded with O(n2 logn) bits. This can be
done via the balanced tableaux of Edelman and Greene or by encoding the ends of
the interval that is reversed between consecutive permutations with ≤ 2 logn bits.

Given their asymptotic number, wiring diagrams should be encodable with
O(n2) bits. The next theorem shows that this is indeed possible.

THEOREM 5.6.3 [Fel97]

Given a wiring diagram A = {L1, . . . , Ln}, let t
i
j = 1 if the jth crossing along Li

is with Lk for k > i, 0 otherwise. Then the mapping that associates to each wiring
diagram A the binary n× (n− 1) matrix (tij) is injective.

The number of stretchable pseudoline arrangements is much smaller than the
total number, which suggests that it could be possible to encode these more com-
pactly. The following result of Goodman, Pollack, and Sturmfels (stated here for
the dual case of point configurations) shows, however, that the “naive” encoding,
by coordinates of an integral representative, is doomed to be inefficient.

THEOREM 5.6.4 [GPS89]

For each configuration S of points (xi, yi), i = 1, . . . , n, in the integer grid Z2, let

ν(S) = minmax{|x1|, . . . , |xn|, |y1|, . . . , |yn|},

the minimum being taken over all configurations S ′ of the same order type as S, and
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let ν∗(n) = max ν(S) over all n-point configurations. Then, for some c1, c2 > 0,

22
c1n

≤ ν∗(n) ≤ 22
c2n

.

5.7 APPLICATIONS

Planar arrangements of lines and pseudolines, as well as point configurations, arise
in many problems of computational geometry. Here we describe several such appli-
cations involving pseudolines in particular.

GLOSSARY

Pseudoline graph: Given a Euclidean pseudoline arrangement Γ and a subset E
of its vertices, the graph G = (Γ, E) whose vertices are the members of Γ, with
two vertices joined by an edge whenever the intersection of the corresponding
pseudolines belongs to E.

Extendible set of pseudosegments: A set of Jordan arcs, each chosen from a
different pseudoline belonging to a simple Euclidean arrangement.

TOPOLOGICAL SWEEP

The original idea behind what has come to be known as topologically sweeping an
arrangement was applied, by Edelsbrunner and Guibas, to the case of an arrange-
ment of straight lines. In order to construct the arrangement, rather than using a
line to sweep it, they used a pseudoline, and achieved a saving of a factor of logn
in the time required, while keeping the storage linear.

THEOREM 5.7.1 [EG89]

The cell complex of an arrangement of n lines in the plane can be computed in
O(n2) time and O(n) working space by sweeping a pseudoline across it.

This result can be applied to a number of problems, and results in an improve-
ment of known bounds on each: minimum area triangle spanned by points, visibility
graph of segments, and (in higher dimensions) enumerating faces of a hyperplane
arrangement and testing for degeneracies in a point configuration.

The idea of a topological sweep was then generalized, by Snoeyink and Hersh-
berger, to sweeping a pseudoline across an arrangement of pseudolines ; they prove
the possibility of such a sweep (Theorem 5.5.5), and show that it can be performed
in the same time and space as in Theorem 5.7.1. They also apply this result to
finding a short Boolean formula for a polygon with curved edges.

The topological sweep method was also used by Chazelle and Edelsbrunner
[CE92] to report all k-segment intersections in an arrangement of n line segments
in (optimal) O(n logn+ k) time, and has been generalized to higher dimensions.

APPLICATIONS OF DUALITY

Theorem 5.1.6, and the algorithm used to compute the dual arrangement, are used
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by Agarwal and Sharir to compute incidences between points and pseudolines and
to compute a subset of faces in a pseudoline arrangement [AS05]. An additional
application is due to Sharir and Smorodinsky. Define a diamond in a Euclidean
arrangement as two pairs {l1, l2}, {l3, l4} of pseudolines such that the intersection
of one pair lies above each member of the second and the intersection of the other
pair below each member of the first.

