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Abstract

Flip graphs of combinatorial and geometric objects are at the heart of many deep structural
insights and connections between different branches of discrete mathematics and computer
science. They also provide a natural framework for the study of reconfiguration problems. We
study flip graphs of arrangements of pseudolines and of arrangements of pseudocircles, which
are combinatorial generalizations of lines and circles, respectively. In both cases we consider
triangle flips as local transformation and prove conjectures regarding their connectivity.
In the case of n pseudolines we show that the connectivity of the flip graph equals its

minimum degree, which is exactly n− 2. For the proof we introduce the class of shellable
line arrangements, which serve as reference objects for the construction of disjoint paths.
In fact, shellable arrangements are elements of a flip graph of line arrangements which are
vertices of a polytope (Felsner and Ziegler; DM 241 (2001), 301–312). This polytope forms
a cluster of good connectivity in the flip graph of pseudolines. In the case of pseudocircles
we show that triangle flips induce a connected flip graph on intersecting arrangements and
also on cylindrical intersecting arrangements. The result for cylindrical arrangements is
used in the proof for intersecting arrangements. We also show that in both settings the
diameter of the flip graph is in Θ(n3). Our constructions make essential use of variants of
the sweeping lemma for pseudocircle arrangements (Snoeyink and Hershberger; Proc. SoCG
1989: 354–363). We finally study cylindrical arrangements in their own right and provide
new combinatorial characterizations of this class.
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Wittenberg in April 2022 and parts appeared in the Bachelor’s thesis of the first author [4]. We thank all the participants
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DFG Grant SCHE 2214/1-1.
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1 Introduction

Reconfiguration is a widely studied topic in discrete mathematics and theoretical computer science [40].
In many cases, reconfiguration problems can be stated in terms of a flip graph. For a class of objects, the
flip graph has a vertex for each object and adjacencies are determined by a local flip operation, which
transforms one object into another. Typically, the first question is whether a flip graph is connected. In
the affirmative case, more refined questions regarding radius, diameter, degree of connectivity, shortest
paths, mixing properties, or Hamiltonicity can be of interest. Hamiltonicity of flip graphs is related to
combinatorial generation and Gray codes, cf. Knuth’s TAOCP vol.4A [32] and the survey on Gray codes
by Mütze [39]. In nice cases flip graphs turn out to be the graphs of polytopes, cf. recent work on graph
associahedra [37] and quotientopes [42]. This yields enriching connections between combinatorics and
geometry.

A prototypical example is the flip graph of triangulations of a convex polygon. The vertex set of this
graph are all triangulations of the polygon, and two triangulations are adjacent if one can be obtained
from the other by exchanging the common edge of two adjacent triangles by the other diagonal of the
convex quadrilateral formed by them. Similar flip graphs have also been investigated in the context of
Delaunay triangulations [17] and for triangulations of point sets [14].

Two arrangements of curves are related by a triangle flip if one is obtained from the other by changing
the orientation of a triangular cell, i.e., moving one of the three curves of the triangle across the
intersection of the two others. On a family of arrangements we obtain the triangle flip graph by taking
the arrangements as vertices and triangle flips as edges. Triangle flips1 on arrangements of curves and
the resulting flip graphs have been studied in various contexts, including the transformation of drawings
of graphs [3, 5, 44], curves on surfaces with large genus [13], and knot theory [33, 48]. The work at hand
studies triangle flip graphs on arrangements of pseudolines and pseudocircles in the Euclidean plane.
An arrangement of pseudolines is a finite collection of simple bi-infinite curves (pseudolines) in the

plane such that every pair of curves intersects in a unique point where the two curves cross. In a
marked arrangement, one of the unbounded cells is distinguished (see also Section 2). An arrangement
of pseudocircles is a finite collection of simple closed curves (pseudocircles) in the plane such that every
pair of curves is either disjoint, touches in a single point, or intersects in exactly two crossing points. An
arrangement of pseudocircles is intersecting if every pair of curves in the arrangement has two crossing
points. An arrangement of pseudolines or pseudocircles is simple if no three of its curves share a common
point. In this work we only consider simple arrangements.

Arrangements of pseudolines have been introduced by Levi [34] as a generalization of arrangements of
straight lines. Since then they have been intensively studied and used as they occur in many problems of
computational geometry; see the handbook chapters [2, 19].
Ringel [43] studied arrangements of pseudolines using triangle flips. His homotopy theorem (name

coined in [7]) shows that the triangle flip graph of arrangements of pseudolines is connected.
While Levi investigated arrangements in the projective plane, Ringel was considering the Euclidean

plane as ambient space. The number of triangles in arrangements, i.e., degrees in the triangle flip graph
have been studied since Levi’s seminal work. The number of triangles in Euclidean arrangements of n
pseudolines ranges from n− 2 to 1

3n(n− 2), where examples for both extremes exist for infinitely many
values of n, for details see [20] (lower bound) and [8] (upper bound).

Manin and Schechtmann [36] introduced higher Bruhat orders, see also Ziegler [49]. Elements of higher
Bruhat orders are signotopes: an r-signotope is a mapping σ :

(
[n]
r

)
→ {+,−} fulfilling a monotonicity

condition on (r + 1)-sets. Felsner and Weil [26] showed that 3-signotopes encode arrangements of
pseudolines. A flip between signotopes corresponds to changing the sign of a single r-set. The resulting
flip graph of r-signotopes is connected for any rank r. At the end of their paper Felsner and Weil
ventured the following conjecture (the r = 1 and r = 2 cases of the statement are known to be true, they
concern degree and connectivity of hypercubes and permutahedra).

1They are sometimes also referred to as mutations [7], homotopy moves [13], or Reidemeister moves of type III [33], where
the latter specifies an above/below relationship between the curves/strands.
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Conjecture 1 ([26]). For every r ≥ 3, the flip graph Gr
n of r-signotopes on n elements has minimum

degree n− r + 1 and is (n− r + 1)-connected.

The flip graph Gr
n of r-signotopes on n elements has vertices of degree n − r + 1, e.g. the all-plus

signotope. Hence, the conjecture has two parts, show that the minimum degree is n− r + 1 and show
that the connectivity equals the minimum degree. The mapping from pseudoline arrangements with a
marked north-cell to 3-signotopes is as follows: The north-cell defines the upper side of a pseudoline, i.e.,
an above/below relation of pseudolines and points not on the line. For a triple {i, j, k} with i < j < k,
let σ(ijk) = + if the crossing of the lines ℓi and ℓk is above ℓj and σ(ijk) = − if it is below. Changing a
single sign thus corresponds to a triangle flip in the arrangement. The flip graph G3

n of 3-signotopes is
the triangle flip graph of arrangements of n pseudolines. The degree of a 3-signotope in the flip graph
equals the number of triangles in the corresponding arrangement. As already noted, this number is at
least n− 2. We prove the connectivity part of Conjecture 1 for r = 3 and sufficiently large n.

Theorem 1. For n ≤ 7 and n ≥ 24, the triangle flip graph Fn on marked arrangements of n pseudolines
is (n− 2)-connected.

Since pseudoline arrangements are closely related to several other combinatorial structures such as great-
pseudocircle arrangements (oriented matroids of rank 3) and reduced decompositions of permutations,
we expect Theorem 1 to be of interest for multiple fields (see also Section 6).

For the proof of Theorem 1 we will make use of a structural result by Felsner and Ziegler [27]. They
construct a high-dimensional zonotope such that its skeleton is the triangle flip graph of all arrangements
of lines which can be realized with the prescribed slopes. Moreover, we will define shellable arrangements
(see Section 2) and show that they can be realized with any set of prescribed slopes.

An arrangement on n lines can be seen as a real-valued 2× n matrix, where the i-th column encodes
the slope and the y-intercept of the i-th line. For a given realizable pseudoline arrangement, the
realization space is the set of all matrices corresponding to realizing line arrangements. Due to Mnëv’s
Universality Theorem [38], realization spaces can behave topologically as bad as arbitrary semialgebraic
sets. In particular, there exist arrangements with disconnected realization space for n ≥ 13; see [47].
In other words, a pair of line arrangements, both realizing the same combinatorial type, might not be
transformable into each other via continuous motion of lines without changing the combinatorial type.
Similarly if two line arrangements only differ by a single triangle orientation a continuous transformation
from one to the other may have to pass at a line arrangement of a third combinatorial type. The following
result is in contrast to these considerations.

Proposition 2. The triangle flip graph FLn on arrangements of n lines in the plane is (n−2)-connected
for all n ≥ 3. Moreover, for every pair of line arrangements L and L′, and any n − 3 pseudoline
arrangements A1, . . . ,An−3 combinatorially different from L and L′, there exists a continuous motion
of lines transforming L into L′ such that every intermediate line arrangement avoids the combinatorial
types of A1, . . . ,An−3. The statement also holds if L and L′ have the same combinatorial type.

The study of arrangements of pseudocircles as a generalization of arrangements of circles was initiated
by Grünbaum [29] in the 1970’s. If disjoint pseudocircles are allowed, it is natural to consider three
different flip operations: In addition to the triangle flip, there is the digon-create flip to allow two initially
disjoint pseudocircles to start intersecting in a digon; and the reverse operation, called digon-collapse
flip (see Figure 3 and Section 2). With these three flip operations, the flip-connectivity of arrangements
of circles is evident: one can shrink the circles until they have pairwise disjoint interiors.
The sweeping lemma of Snoeyink and Hershberger [46] implies that any pseudocircle in an arrange-

ment can be shrunk to a point in a continuous process which maintains the intersection requirements
(|C ∩ C ′| ≤ 2) of pseudocircles. In a discretized form, this yields a sequence of digon and triangle flips.
Hence, any two arrangements of n pseudocircles can be transformed into each other via a sequence of
these flips.
However, the resulting flip sequence in general uses many digon flips and goes via the canonical

arrangement of pairwise disjoint pseudocircles. This naturally raises the question of whether it is possible
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to transform two intersecting arrangements of pseudocircles into each other without any two pseudocircles
becoming disjoint, or, in other words, by using only triangle flips.

Question 1. Is the triangle flip graph of intersecting arrangements of n pseudocircles connected?

For intersecting arrangements of circles the answer is yes. We leave the details as an exercise to
the reader. Another class where the answer is yes are great-pseudocircle arrangements, which are a
generalization of great-circle arrangements on the sphere. These are intersecting arrangements with the
property that for any three pseudocircles Ci, Cj , Ck the two intersection points of Ci and Cj are on
different sides of Ck. Great-pseudocircle arrangements are in bijection to pseudoline arrangements and
hence Ringel’s theorem carries over2. Felsner and Scheucher [23] showed flip-connectivity for intersecting
digon-free arrangements of proper circles and conjectured connectivity of the pseudocircular analogue
(cf. [23, Conjecture 8.6]). Our second main result is a positive answer to Question 1.

Theorem 3. The triangle flip graph of intersecting arrangements of n pseudocircles is connected.

A crucial ingredient for our proof of Theorem 3 are cylindrical arrangements . These are arrangements
of pseudocircles in the plane such that there is a point which belongs to the bounded interior of each
pseudocircle, such a point is called a center . One part of the proof is to show that every intersecting
cylindrical arrangement can be flipped into a canonical arrangement by only using triangle flips and
without leaving the class of cylindrical arrangements.

Theorem 4. The triangle flip graph of intersecting cylindrical arrangements of n pseudocircles is
connected.

Showing that every intersecting arrangement A can be flipped into some cylindrical arrangement
then completes the proof of Theorem 3. We further study the diameter of the resulting flip graphs. For
both, the triangle flip graph of intersecting arrangements and for the triangle flip graph on intersecting
cylindrical arrangements, we obtain asymptotically tight bounds for the diameter.

Proposition 5. The triangle flip graph of intersecting cylindrical arrangements of n pseudocircles has
diameter at least 2

(
n
3

)
and at most 4

(
n
3

)
.

Proposition 6. The triangle flip graph of intersecting arrangements of n pseudocircles has diame-
ter Θ(n3).

Outline. In Section 2, we introduce concepts and terminology more formally and present some key
preliminaries. In Section 3 we prove the (n− 2)-connectivity of the triangle flip graph of arrangements
of n pseudolines. Additionally we prove the (n−2)-connectivity of the triangle flip graph of arrangements
of n lines where in fact the transitions between arrangements can be realized by continuous motions
of lines. Section 4 is dedicated to the triangle flip graphs of intersecting (cylindrical) arrangements of
pseudocircles. Our studies also lead us to new characterizations of cylindrical arrangements, which we
present in Section 5. We conclude the article with a discussion of implications, future research directions,
and open problems in Section 6.

2 Preliminaries

A pseudoline partitions the plane into two (unbounded) regions, while a pseudocircle C partitions the
plane into a bounded region, the interior int(C), and an unbounded region, the exterior ext(C). An
arrangement of curves induces a decomposition of the plane into vertices (the intersection points), edges
(maximal contiguous vertex-free pieces of the curves), and cells (connected components of the plane

2For great-pseudocircle arrangements, a flip must consist of two simultaneous triangle flips applied to a pair of ‘antipodal’
triangles, otherwise intermediate arrangements fail to have the great-pseudocircle property.
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after removing all curves)3. One can think of an arrangement as a plane graph-like object consisting of
vertices, edges and cells.

In this work we only consider simple intersecting arrangements. Hence, every vertex in the arrangements
has degree 4 and every cell is incident to at least two pseudocircles respectively three pseudolines. A
bounded cell with k edges along its boundary is a k-cell , a 3-cell is a triangle, and a 2-cell is a digon
(a.k.a. empty lens).

Arrangements of pseudolines. An arrangement of n pseudolines in the Euclidean plane has 2n
unbounded cells. Typically, Euclidean arrangements are assumed to be marked , that is, one of the
unbounded cells is designated as north-cell zN and pseudolines are oriented such that the north-cell is in
their left halfplane. The south-cell zS of a marked arrangement is the unique unbounded cell separated
from zN by all pseudolines. Unless stated otherwise, all pseudoline arrangements in this paper are
marked. The canonical labeling of a marked arrangement is the numbering of the pseudolines in the
order of visit when traversing the arrangement from the north-cell to the south-cell via unbounded cells,
while leaving all vertices of the arrangement to the right. Figure 1 shows an example. We consider two
arrangements of pseudolines to be isomorphic if the induced cell decompositions are isomorphic and the
marking is preserved4, i.e., if there is a bijection between the pseudolines that induces incidence and
orientation preserving bijections of vertices, edges, and cells.

`1
`2

`3

`4

`5

`6

zN

zS

Figure 1: A marked arrangement and its canonical labelling.

Given an arrangement A of n pseudolines we say that the triple ℓi, ℓj , ℓk has positive orientation if
the crossing of the pseudolines ℓi and ℓk is in the northern halfplane of the pseudoline ℓj , otherwise
the triple has negative orientation. Assuming the canonical labeling and ordered triples i < j < k
we obtain a mapping σA :

(
[n]
3

)
→ {+,−}. This is the 3-signotope associated with A. It is known

(see [26]) that 3-signotopes encode isomorphism classes of arrangements of pseudolines. In the proof of
Theorem 1 we will use triple orientations to argue that certain paths in the flip graph of arrangements
are vertex-disjoint.
A pseudoline ℓ of an arrangement A of pseudolines is extreme if all crossings lie in the northern

halfplane (above ℓ) or all crossings lie in the southern halfplane (below ℓ). An arrangement A of
pseudolines is shellable if it contains an extreme pseudoline ℓ and A−ℓ is shellable or empty, where
A−ℓ denotes the arrangement of all pseudolines of A except ℓ. The sequence obtained by iteratively
removing extreme pseudolines from a shellable arrangement is called a shelling sequence. For example,
the arrangement in Figure 1 is shellable with shelling sequence ℓ1, ℓ5, ℓ2, ℓ3, ℓ4, ℓ6.

Arrangements of pseudocircles. We consider two arrangements of pseudocircles to be isomorphic if
the induced cell decompositions are isomorphic, i.e., if there is a bijection between the pseudocircles
that induces incidence preserving bijections of vertices, edges, and cells, while also keeping the ccw-
orientations of pseudocircles. In the plane, there are exactly four arrangements of three pairwise

3In general there may also be endpoints of curves.
4Isomorphism can also become subtle: There are arrangements of lines with a disconnected realization space, i.e., there
are combinatorial isomorphisms with no corresponding homotopy [38, 47].
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intersecting pseudocircles up to isomorphism (see Figure 2). Following [23], we call the arrangement
with 8 triangles depicted in Figure 2(a) the Krupp arrangement and denote the other ones as NonKrupp.
We refer to the NonKrupp arrangement whose unbounded cell has complexity k as NonKrupp(k), e.g.,
NonKrupp(2) is the arrangement shown in Figure 2(c).

(a) (b) (d)(c)

Figure 2: The four non-isomorphic arrangements of 3 pairwise intersecting pseudocircles in the plane. (a) shows
the Krupp and (b)–(d) show the three types of NonKrupp arrangements.

Recall that an arrangement of pseudocircles is cylindrical if there is a point p which is contained in the
interiors of all the pseudocircles. Among the arrangements of Figure 2, the arrangement in Figure 2(d),
i.e., the NonKrupp(3), is the only non-cylindrical one.
Some related work considers arrangements of pseudocircles on the sphere, e.g. [23]. In this setting

there are only two non-isomorphic intersecting arrangements of three pseudocircles: The arrangements
(b), (c), and (d) of Figure 2 are isomorphic on the sphere, since they only differ in the choice of the
unbounded cell. In this article we consider arrangements in the plane.
A subclass of cylindrical arrangements are the great-pseudocircle arrangements. With the above

terminology, a great-pseudocircle arrangement is an arrangement of pseudocircles with the property that
every triple of pseudocircles from the arrangement induces a Krupp subarrangement.

Sweeps and flips. Sweeping is an algorithm design paradigm in computational geometry. The idea
is to explore a space with a lower dimensional sweep surface in a way that the continuous exploration
can be discretized via certain events and hence becomes algorithmically handlable. For arrangements
of curves in the plane, the sweeping curve can also be seen as part of the arrangement: A sweep of an
arrangement A of pseudolines is a transformation of a pseudoline c within A such that one side of c
is increasing and collects additional crossings of A. An event of the sweep occurs whenever c passes a
crossing, or, equivalently, when a triangle of A is flipped. Snoeyink and Hershberger [46] studied sweeps
of arrangements of pseudocircles with a pseudocircle. They showed that a sweep of an arrangement C
with a pseudocircle C of C is possible in two phases. In the growing phase, C explores the exterior of C
in C and in the shrinking phase it explores the interior of C in C. In both phases the events of the sweep
can be restricted to one of the following three possibilities, see Figure 3. Digon-create: a pseudocircle
gains two intersections with a pseudocircle; digon-collapse: a pseudocircle loses its two intersections with
a pseudocircle; triangle flip: a pseudocircle (or pseudoline) moves over the crossing of two others.

digon-collapse

digon-create

triangle-flip

Figure 3: An illustration of the three flip operations.