THEOREM 5.7.2 [SS03]

Let Γ be a simple Euclidean pseudoline arrangement, E a subset of vertices of Γ,
and G = (Γ, E) the corresponding pseudoline graph. Then there is a drawing of
G in the plane, with the edges constituting an extendible set of pseudosegments,
such that for any two edges e, e′ of G, e and e′ form a diamond if and only if their
corresponding drawings cross.

Conversely, for any graph G = (V,E) drawn in the plane with its edges consti-
tuting an extendible set of pseudosegments, there is a simple Euclidean arrangement
Γ of pseudolines and a one-to-one mapping φ from V onto Γ with each edge uv ∈ E
mapped to the vertex φ(u) ∩ φ(v) of Γ, such that two edges in E cross if and only
if their images are two vertices of Γ forming a diamond.

This can then be used to provide a simple proof of the Tamaki-Tokuyama
theorem:

THEOREM 5.7.3 [TT97]

Let Γ and G be as in Theorem 5.7.2. If Γ is diamond-free, then G is planar, and
hence |E| ≤ 3n− 6.

PSEUDOTRIANGULATIONS

A pseudotriangle is a simple polygon with exactly three convex vertices, and a
pseudotriangulation is a tiling of a planar region into pseudotriangles. Pseu-
dotriangulations first appeared as subdivisions of a polygon obtained by adding a
collection of noncrossing geodesic paths between vertices of the polygon. The name
pseudotriangulation was coined by Pocchiola and Vegter [PV94]. They discovered
them when studying the visibility graph of a collection of pairwise disjoint convex
obstacles.

Pseudotriangulations have an interesting connection with arrangements of pseu-
dolines: A pseudotriangle in R2 has a unique interior tangent parallel to each direc-
tion. Dualizing the supporting lines of these tangents of a pseudotriangle we obtain
the points of an x-monotone curve. Now consider a collection of pseudotriangles
with pairwise disjoint interiors (for example those of a pseudotriangulation). Any
two of them have exactly one common interior tangent, so the dual pseudolines form
a pseudoline arrangement. Every line arrangement can be obtained with this con-
struction. Pocchiola and Vegter also show that some nonstretchable arrangements
can be obtained.

Streinu [Str05] studied minimal pseudotriangulations of point sets in the con-
text of her algorithmic solution of the Carpenter’s Rule problem previously settled
existentially by Connelly, Demaine, and Rote [CDR00]. She obtained the following
characterization of minimal pseudotriangulations
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THEOREM 5.7.4 [Str05]

The following properties are equivalent for a geometric graph T on a set P of n
vertices.

(i) T is a pseudotriangulation of P with the minimum possible number of edges,
i.e., a minimal pseudotriangulation.

(ii) Every vertex of T has an angle of size > π, i.e., T is a pointed pseudotrian-
gulation.

(iii) T is a pseudotriangulation of P with 2n− 3 edges.

(iv) T is noncrossing, pointed, and has 2n− 3 edges.

There has been a huge amount of research related to pseudotriangulations.
Aichholzer et al. proved Conjecture 5.7.7 from the previous edition of this chapter,
see [RSS08, Thm. 3.7]. A detailed treatment and an ample collection of references
can be found in the survey article of Rote, Santos, and Streinu [RSS08]. We only
mention some directions of research on pseudotriangulations

• Polytopes of pseudotriangulations.

• Combinatorial properties, flips of pseudotriangulations and enumeration.

• Connections with rigidity theory.

• Combinatorial pseudotriangulations and their stretchability.

Pilaud and Pocciola [PP12] extended the correspondence between pseudoline ar-
rangements and pseudotriangulations to some other classes of geometric graphs.
The k-kernel of a Euclidean arrangement of pseudolines is obtained by deleting
the first k and the last k levels of the arrangement. If the arrangement is given by
a wiring diagram this corresponds to deleting the first k and the last k horizontal
lines.