Snoeyink and Hershberger actually prove the following more general sweeping lemma for families of
simple curves that pairwise intersect at most twice and are either bi-infinite or closed.

Lemma 7 ([46, Lemma 3.2]). Let A be an arrangement of pseudocircles and bi-infinite curves that
pairwise intersect at most twice. Then A can be swept starting from any curve C in A by using the
three operations triangle flip, digon-create, and digon-collapse, while maintaining the property that any
two curves intersect at most twice.
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It will be convenient to have a separate sweeping lemma for lenses. A lens in an arrangement is a
bounded region in a subarrangement formed by two intersecting pseudocircles. An arc is a contiguous
subset of a pseudocircle, starting and ending at a vertex of the arrangement. Let A be an arrangement
of pseudocircles and let Q be (the closure of) a lens bounded by two arcs L and R.

An arc of Q is an arc of a pseudocircle C which has both endpoints on the boundary of Q and whose
relative interior lies in the interior of Q. If an arc a of Q has both endpoints on L or both endpoints on
R, then a forms a lens with L or R, respectively. Otherwise the arc has one endpoint on L and one on
R, in this case we call the arc transversal (see Figure 4).

L

R

Q

Figure 4: Illustration of Lemma 8: a lens Q with four transversal arcs and a sweep of Q.

The following lemma is a consequence of Lemma 7. For self-containment, we include a direct proof.

Lemma 8. Let Q be a lens bounded by the arcs L and R. If all the arcs of Q are transversal, then,
using only triangle flips, L can be swept towards R until the interior of Q does not contain a vertex of
the arrangement.

Proof. We orient all arcs of Q from L to R, and consider the arrangement A|Q of these arcs.

Claim A. If two oriented arcs a and a′ intersect in two points p and q such that p precedes q on a, then
p precedes q on a′.

Proof. Suppose for the contrary that q is the first intersection with a on a′. Consider the region T
bounded by the subarcs of a and a′ from L to p, respectively, and the corresponding part of L; see
Figure 5(left). Then the arc a′ enters the interior of T at q, but cannot leave it anymore to reach R, a
contradiction. ◁

Claim B. The directed graph of the arrangement A|Q is acyclic.

Proof. Suppose A|Q contains a directed cycle. Let Z be a directed cycle such that the enclosed area is
minimal. Then Z is the boundary of a cell of the arrangement. Let v1, e1, v2, . . . ek, vk+1 = v1 be the
sequence of vertices and edges along Z. From Claim A we know that k ≥ 3 holds. Let edge ei be part of
arc ai and let αi be the subarc of ai starting at L and ending in vi. Similarly, let βi be the subarc of ai
starting in vi+1 and ending at R.
We will show by induction that for all j = 2, . . . , k there is an intersection of αj and β1. This implies

Claim B because the intersection of αk and β1 is after v1 on a1 and before v1 on ak, a contradiction to
Claim A.
For j = 2, the intersection of α2 and β1 is at v2. For the induction step, given that there is an

intersection of αj−1 and β1 we consider the region T in Q whose boundary consists of the directed
subpath S from v2 to vj on the boundary of Z together with β1, βj−1, and some piece of R, or in case
β1 and βj−1 meet in a point q the boundary consists of S, the arc from v2 to q on β1 and the arc from
vj to q on βj−1, see Figure 5(right). It is important to note that due to Claim A the interior of Z is not
part of T . The final part of αj is inside T and ends at vj . Since another intersection of αj and βj−1 is
forbidden by Claim A it follows that αj had to enter region T through β1. ◁

7



p
q

a′

a
T

e1
e2

e3e5

e6

v1 v2

e4

α1
β1

α5 β4

α4

T

Figure 5: Illustration of the proof of Lemma 8.

Since the directed graph A|Q is acyclic, there is at least one source. Every source gives rise to a
triangle with an edge on L which can be flipped. A topological ordering of of A|Q yields a sequence of
triangle flips which can be used to sweep Q with L. This completes the proof of Lemma 8.

Let us briefly remark how Lemma 8 can be deduced from Lemma 7: Extend the left boundary curve L
of Q and all the arcs of Q to bi-infinite curves. For the extension of each of the curves use two pseudorays
– one at each end. The collection of all pseudorays can be chosen such that they are pairwise disjoint
(non-crossing) and do not introduce any further crossings. A sweep with sweep-line L in the resulting
arrangement of bi-infinite curves then yields the desired sequence of triangle flips.
It is also possible to add the extending pseudorays in such a way that each pair of the resulting

bi-infinite curves has an odd number of crossings and infer Lemma 8 from the odd-crossing sweeping
lemma of Bokowski et al. [9, Lemma 5.2].

3 Flip Graphs on Arrangements of Pseudolines

In this section we prove Theorem 1 and Proposition 2. We first show that shellable arrangements have
favourable properties, in particular they belong to polytopal clusters in the flip graph Fn. In Section 3.1
we use these insights to show (n − 2)-connectivity of the triangle flip graph FLn of arrangements of
lines – even under continuous transformations –, i.e., Proposition 2. In Section 3.2 we define good sets of
triangles and show how to use them in connection with shellable arrangements to prove Theorem 1.

Lemma 9. Let S be a shellable arrangement with shelling sequence sσ(1), . . . , sσ(n) and let λ1 < λ2 <
. . . < λn be a sequence of real numbers. Then S can be realized as an arrangement of lines where for
each i the line si has slope λi.

Proof. Start with a line sσ(n) of slope λσ(n). When sσ(n), . . . , sσ(k+1) have been fixed, then insert sσ(k) as
a line of slope λσ(k) such that all the crossings of the previously inserted lines are above or below sσ(k).

Let Λ = (λ1, . . . , λn) be a slope vector with λ1 < . . . < λn and let AΛ be the set of simple line
arrangements with n lines which can be realized with the slopes of Λ. Moreover, let FΛ be the restriction
of the flip graph Fn on arrangements of n pseudolines to the elements of AΛ. The following theorem has
been shown by Felsner and Ziegler (see Figure 6 for an illustration and [27] for definitions).

Theorem 10 ([27]). The graph FΛ is the skeleton graph of an (n− 2)-dimensional zonotope.

Balinski’s theorem [6] asserts that the skeleton graph of a d-dimensional polytope is d-connected. Since
zonotopes are special polytopes we have the following:

Corollary 11. The graph FΛ is (n− 2)-connected.

The following lemma will be essential in Section 3.2 when we define paths in the flip graph which
connect an arrangement A to an element of AΛ.

8



Figure 6: The graph F5, drawn as the skeleton of a 3 dimensional zonotope. Figure taken from [27].

Lemma 12. Let A be an arrangement of pseudolines and let S be a shellable arrangement. Then there
is a path P from A to S in the flip graph Fn such that on P every triple of pseudolines is flipped at
most once.

Proof. Let ℓ1, . . . , ℓn be the pseudolines of A and let sσ(1), . . . , sσ(n) be a shelling sequence of S. Line sσ(1)
is extreme in S. If sσ(1) is above/below the crossings of S we can sweep the line ℓσ(1) upwards/downwards
in A until all crossings lie below/above the line, see Figure 7. A flip-path from A−ℓσ(1) to S−sσ(1) can
be constructed recursively. This recursively constructed path has no flip of a triple involving ℓσ(1) while
all the triples of the attached final subpath involve ℓσ(1). Hence, no triple is flipped twice.

` ` `

Figure 7: The pseudoline ℓ is swept upwards with a sequence of triangle flips. In the final position all crossings
are below ℓ.

3.1 Proof of Proposition 2: (n− 2)-connectivity for line arrangements

Lemma 13. The realization space of a shellable arrangement S is path-connected.

Proof. We proof the lemma by induction over the number of lines in S. The statement is true for the
arrangement consisting of a single line, here the realization space is R2 (the arrangement is marked,
hence, the vertical line is not allowed).
Assume that ℓ is an extreme line of S. Let S1 and S2 be two realizations of S. Rotate S1 until ℓ has

the same slope in S1 and S2. It can happen that the rotation changes the combinatorial type of S1, by
moving a line over the north-pole. To prevent this, we apply an affine transformation, by continuously
stretching the plane in x-direction. This transformation changes the slopes in S1 and S2 arbitrarily
close to zero. If the slopes are sufficiently close to zero, we can do the aforementioned rotation without
changing the combinatorial type of S1. After the rotation, we can translate S1, such that ℓ is equal in S1

and S2.
By induction, there is a continuous motion of lines, transforming S1−ℓ into S2−ℓ, without changing

combinatorial types. It is possible that in this motion, a crossing of S1−ℓ moves over ℓ, which would
change the combinatorial type of S. To prevent this, we can move ℓ in S1 and S2 far enough downwards
or upwards.
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Lemma 14. Let L and L′ be two line arrangements, realized with the same slope vector Λ, who have
the same combinatorial type or are adjacent in FLn. Then L can be transformed into L′, only by
continuous motions of lines, such that all intermediate arrangements are also realized with Λ and are
combinatorially equivalent to either L or L′.

Proof. Embed the two line arrangements in the {z = 0} respectively {z = 1} plane in R3. Since they
are both realized with the same slope set, we can interpolate the i-th line in L and L′ by a plane Hi.
Intersecting the plane arrangement H = {Hi | i = 1 . . . n} with the {z = t} planes with t increasing from
0 to 1 yields a continuous motion of line arrangements with slopes in Λ, transforming L into L′.
Since a triple of the planes {Hi | i = 1 . . . n} can cross at most once, all intermediate arrangements

have the combinatorial type of L or L′.

Proof of Proposition 2. Let A and A′ be two realizable arrangements, realizable with slope vectors Λ
and Λ′, respectively. We will only consider the subgraph of FLn induced by the arrangements that are
in FΛ or FΛ′ . After deleting n− 3 arrangements in this graph, each of FΛ and FΛ′ is still connected, by
Corollary 11. They also share at least one shellable arrangement S, by Lemma 9. It follows that there is
path from A to S and from A′ to S.
We can choose these paths to lie completely in FΛ and F′

Λ, respectively. We realize the first path
as a continuous motion of lines from A to S, both realized with slopes in Λ, by repeatedly applying
Lemma 14. We can do the same for A′ and S, both realized by slopes in Λ′.
We obtain two realizations S1 and S2 of S. They can be transformed into each other with a continuous

motion of lines, by Lemma 13.

3.2 Proof of Theorem 1: (n− 2)-connectivity for pseudoline arrangements

A set T of triples of [n] is good if for every assignment α : T → {+,−} there exists a shellable arrangement
Sα such that in Sα the orientation of the triple of pseudolines corresponding to t ∈ T is α(t). First, we
use shellable arrangements and the concept of good triples to prove the statement of Theorem 1 for all
n ≥ 43. Later, in Section 3.2.1, we perform the step from n ≥ 43 to n ≥ 24.

Lemma 15. Every arrangement A on n ≥ 3 pseudolines admits a sequence of distinct triangles t1, . . . , tk
and a sequence of distinct pseudolines ℓτ(1), . . . , ℓτ(k) with k ≥ n

3 such that the first triple in t1, . . . , tk
that involves ℓτ(i) is the triple ti.

Proof. The sequence of triangles is constructed one by one. Suppose that t1, . . . , tj−1 have been
constructed. If there is a pseudoline ℓ which is not incident to any of these triangles. The sweeping
lemma implies that there exists a triangle t incident to ℓ. Since ℓ is not incident to the previous triangles
t1, . . . , tj−1, the triangle t is distinct. Set tj = t and ℓτ(j) = ℓ. Since each tj covers three pseudolines the
construction yields a sequence of length k ≥ n

3 .

Lemma 16. Let t1, . . . , tk be a sequence of distinct triangles and ℓτ(1), . . . , ℓτ(k) be a sequence of distinct
pseudolines such that the first triple in t1, . . . , tk involving ℓτ(i) is the triple ti. Then T := {t1, . . . , tk} is
a good set of triples.

Proof. To show that T is good we first extend τ to a permutation, i.e., we define appropriate values of τ(j)
for j = k + 1, . . . , n. Now consider an arbitrary α : T → {+,−}. We construct a shellable arrangement
Sα with shelling sequence ℓτ(k), . . . , ℓτ(1), ℓτ(n), . . . , ℓτ(k+1). The lines ℓτ(k+1), . . . , ℓτ(n) are inserted one
by one in extreme position – above or below – in the initially empty arrangement. When it comes to
inserting ℓτ(j) for j ≤ k, then due to the construction rule the lines ℓτ(k), . . . , ℓτ(j+1) do not belong to
triangle tj . Hence, ℓτ(j) is the missing line of tj and depending on α(tj) the line ℓτ(j) can be inserted
above or below all crossings. This yields the shellable arrangement Sα with the required properties.

To prove Theorem 1 we will show that for every arrangement A of n pseudolines there are n − 2
internally disjoint paths in Fn which connect A to n− 2 distinct shellable arrangements. We also fix an
arbitrary set Λ of slopes and consider the flip graph FΛ of line arrangements with slopes in Λ. Shellable
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arrangements are vertices of this (n − 2)-connected flip graph FΛ (Lemma 9 and Corollary 11). The
(n− 2)-connectivity of the full flip graph Fn is then implied by Lemma 18.

For a given arrangement A of n pseudolines we will define shellable arrangements S1,S2, . . . ,Sn−2 and
construct internally disjoint paths from A to the Si. The construction is based on a fixed good set of
triangles T = {t1, . . . , tk} (Lemma 15 and 16) and a selection tk+1, . . . , tn−2 of additional triangles of A.

We say that a set D of triangles of A is compatible if there exists an arrangement A[D] such that the
orientation of a triple t of pseudolines in A and A[D] agrees if and only if t ̸∈ D. For each i ∈ [n− 2] we
define a path Pi in Fn. The path Pi depends on a 2-element subset Ti of T with the property that {ti}∪Ti

is compatible. It starts in A and moves in two or three steps to the arrangement Ai = A[{ti} ∪ Ti].
For each i ∈ [n− 2], let αi : T → {+,−} record the orientation of triangles of T in Ai and let Si be a

shellable arrangement which agrees with Ai on the orientations of triples in the good set T , where the
definition of good implies that such an Si exists. With Qi we denote the path in Fn leading from Ai to Si

as described in Lemma 12. Since Ai and Si agree on the orientations of T and on Qi every triple is flipped
at most once, all the arrangements of the path Qi respect αi. Hence, if αi ̸= αj the paths Qi and Qj

will be disjoint. In the case i ≤ k the set Ti will consist of ti and some second triangle tρ(i) and the path
Pi begins with A,A[ti],A[ti, tρ(i)] = Ai and continues with Qi. In the case i > k the set Ti will consist
of two triangles tρ1(i), tρ2(i) and the path Pi begins with A,A[ti],A[ti, tρ1(i)],A[ti, tρ1(i), tρ2(i)] = Ai and
continues with Qi.

A

A1

Ak

Ak+1

An−2

S1

Sk

Sk+1

Sn−2

FΛQ1

Qk

Qk+1

Qn−2

t

Figure 8: Left: Illustration for the construction of the paths in the proof of Theorem 1. Right: Illustration for
Lemma 17.

We will construct the pairs Ti for i = 1, . . . n − 2 such that Ti ̸= Tj for i ̸= j. Together with the
compatibility of Ti = {ti, tρ(i)} for i ≤ k and the triples {ti} ∪ Ti = {ti, tρ1(i), tρ2(i)} for i > k this implies
that αi ̸= αj , whence the corresponding path family is disjoint except at their common start A.

Lemma 17. A triangle t of an arrangement A is incompatible with at most three other triangles of A.

Proof. Two distinct triangles of an arrangement are compatible if after flipping the first of them the
second is still a triangle, i.e., if they share no vertex. A triangle can share a vertex with at most three
other triangles; see Figure 8 (right).

The following lemma will allow us to deduce the degree of connectivity from the disjoint paths we
will construct.

Lemma 18. Let G be a graph and let H be an r-connected subgraph of G. If every vertex v of G can be
connected to r distinct vertices of H with a family of r internally disjoint paths, then G is r-connected.

Proof. Let U be a set of vertices of G with |U | < r. We claim that G \ U is connected. Consider two
vertices v, v′ in G \ U . Since v is connected to H by r disjoint paths and |U | < r there is at least one
path p in G \ U from v to a vertex w ∈ H. Likewise there is a path p′ in G \ U from v′ to a vertex
w′ ∈ H. Since H is r-connected there is a path q from w to w′ in H \ U . The concatenation p, q, p′ is a
walk from v to v′ in G \ U and hence, U is not separating.
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We now have all ingredients to prove Theorem 1 for n ≥ 43. Additional ideas needed to obtain the
stated result, i.e., the validity in the range n ≤ 8 and n ≥ 24, are deferred to Section 3.2.1.

Lemma 19. For n ≥ 43, the triangle flip graph Fn on marked arrangements of n pseudolines is
(n− 2)-connected.

Proof. Let T = {t1, . . . , tk} be a good set of triangles as described above (Lemma 15 and 16). Then it
suffices to show that for n sufficiently large and k ≥ n

3 it is possible to find n− 2 different two element
subsets Ti of T = {t1, . . . , tk} such that for each i the set Ti ∪ {ti} is compatible and for each i with
i ≤ k the triangle ti actually belongs to Ti.

For i ≤ k define ρ(i) as the first index in the circular order on 1, . . . , k such that ti, tρ(i) is a compatible
pair of triangles. The circular distance of i and ρ(i) is at most four, therefore, if k ≥ 9 the pairs are all
distinct. To be sure that k ≥ 9 we need n ≥ 27.

Recall that for i > k the triangle ti is an additional triangle not in T . We define the pairs Ti one after
the other. First we let Ci ⊂ T be the set of good triangles compatible with ti. By Lemma 17 it holds
that |Ci| ≥ k − 3. Since each triangle in Ci is compatible with at least |Ci| − 4 ≥ k − 7 others from this
set (again by Lemma 17), there are at least 1

2(k− 3)(k− 7) compatible (unordered) pairs in Ci. At most
n− 3 of them have been assigned as a Tj for some j. Hence, if 1

2(k − 3)(k − 7) > n− 3 we find a pair Ti

with the required properties. Since k ≥ n
3 it is sufficient to have n ≥ 43.