Call an arrangement B of n − 2k pseudolines a k-descendant of an arrange-
ment A of n pseudolines if B can be drawn on the lines of the k-kernel of A such
that at a crossing of the k-kernel the lines of B either cross or touch each other,
Figure 5.7.1 shows an example.

FIGURE 5.7.1

Arrangements A and B

of 6 and 4 pseudolines, resp.,
and a drawing of B on the 1-kernel
of A. It corresponds to the pointed
pseudotriangulation on the dual
point set of A.

THEOREM 5.7.5 [PP12]

(i) For a point set P and its dual arrangement AP there is a bijection between
pointed pseudotriangulations of P and 1-descendants of AP .
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(ii) For a set Cn in convex position and its dual arrangement Cn (a cyclic arrange-
ment) there is a bijection between k-triangulations of Cn and k-descendants
of Cn.

Both parts of the theorem can be proven by showing that the objects on both
sides of the bijection have corresponding flip-structures. Pilaud and Pocciola also
consider the k-descendants of the dual arrangement of nonconvex point sets; their
duals are k-pseudotriangulations.

Another generalization relates pseudotriangulations of the free space of a set of
disjoint convex bodies in the plane with k-descendants of arrangements of double
pseudolines. This is based on the duality between sets of disjoint convex bodies
and arrangements of double pseudolines in the projective plane. A thorough study
of this duality can be found in [HP14].

PSEUDOPOLYGONS

A polygon is a cyclic sequence of vertices and noncrossing edges on a configuration
of points. Similarly a pseudopolygon is based on vertices and edges taken from
generalized configuration of points (see Section 5.2), O’Rourke and Streinu studied
pseudopolygons in the context of visibility problems. They prove

THEOREM 5.7.6 [OS96]

There is a polynomial-time algorithm to decide whether a graph is realizable as the
vertex-edge pseudo-visibility graph of a pseudopolygon.

The recognition problem for vertex-edge visibility graphs of polygons is likely
to be hard. So this is another instance where relaxing a problem from straight to
pseudo helps.

5.8 SOURCES AND RELATED MATERIAL

FURTHER READING

[BLS+99]: A comprehensive account of oriented matroid theory, including a great
many references; most references not given explicitly in this chapter can be traced
through this book.

[Ede87]: An introduction to computational geometry, focusing on arrangements
and their algorithms.

[Fel04] Covers combinatorial aspects of arrangements. Also includes a chapter on
pseudotriangulations.

[GP91, GP93]: Two surveys on allowable sequences and order types and their
complexity.

[Grü72]: A monograph on planar arrangements and their generalizations, with ex-
cellent problems (many still unsolved) and a very complete bibliography up to 1972.
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[FR98] D. Forge and J.L. Ramı́rez Alfonśın. Straight line arrangements in the real projective
plane. Discrete Comput. Geom., 20:155–161, 1998.
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32:27–35, 1980.

[GP80a] J.E. Goodman and R. Pollack. On the combinatorial classification of nondegenerate
configurations in the plane. J. Combin. Theory, Ser. A, 29:220–235, 1980.

[GP80b] J. E. Goodman and R. Pollack. Proof of Grünbaum’s conjecture on the stretchability
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[Grü13] B. Grünbaum. Simplicial arrangements revisited. Ars Math. Contemp., 6:419–433,
2013.

[Har85] H. Harborth. Some simple arrangements of pseudolines with a maximum number of
triangles. Ann. New York Acad. Sci., 440:31–33, 1985.



Chapter 5: Pseudoline arrangements 31

[HKM15] U. Hoffmann, L. Kleist, and T. Miltzow. Upper and lower bounds on long dual paths in
line arrangements. In Proc. 40th Sympos. Math. Foundations of Comp. Sci. (MFCS),
volume 9235 of Lecture Notes in Comput. Sci., pages 407–419, Springer, 2015.
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