3.2.1 Finalizing the proof of Theorem 1

So far we gave a proof of the statement for n ≥ 43. Next we argue for the missing cases of n.

n ≤ 7: Realizability: It is known that all projective arrangements with at most 8 pseudolines can be
realized with lines, see [28]. By adding a line at infinity, we can embed an Euclidean arrangement into a
projective arrangement. This operation does not change realizability. This implies that all Euclidean
arrangement with n ≤ 7 pseudolines can be realized. Hence for n ≤ 7 we have Fn = FLn and the
connectivity of Fn follows from Proposition 2.

n ≥ 34: Larger good sets of triangles: In Section 3.2 we charged three conflicting triangles in T to each
triangle ti for i = 1, . . . , n− 2. We now show that we only have to account for two conflicting triangles.

First we make sure that every triangle in T is incompatible with at most two other triangles in T . To
achieve this we choose tj as the first triangle visited when traversing ℓτ(j) from left to right. A triangle
which is in conflict with three others is not leftmost on any of the three incident lines, see Figure 8.

When it comes to define the additional triangles tk+1, . . . , tn−2 we identify the set B of all triangles in
A which are incompatible to three triangles from T . Let A′ = A[B] be the arrangement obtained by
flipping all the triangles in B. Flipping a triangle of B destroys its three incompatible triangles, these
belong to T . We claim that at most k − |B| out of the k triangles of T are triangles of A′. Think of a
bipartite graph with sides B and T . Each element of B has three neighbors in T while each element of
T has at most three neighbors in B, hence, there are at least |B| elements in T which have a neighbor in
B. Since A′ has at least n− 2 triangles and every triangle of A′ is a triangle of A we can avoid picking
a triangle of B when we chooses tk+1, . . . , tn−2.
The crucial inequality now becomes 1

2(k − 2)(k − 5) > n − 3 and we only need n ≥ 35. Using that
k ≥ n

3 is an integer we see that already n ≥ 34 is sufficient.

n ≥ 24: Even larger good sets of triangles: From Lemma 16 we know that a sequence t1, . . . , tk of
triangles is a good set if there is a sequence ℓτ(1), . . . , ℓτ(k) of pseudolines such that the first triple in the
sequence of triangles which is incident to ℓτ(i) is the triangle ti.
In Lemma 15 we constructed a sequence of triangles and charged three lines to each triangle in the

sequence. To reduce this number we consider the bipartite graph HA whose vertices are the triangles
and the pseudolines of A and edges correspond to incidence between triangles and pseudolines. Let K
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be a component of HA We construct one by one a sequence of triangles from K. The first triangle t1 is
chosen arbitrarily and its three incident lines are marked as visited. Suppose that t1, . . . , tj−1 have been
constructed and all the lines incident are marked visited. If there is a pseudoline in K which is is not
visited, then we find a triangle tj in K which is incident to a visited and an unvisited line. Let ℓτ(i) be
an unvisited line incident to tj and mark the lines incident to tj visited. If there are s lines in K, then
the procedure constructs a sequence of at least ⌈ s−1

2 ⌉ triangles. The sequences of triangles constructed
for different components of HA can be concatenated arbitrarily to form a sequence of good triangles. If
there are c components with an odd number of lines in HA, then this yields a set of T of good triangles
of size at least n−c

2 .
We will show below that there are no components with 3 or 5 lines. This implies that odd components

contain at least 7 lines, whence there are at most ⌊n7 ⌋ odd components and we find a set of at least
k = ⌈3n7 ⌉ triangles. Reviewing the argument from the previous section we first see that k ≥ 9 is achieved
whenever n ≥ 21. A triangle in the good set T may by construction have up to three incompatible
triangles in T . For the additional triangles we can again argue that they have at most two incompatible
triangles in T . The condition for finding the appropriate pairs Ti now becomes 1

2(k − 2)(k − 6) > n− 3.
With k = ⌈3n7 ⌉ we find that n ≥ 24 is sufficient.

It remains to show that for n > 5 there are no components with 3 or 5 lines in HA. From the sweeping
lemma we know that a line which is incident to only one triangle is extremal. Assuming that there is a
component with three lines ℓ1, ℓ2, ℓ3 and one triangle t the extremality of the lines implies that for each
i all the crossings of A are on the side of ℓi which contains t. Hence, all the crossings are in the triangle
t which requires n = 3, a contradiction.

For the discussion of components with 5 lines we look at the arrangement B induced by the five lines
in A. In general a cell of B can be a union of cells of A. However, if t is a triangle in B and there
is a line ℓ incident to t and t is the only incident triangle on this side of ℓ in B, then t is a triangle
in A: The side of ℓ containing t contains crossings, hence, ℓ can be swept towards this side in A. Since
B is a component the first triangle taken by the sweep must belong to B and by assumption t is the
unique choice. Now consider the possible arrangements B of five lines. Suppose first that there is a line
ℓ which is extremal in B. Since B is a component, ℓ can only be swept in one direction in A, hence, ℓ is
extremal in A. Consider A−{ℓ}, this arrangement has the component B−{ℓ} with only four lines. In
this component we find an extremal line ℓ′ which must also be extremal in A−{ℓ}. Removing this line
we end up with an arrangement A−{ℓ, ℓ′} which has a component with three lines. This contradicts our
previous insight.
If B has no extremal line, then B is a star arrangement consisting of a pentagonal cell surrounded

by five triangles (this can be checked from Fig. 8 in [26]). Take any line of B and sweep it away from
the pentagon in A, this is equivalent to flipping a star triangle. It is easily verified that the flip is not
generating new triangles, hence, in HA it only affects the component of B. Since after the flip B has an
extremal line we can complete the argument as in the previous case.

Remark. It is conjectured that every non-monochromatic bicoloring of the pseudolines of an arrangement
with at least three lines yields a bichromatic triangle, see e.g. [7, Chapter 6] or [21]. The bichromatic
triangle conjecture can be restated in terms of HA, here the conjecture is that the graph is connected. If
the conjecture was true, we could construct a good set of triangles of size n−1

2 in every arrangement of n
pseudolines. This would allow to decrease the bound in Theorem 1 to n ≥ 22.

4 Flip Graphs on Arrangements of Pseudocircles

The outline of this section is as follows. In Section 4.1 we prove that every arrangement of pairwise
intersecting pseudocircles can be transformed into a cylindrical arrangement by flips. In Section 4.2
we then show that the flip graph of cylindrical arrangements of pairwise intersecting pseudocircles
is connected, and hence the flip connectivity carries over to arrangements of pairwise intersecting
pseudocircles. Sections 4.3 and 4.4 are dedicated to proving asymptotically tight bounds on the diameters
of these flip graphs.
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4.1 Proof of Theorem 3: Connectivity Intersecting

For an arrangement A of n pairwise intersecting pseudocircles, we fix some point p and then iteratively
expand pseudocircles by triangle flips until all pseudocircles contain p, i.e., until the arrangement is
cylindrical. The flip-connectivity then follows from Theorem 4.

For convenience we introduce the notation A−{C1, . . . , Ck} to denote the arrangement that is obtained
from A by removing the pseudocircles {C1, . . . , Ck}. We say that two pseudocircles C and C ′ are parallel
in A if every vertex of A − {C,C ′} lies in (int(C) ∩ int(C ′)) ∪ (ext(C) ∩ ext(C ′)).

Theorem 3. The triangle flip graph of intersecting arrangements of n pseudocircles is connected.

Proof. Let A be an intersecting arrangement of n pseudocircles. We show by induction on n that A can
be transformed into a cylindrical arrangement with a finite number of triangle flips. The statement of
the theorem then follows from Theorem 4.
The induction base is trivially fulfilled for n = 2. For the induction step, we choose p as a point which

lies inside a maximum number of pseudocircles. If p lies in the interior of all pseudocircles, then A is
already cylindrical and we are done.
Hence, we may assume that there exists a pseudocircle C which does not contain p in its interior.

We show how to expand C using only triangle flips until it contains p. First observe that Lemma 7
guarantees the existence of a flip to expand C. Since C already intersects all other pseudocircles, this
must be a triangle or digon-collapse flip. As long as there exists a triangle flip expanding C, we perform
it and transform A accordingly.
Suppose now that C does not yet contain p and can only be expanded by collapsing a digon D

formed with another pseudocircle C ′. Note that we may assume p to not lie in D (and in no other
cell adjacent to C), since otherwise we could expand C until it contains p without performing any flip.
Furthermore, every other pseudocircle C ′′ intersects the lens int(C) ∩ ext(C ′) transversally as otherwise
C ′′ could not intersect both, C and C ′. More specifically, every other pseudocircle C ′′ intersects the lens
int(C) ∩ ext(C ′) in two arcs, and each arc has one endpoint on C and one on C ′; see Figure 9 for an
illustration. Now we can use Lemma 8 to expand C ′ until C and C ′ are parallel.

TT
C

C ′

C

C ′

C

C ′

Figure 9: Left: C forms a digon with C ′ that is in ext(C) ∩ int(C ′). Middle: flip C ′ so that it becomes parallel
to C. Right: flip C ′ so that T becomes a triangle in A.

Next consider the arrangement A′ := A − {C ′}. By the induction hypothesis, A′ can be transformed
into a cylindrical arrangement by a finite sequence of triangle flips. We now carefully mimic this flip
sequence on A, while maintaining that C and C ′ are parallel. Suppose that a triangle T in A′ is flipped.
If none of the edges of T belongs to C, we can directly apply this triangle flip also in A. If one of the
edges e of T belongs to C and e is crossed by C ′, then the digon D is located along e. In this case, we
apply two triangle flips to C ′ so that the digon is transferred to one of the two neighboring edges of C as
illustrated in Figure 9, obtaining that e is not crossed by C ′ (without changing A′). Finally, if e is not
crossed by C ′, then we apply the according triangle flip twice, namely, once for C and once for C ′. This
concludes the proof.
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4.2 Proof of Theorem 4: Connectivity Cylindrical

In this section we prove flip-connectivity for cylindrical intersecting arrangements by showing that any
given arrangement can be flipped to a canonical arrangement, which we define via an arrangement of
pseudoparabolas. An arrangement of pseudoparabolas is a finite collection of x-monotone curves defined
over a common interval such that every two curves are either disjoint or intersect in two points where
the curves cross. The following proposition gives a reversible mapping from cylindrical arrangements of
pseudocircles to arrangements of pseudoparabolas. The result has been announced by Bultena et al. [10,
Lemma 1.3] and a full proof has been given by Agarwal et al. [1, Lemma 2.11].

Proposition 20 ([10, 1]). A cylindrical arrangement of pseudocircles C can be mapped to an arrangement
of pseudoparabolas A in an axis-aligned rectangle B such that C is isomorphic to the arrangement obtained
by identifying the two vertical sides of B and mapping the resulting cylindrical surface homeomorphically
to a ring in the plane.

We define a canonical intersecting arrangement B−
n of pseudoparabolas as follows:

1. On the left, the pseudoparabolas are labelled C1, . . . , Cn from top to bottom and on the right, the
top to bottom order is the same.

2. For every 1 ≤ i ≤ n, the pseudoparabola Ci intersects the other pseudoparabolas first in increasing
and then in decreasing order: C1, . . . , Cn, Cn, . . . , C1.

Analogously, B+
n denotes the intersecting arrangement of pseudoparabolas in which Ci intersects the

other pseudoparabolas first in decreasing and then in increasing order. Closing the pseudoparabolas
of B−

n and B+
n above yields cylindrical intersecting arrangements of pseudocircles, which we call A−

n

and A+
n , respectively; see Figure 10 for an illustration. Note that every triple of pseudocircles forms a

NonKrupp(2) in A−
n and a NonKrupp(4) in A+

n .
In the following we show that every cylindrical arrangement can be flipped to both canonical arrange-

ments, A−
n and A+

n . While one of them is sufficient to prove connectivity (Theorem 4), both will play
an important role to obtain tight bounds on the diameter (Proposition 5).

C1

C2

Cn

C1

C2

Cn

C1

C2

Cn

C1

C2

Cn

Figure 10: The two canonical arrangements A−
n (left) and A+

n (right).

Theorem 4. The triangle flip graph of intersecting cylindrical arrangements of n pseudocircles is
connected.

Proof. Let A be an intersecting, cylindrical arrangement of n pseudocircles. Then, using Proposition 20,
we can represent A as a pseudoparabola arrangement, in which we label the curves from top to bottom
by C1, . . . , Cn. The idea is to flip the pseudoparabolas downwards one by one in the order of increasing
indices. When Cn has been processed the arrangement B−

n corresponding to A−
n is reached. When

flipping Ck downwards the following invariant holds (see Figure 11 for an illustration).

1. For every 1 ≤ i < k, the pseudoparabola Ci intersects the other pseudoparabolas in the same order
as in B−

n : first in increasing and then in decreasing order, that is, C1, . . . , Cn, Cn, . . . , C1.
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C1

Ck

Cn

Ck

Cn

Figure 11: An illustration of the proof of Theorem 4: flipping the pseudoparabola Ck downwards.

2. For every i ≥ k, the pseudoparabola Ci first intersects C1, . . . , Ck−1 in increasing order, then it has
the intersections with the pseudoparabolas Cj for j ∈ {k, . . . , n} \ {i} in some order, and finally
intersects Ck−1, . . . , C1 in decreasing order.

Let A≥k denote the subarrangement induced by Ck, . . . , Cn. We claim that in A≥k the pseudoparabola
Ck can be swept downwards using only triangle flips. Applying Lemma 7 to the subarrangement A≥k,
we can sweep Ck downwards using a sequence of triangle, digon-create and digon-collapse flips. However,
the latter two flips cannot occur: Since every pair of pseudoparabolas already intersects, a digon-create
is impossible. Assume that a digon-collapse happens, then there is a pseudoparabola C which forms
a digon D with Ck such that D lies below Ck. The arc of C belonging to D lies below Ck and the
complement (in particular the two unbounded arcs of C) lie above Ck. This is not possible since Ck is
the topmost pseudoparabola in A≥k.
By the invariant, all crossings of A≥k lie above all the pseudoparabolas C1, . . . , Ck−1. Therefore,

we can perform the flip sequence from A≥k also in the original arrangement A. Since we do not flip
triangles involving C1, . . . , Ck−1, their intersection orders remain unchanged. Moreover, since in the
subarrangement A≥k all crossings between Ck+1, . . . , Cn lie above Ck, the order of intersections in A≥k

on Ck is Ck+1, . . . , Cn, Cn, . . . , Ck+1. From this it follows that the invariant has been preserved.
When Cn has been processed the invariant implies that the canonical arrangement B−

n has been
reached. This completes the proof of Theorem 4.

4.3 Proof of Proposition 5: Diameter Cylindrical

Proposition 5. The triangle flip graph of intersecting cylindrical arrangements of n pseudocircles has
diameter at least 2

(
n
3

)
and at most 4

(
n
3

)
.

Proof. Concerning the upper bound, following the proof of Theorem 4, we can transform any cylindrical
arrangement A of n pairwise intersecting pseudocircles into the canonical arrangement A−

n . To do so,
we iteratively transform the selected pseudocircle Ci by only flipping downwards until all crossings of Cj

and Ck with j, k > i are above Ci. For every Ci, there are at most 2
(
n−i
2

)
such crossings below Ci and

hence, in total, we need at most

n∑
i=1

2

(
n− i

2

)
= 2

n−1∑
i=2

(
i

2

)
= 2

(
n

3

)
flips to reach A−

n . Hence, we need at most 4
(
n
3

)
flips to transform any two arrangements into each other.

Concerning the lower bound, note that 2
(
n
3

)
flips are needed to transform A−

n into A+
n because every

NonKrupp(2) needs to be flipped twice to become a NonKrupp(4).

4.4 Proof of Proposition 6: Diameter Intersecting

Extending the notion of parallelism from Section 4.1, we call a subset C of pseudocircles from an
intersecting arrangement A parallel if every vertex of the arrangement A−C either lies in the exterior
of every C ∈ C or in the interior of every C ∈ C. A set of parallel pseudocircles is also called a bundle.
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Note that, for any bundle C of size k in A, the order of intersections of the n− k pseudocircles from
A −C is the same for every C ∈ C. Hence, A−C splits C into 2(n− k) parts . Moreover, the crossings
within the bundle can easily be moved between the parts using only triangle flips; see Figure 12.

Proposition 6. The triangle flip graph of intersecting arrangements of n pseudocircles has diame-
ter Θ(n3).

Proof. In the proof of Theorem 3 showed that any two intersecting arrangement of n pseudocircles can
be transformed into each other via finitely many triangle flips. Next we show that O(n3) flips are always
sufficient. We then conclude the cubic diameter by showing that Ω(n3) flips are sometimes necessary.
Let A be an intersecting arrangement of n pseudocircles. The general situation is that we have a

point p and a bundle C[k] = {C1, . . . , Ck} of pseudocircles not yet containing p, which are simultaneously
expanded to eventually contain p. In order to guarantee the cubic bound on the diameter, we need
to carefully distribute and move the crossings formed by the bundle in relation to crossings of other
pseudocircles with the bundle.

Initial setup. We start with an arbitrary point p from the plane and initializeD as the set of pseudocircles
that already contain p in the interior. We choose C1 as an arbitrary pseudocircle which is not yet in D,
set the bundle size to k = 1, set C[1] := {C1}, and proceed with the following steps.

Step 1 (Reset if bundle becomes too large). If k > n
2 , we reset the process by choosing a new p as an

interior point of the bundle C[k] and set D := C[k]. Next, we choose C1 as an arbitrary pseudocircle
from A−D, set the bundle size to k := 1, and set C[1] := {C1}. Note that such a reset happens at most
once, because, as soon as |D| > n

2 holds, the bundle size k cannot exceed n
2 again.

Ck−1

CkCk

Ck−1

Figure 12: An illustration of the distribution of crossings in step 2. Left: Well-distributed crossings w.r.t. to the
bundle C1, . . . , Ck−1. Right: Well-distributed crossings w.r.t. to the bundle C1, . . . , Ck.

Step 2 (Distribute crossings). If k ≥ 2 then the k pseudocircles in the bundle C[k] form 2
(
k
2

)
crossings.

Also, C[k] is split by the n− k pseudocircles from A−C[k] into 2(n− k) parts. The aim is to distribute

the crossings of C[k] such that each part contains at most k2

n crossings, where k2

n ≥ 2(k2)
2(n−k) due to k ≤ n

2 .
In this case we say that the crossings are well-distributed .
We now describe how to maintain the property that crossings are well-distributed when a new

pseudocircle Ck enters the bundle C[k−1]. The 2
(
k−1
2

)
crossings formed by C[k−1] are well-distributed

among the parts of C[k−1] that are induced by A−C[k−1], i.e., each part contains at most (k−1)2

n crossings.

When Ck enters the bundle, two boundaries between parts of size at most (k−1)2

n disappear and on the
old boundaries, 2k− 2 crossings involving Ck appear, see Figure 12. To move crossings from parts of the
expanded bundle C[k] which contain too many crossings into sparser parts of it we use triangle flips.
The cost for moving an excess of one crossing to a part where it complies with the bound is at most

n− k, i.e., at most n− k triangle flips are needed. Hence, to reach well-distribution for the expanded
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bundle C[k], we need at most(
2
(k − 1)2

n
+ 2k − 2

)
· (n− k) <

(
2
k2

n
+ 2k

)
· n ≤ 3kn

triangle flips, where we used k ≤ n
2 for the last inequality.

Step 3 (Expand bundle). Let A′ = A −C[k−1]. Using Lemma 7, we expand Ck in A′ via a sequence
of xk triangle flips until Ck either contains p or forms a digon in A′ with another pseudocircle, which we
denote by Ck+1. We next show how to mimic this flip sequence in A.
For a triangle T flipped in the sequence in A′, denote by Ck, D,E the three involved pseudocircles.

While in A′, the pseudocircle Ck moves over the crossing of D and E, in A we have to move the entire
bundle C[k] over this crossing. Note that the pseudocircles D and E cross Ck consecutively along Ck in

A′. Hence they bound a part P of C[k], which contains at most k2

n crossings of C[k]. The strategy is to
transfer all crossings of the bundle from the part P to one of its neighboring parts. As each crossing
can be transferred by a single triangle flip, the total transfer requires at most k2

n flips. Figure 13 gives
an illustration.

Figure 13: An illustration of the expanding step.

Next we move the pseudocircles C1, . . . , Ck from C[k] over the crossing of D and E. More precisely,
we flip the triangles determined by (Ci, D,E) for all i ∈ {1, . . . , k}. After performing these k flips, we

move all previously transferred crossings back to ensure that each part of C[k] again contains at most k2

n

crossings, which also requires at most k2

n flips.

A single flip of Ck in A′ thus maps to a sequence of at most (k + 2k2

n ) ≤ 2k triangle flips of C[k] in A.
We call this sequence a bundle flip. Since we had xk triangle flips when expanding Ck in A′, we get a
total of at most 2kxk triangle flips to move C[k] in A.
If the process terminates with Ck containing p in the interior, then also the other pseudocircles

C1, . . . , Ck−1 from the bundle contain p in the interior. In this case we add C[k] to D. Then we pick
another pseudocircle C1 which is not yet in D arbitrarily, set k = 1, and continue with Step 1. Also, if p
is in a cell which is incident to Ck in A′, then we can move p to the adjacent cell inside Ck. This move
can also be done in A where p is moved across the whole bundle. In this case again we add the bundle
to D, pick a new C1 and continue with Step 1. Otherwise we proceed with Step 4.

Step 4 (Add Ck+1 to bundle). If Ck does not yet contain p and cannot be further expanded by triangle
flips, Ck forms a digon with another pseudocircle Ck+1 from A−C[k]. Since the digon lies outside of
Ck and is incident to Ck, we know that p is not in the digon (otherwise we would have moved p to the
other side of Ck). Consider again the arrangement A−C[k−1]. Using Lemma 8, we can expand Ck+1 in
A−C[k−1] via triangle flips until it is parallel to Ck. Since none of those flips involves Ck, the same flips

can be performed in A. Before those flips, at most 2
(
n−k−1

2

)
crossings are located between Ck and Ck+1.

As each flip reduces this number by one, the expansion process for Ck+1 requires at most 2
(
n−k−1

2

)
< n2

triangle flips. After performing these flips, Ck+1 is parallel to the entire bundle C[k]. We set k := k + 1,
C[k+1] := C[k] ∪ {Ck+1}, and proceed with Step 1.

18



Analysis. In Step 1, we reset the procedure at most once. Hence, each of Steps 2 to 5 is performed at
most twice for each pseudocircle.
Step 2 (well-distribution) is performed for each of the n pseudocircles at most once and each time

O(n2) flips are sufficient. In total, this gives O(n3) flips.
Step 3 (expand bundle) is a bit more involved. When a bundle has reached p we add the bundle to

D and restart with a new C1, i.e., a new seed for a bundle. Suppose that bundles of sizes n1, n2, . . . nb

are added to D. Then n1 + n2 + . . . + nb ≤ n holds. During processing a bundle C1, . . . , Cni , we
perform (x1 + . . .+ xni) bundle flips. Whenever we perform a bundle flip, this reduces the number of
crossings which lie outside of the pseudocircles C1, . . . , Cni . Hence we have x1 + . . .+ xni ≤ 2

(
n
2

)
and the

number of triangle flips in Step 3 for a bundle of size ni is bounded by (x1 + . . .+ xni) · 2ni ≤ 2n2 · ni.
The number of triangle flips in Step 3 for the expansion of all b bundles can therefore be bounded by
2n2 · (n1 + . . .+ nb) ≤ 2n3.

Step 4 (add to bundle) is again easy. For each of the n pseudocircles, the overall expansion can be
performed with at most n2 flips. For all pseudocircles, this gives O(n3) flips in Step 3.
Summing up over all steps and multiplying the result by two for the possible case of one reset in

Step 1, this completes the proof for the cubic upper bound.

Lower bound. We again consider the two canonical cylindrical arrangements A+
n and A−

n from
Section 4.3 and show that their flip-distance in the triangle flip graph of intersecting arrangements is also
2
(
n
3

)
. Note that the triangle flip graph of cylindrical intersecting arrangements is an induced subgraph of

the triangle flip graph of intersecting arrangements. Recall that each triple of pseudocircles in A−
n is a

NonKrupp(2) while each triple of pseudocircles in A+
n is a NonKrupp(4). In the triangle flip graph of

arrangements of three pairwise intersecting pseudocircles, the flip distance between NonKrupp(2) and
NonKrupp(4) is 2. Hence, at least 2

(
n
3

)
= Θ(n3) triangle flips are needed to get from A−

n to A+
n . This

completes the proof of Proposition 6.

5 Characterization of Cylindrical Arrangements

In this section we study cylindrical arrangements in more detail and provide new characterizations for
them. The following technical lemma, a result of independent interest, will be convenient. We remark
that a similar result was also known to Snoeyink and Hershberger (cf. [46, Section 4.2]). Let A be an
arrangement of pseudocircles, let C be a pseudocircle of A, and let x be a point on C which is not a
vertex. A flip of C is x-restricted if x is not on the boundary of the flipped triangle or digon. Note that
a digon-create flip can always be performed in an x-restricted manner.

Lemma 21. Let A be an arrangement of pseudocircles, let C be a pseudocircle in A, and let x be a
point on C which is not a vertex. Then C admits a sequence of x-restricted expanding flips such that at
the end of the sequence C is incident to the unbounded cell of the arrangement.

Proof. If x belongs to the unbounded cell of A′ = A−C we have nothing to show, hence, we assume
that this is not the case. Consider a maximal sequence of x-restricted expanding flips applied to C and
assume that C is not incident to the unbounded cell. In particular it cannot be the case that A−C is
fully contained in the interior of C and hence, using Lemma 7, there must be an expanding flip for C,
which by assumption is not x-restricted. Hence, it is a triangle or a digon-collapse flip that involves the
edge of C containing x. Let us denote this triangle or digon by zx.
Now we transform A via a stereographic mapping that makes zx the unbounded cell. Furthermore,

let zo be the cell which was the unbounded cell before. Since zx ̸= zo and both remain in ext(C) we
again refer to Lemma 7 to conclude that C admits an expanding flip. This must be a flip which was
not possible before, hence, it is the flip of the cell zo. This reveals that C had been incident to the
unbounded cell; a contradiction.

We need a few more notions: The distance between two cells z, z′ in an arrangement of pseudocircles
is the minimum number of pseudocircles that a curve which starts in the interior of z and ends in the
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interior of z′ must cross. The eccentricity of a cell z is the maximum distance between z and any other
cell z′.
For the following characterization of cylindrical arrangements, we consider all pseudocircles to be

oriented in counterclockwise direction, which induces an orientation on the edges of the arrangement.
Consider the four intersecting arrangements of three pseudocircles (Figure 2) with this orientation and
note that only NonKrupp(3) has a cell with a clockwise boundary.

Proposition 22. Let A be an arrangement of n pseudocircles with pairwise overlapping interiors. Then,
the following five statements are equivalent:

(1) A is cylindrical.

(2) A does not contain a NonKrupp(3) as a subarrangement.

(3) There is no clockwise oriented cycle in A.

(4) There is no clockwise oriented cell in A.

(5) The unbounded cell has eccentricity n.

Proof. (1) =⇒ (4): Let A be cylindrical. Then A can be drawn as a pseudoparabola arrangement
(Proposition 20). Since all pseudoparabolas are x-monotone, all edges in the arrangement are oriented
in a common direction. Hence, there cannot be a clockwise cycle, and in particular there cannot be a
clockwise cell.
(4) =⇒ (3): Suppose that there is a clockwise oriented cycle. Let z be a clockwise oriented cycle

that is minimal with respect to the number of cells it contains and assume that z is not a cell. Then
there exists a pseudocircle C that intersects z. Using an arc of C, the interior of z can be split into two
subregions, one of which must again be clockwise; a contradiction to the minimality of z.
(3) =⇒ (2): Every NonKrupp(3) forms a clockwise oriented cycle by definition.
(2) =⇒ (1): For this implication we make use of the topological version of Helly’s theorem (cf. [16]).

First, the intersection of the interiors of two pseudocircles in A is by assumption non-empty and by
definition simply connected. We claim that the intersection of the interiors of every three pseudocircles
C1, C2, C3 is non-empty. Let us first consider the case that two of the involved pseudocircles are non-
intersecting, i.e., one is contained inside the other, say int(C1) ⊂ int(C2). Then the intersection of int(C1)
and int(C3) is also contained in int(C2). It remains to consider the four intersecting subarrangements
(see Figure 2). Since NonKrupp(3) is excluded, the interiors of the three pseudocircles have a common
intersection. From the topological version of Helly’s theorem, it then follows that the intersection of the
interiors of all pseudocircles in A is non-empty.
(1) =⇒ (5): Again by Proposition 20, we know that A can be represented as an arrangement of

pseudoparabolas. Due to the monotonicity of the pseudoparabolas, in order to reach the bottom cell
from the top cell, one needs to traverse each of the n pseudocircles, while the other cells require fewer
traversals. Hence, the eccentricity of the unbounded cell equals n.
(5) =⇒ (1): Let A be an arrangement of n pseudocircles which is not cylindrical. Then we show

that the eccentricity of the unbounded cell is strictly less than n. Let z be a bounded cell. Since A

is not cylindrical, there is a pseudocircle C in A which has z in ext(C). Our goal is to construct a
new pseudocircle C ′ from C, which is incident to the unbounded cell, traverses z and does not intersect
C. Such a C ′ has at most 2(n− 1) crossings, and therefore, along one of the two arcs of C ′ between z
and the unbounded cell, C ′ has at most n− 1 crossings. This arc shows that the distance of z and the
unbounded cell is at most n− 1.

It remains to construct C ′. Begin with a slightly blown up parallel copy C ′ of the pseudocircle C, i.e.,
the ring formed by C and C ′ has no crossing in the interior and C ′ as the outer boundary. Expand C ′

by performing flips into ext(C ′), this can be done by Lemma 7. Eventually C ′ will reach z. Pick a point
x on the intersection of C and z. Now continue with x-restricted expanding flips. Lemma 21 implies
that eventually C ′ will become incident to the unbounded cell. Now C ′ still traverses z and is incident
to the unbounded cell, and since C was in int(C ′) initially and all the flips were expanding we still have
C ⊂ int(C ′).
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6 Conclusion

In this work we studied arrangements of pseudolines and pseudocircles, in particular we contributed new
results regarding the connectivity of the corresponding triangle flip graphs.
In the context of pseudoline arrangements, we studied the triangle flip graph Fn. This graph was

also studied by Gutierres, Mamede, and Santos [30] as the graph of commutation classes of reduced
words of the reverse of the identity permutation. We proved a tight bound for the connectivity: Fn is
(n− 2)-connected (for n ≤ 7 and n ≥ 24). This proves Conjecture 1 about the (n− r+1)-connectivity of
the flip graph of r-signotopes on n elements in the case r = 3. For rank r ≥ 4, Conjecture 1 remains open.
Another generalization of arrangements of pseudolines into higher dimensions are oriented matroids:

rank r oriented matroids can be represented as pseudohyperplane arrangements in the (r−1)-dimensional
projective space. Mutations between oriented matroids are flips of simplicial cells in the corresponding
arrangements. While the flip graph of realizable oriented matroids (arrangements of proper hyperplanes)
and the flip graph of higher dimensional signotopes are connected [45, 26] (both are subgraphs of the
flip graph of oriented matroids), it remains a central problem in the theory of oriented matroids to verify
whether every simple oriented matroid has a mutation (i.e., whether the flip graph contains isolated
vertices); [7, Conjecture 7.3.10].

Our proof of Theorem 1 makes use of the fact that Fn contains a subgraph FΛ that is the skeleton of
a polytope. We recall a question from [27], which is still open:

Question 2. Is the graph Fn polytopal for some n ≥ 6?

It is also worth asking for the connectivity of the triangle flip graphs of arrangements in ambient
spaces other than the Euclidean plane, especially the following:

Question 3. What is the connectivity of the triangle flip graph of arrangements of n pseudolines in the
projective plane?

The number of simple arrangements of n pseudolines and n pseudocircles (i.e., the number of vertices
in the respective flip graphs) are both known to be of order 2Θ(n2), see [15, 25, 23]. However, determining
better/precise bounds on the quadratic term in the exponent remains a long-standing problem; see also
the sequences A6245 and A296406 in the OEIS [41].
Another long-standing question is whether a natural triangle flip Markov chain on arrangements of

pseudolines is rapidly mixing. The Markov chain (Xt) is the lazy random walk in Fn. Starting with
an arbitrary arrangement X0, the chain moves from Xt to Xt+1 by selecting a triangle of Xt uniformly
at random and then flip it with probability 1

2 . (See [35] for an introduction to Markov chains and
mixing times).

Question 4. What can be said about the mixing time of the triangle flip Markov chain?

If the triangle flip Markov chain is rapidly mixing, then this could yield a fully polynomial randomized
approximation scheme (FPRAS) for counting simple arrangements of pseudolines. As the mixing time
depends on the expansion of the underlying flip graphs of the Markov chain, our Theorem 1 may be
a first step towards a proof that the triangle flip Markov chain on arrangements is rapidly mixing. A
better understanding of short paths in Fn could further help in constructing a family of canonical paths,
a common technique for bounding the mixing time of a Markov chain (see, for example, [31, chapter 5]).
This motivates the following question which is of interest also from the reconfiguration point of view:

Question 5. What is the computational complexity of computing a shortest path between any pair of
vertices in Fn?

In the context of pseudocircle arrangements, we showed that the triangle flip graph of intersecting
arrangements of n pseudocircles is connected for every n ∈ N.

The minimum degree in the triangle flip graph of intersecting arrangements of pseudocircles is known
to be between 2n

3 and n − 1, see [24]. Moreover, the minimum degree of the triangle flip graph of
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digon-free intersecting arrangements equals ⌈4n3 ⌉, see [22]. These results yield bounds for the connectivity
of the respective flip graphs.
For digon-free arrangements the analog of Question 1 was stated as a conjecture in [23]:

Question 6. Is it true that, for every n ∈ N, the triangle flip graph of digon-free intersecting arrangements
of n pseudocircles is connected?

Felsner and Scheucher [23] showed that the corresponding result for digon-free intersecting arrangements
of circles is true. The idea is as follows: a given arrangement of circles is projected to a unit-sphere S
and the circles are extended to planes (each circle is the intersection of a plane with S). The planes
are simultaneously moved towards the origin such that all circles eventually become great-circles. The
connectivity then follows from the flip connectivity of great-circle arrangements. When moving the planes
towards the origin, it is crucial that each Krupp remains a Krupp and each NonKrupp is eventually
transformed into a Krupp; therefore no new digons appear.

Figure 14: The cylindrical arrangement N2
6 . Each triangle (shaded gray) is formed by a Krupp. The center is

marked by ×.

We remark that a corresponding approach to transform a digon-free arrangement of pairwise intersecting
pseudocircles into an arrangement of great-pseudocircles by iteratively flipping NonKrupp triangles to
increase the number of triples which form a Krupp does not seem to work. The arrangement N2

6 shown
in Figure 14 is digon-free, contains a NonKrupp subarrangement (e.g., formed by the red, blue and
black pseudocircles), but every triple of pseudocircles, which bound a triangle, form a Krupp. Note that
N2

6 is non-circularizable [23, Section 6.2]. By the connectivity result for digon-free intersecting circle
arrangements an analogous situation cannot occur in circularizable arrangements.

With our Theorem 4 we have shown that the triangle flip graph of intersecting cylindrical arrangements
of n pseudocircles is connected. The question whether the triangle flip graph of digon-free intersecting
cylindrical arrangements is connected remains open.
The progress in the study of triangle flip graphs made in this paper may foster the future study

of questions like Hamiltonicity, degree of connectivity, expansion properties, and others for classes of
triangle flip graphs.
Our focus in this paper was on arrangements of pseudolines and pseudocircles. Other authors have

also studied other arrangements of curves with restricted intersection patterns, see e.g. [18, 12, 11]. It
seems, however, that flip graphs have not been studied for families of curves beyond pseudolines and
pseudocircles. Indeed one of the main tools in our studies, the sweeping lemma is not available in
general. Snoeyink and Hershberger [46] describe arrangements of curves with at most 3 and 4 pairwise
intersections, respectively, which cannot be swept.
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