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Abstract

We give a new combinatorial proof for the number of convex polyominoes whose
minimum enclosing rectangle has given dimensions. We also count the subclass
of these polyominoes that contain the lower left corner of the enclosing rectangle
(directed polyominoes). We indicate how to sample random polyominoes in these
classes. As a side result, we calculate the first and second moments of the number
of common points of two monotone lattice paths between two given points.
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1 Convex Polyominoes: Overview of Results

A polyomino is a connected set of lattice squares, where two squares are considered as
adjacent if they share an edge. A polyomino is convex if the intersection with every
horizontal or vertical line is a connected interval, see Figure 1 for an example. The
enclosing rectangle R is the smallest axis-parallel rectangle containing the polyomino.
The height h and width w of a polyomino are defined as the corresponding dimensions
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Figure 1: A convex polyomino of width w = 10 and height h = 8 in its enclosing
rectangle R. We traverse the boundary clockwise, starting at the leftmost point (a, 0)
on the bottom side. The distance a of this point from the left edge will be used as a
parameter.

of R. The perimeter (length of the boundary) of a convex polyomino is 2(h + w).
Throughout, we will denote the semi-perimeter by s := h+ w.

Theorem 1. The number of convex polyominoes of width w ≥ 1 and height h ≥ 1 is

Pwh =

(
2s− 4

2w − 2

)
+

2s− 5

2

(
2s− 6

2w − 3

)
− 2(s− 3)

(
s− 2

w − 1

)(
s− 4

w − 2

)
, (1)

where s = w + h, see Table 1.

This formula was first proved by Gessel [Ges], who derived it from the generating
function

∞∑
h=1

∞∑
w=1

Pwhx
2wy2h =

x2y2B(x2, y2)

∆(x, y)2
− 4x4y4

∆(x, y)3/2
(2)

with

B(x, y) = 1− 3x− 3y + 3x2 + 3y2 + 5xy − x3 − y3 − x2y − xy2 − xy(x− y)2,

∆(x, y) = 1− 2x2 − 2y2 + (x2 − y2)2 = (1 + x+ y)(1 + x− y)(1− x+ y)(1− x− y),

which is due to Lin and Chang [LC, Eq. (27)]. The two terms in (2) correspond to the
positive and the negative terms in (1). Another proof for the formula (1) was given
by Guo and Zeng [GZ]. They exploit a correspondence between convex polyominoes
and noncrossing lattice paths, similar as in our proof. They use generating functions of
Jacobi polynomials in order to evaluate the expressions that arise. We will review this
proof in Section 4.4.

We present a new combinatorial proof of formula (1) in Section 4, and we assign
some meaning to its terms. Based on this interpretation, in Section 6, we discuss an
acceptance-rejection method for sampling from this set of convex polyominoes, with an
acceptance probability tending to one for large parameters w and h.

The summation of Pwh over all pairs w, h with fixed sum s gives the number of convex
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s Pwh Ps

2 1 1
3 1 1 2
4 1 5 1 7
5 1 13 13 1 28
6 1 25 68 25 1 120
7 1 41 222 222 41 1 528
8 1 61 555 1110 555 61 1 2344
9 1 85 1171 3951 3951 1171 85 1 10416

10 1 113 2198 11263 19010 11263 2198 113 1 46160
11 1 145 3788 27468 70438 70438 27468 3788 145 1 203680

Table 1: The number Pwh of convex polyominoes of width w and height h for 2 ≤ s =
w + h ≤ 11 [OEIS, A093118]. The width w increases from 1 to s − 1 in row s, while h
decreases and s = w + h remains constant. The row sum Ps is given in the rightmost
column. It is the number of convex polyominoes of perimeter 2s [OEIS, A005436].

polyominoes with perimeter 2s, which we denote by Ps. The resulting formula,

Ps =
∑

w+h=s

Pwh = 4s−4(2s+ 3)− 4(2s− 7)

(
2s− 8

s− 4

)
= 4s−4(2s+ 3)− (2s− 6)

(
2s− 6

s− 3

)
, for s ≥ 4 (3)

has been known before [DV, Kim]. (The reader should beware that the literature contains
formulas in terms of various different quantities instead of the parameter s that we have
chosen.)

A directed convex polyomino is a convex polyomino that contains the lower left corner
of its enclosing rectangle R.

Theorem 2. The directed convex polyominoes of width w ≥ 1 and height h ≥ 1 are
counted by the squared binomial coefficients:

Dwh =

(
s− 2

w − 1

)2

, (4)

where s = w + h, see Table 2.

This formula was proved by Barcucci, Frosini, and Rinaldi [BFR]. It is implicit also
in Guo and Zeng [GZ], see Section 4.4. We will give a different proof in Section 3. The
corresponding generating function

∞∑
h=1

∞∑
w=1

Dwhx
2wy2h = x2y2

/√
∆(x, y)

has been known as well, see Lin and Chang [LC, Eq. (25)].
The formula (4) suggests that there should be a bijection between these polyominoes

and pairs of objects that are counted by the binomial coefficients. Indeed, from our
proof of Theorem 2, we can derive a bijection to pairs of monotone lattice paths. This
is described in Section 3.1. Such a bijection can be used to generate a random sample
from the polyominoes from this class, since it is straightforward to generate random
monotone lattice paths. The proof of Barcucci et al. [BFR] mentioned above is also
bijective: They used a bijection between directed polyominoes and so-called two-colored

https://oeis.org/A093118
https://oeis.org/A005436
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s Dwh Ds

2 1 1
3 1 1 2
4 1 4 1 6
5 1 9 9 1 20
6 1 16 36 16 1 70
7 1 25 100 100 25 1 252
8 1 36 225 400 225 36 1 924
9 1 49 441 1225 1225 441 49 1 3432

10 1 64 784 3136 4900 3136 784 64 1 12870
11 1 81 1296 7056 15876 15876 7056 1296 81 1 48620

Table 2: The number Dwh of directed convex polyominoes of width w and height h.
These are the squared binomial coefficients [OEIS, A008459].

Grand-Motzkin paths. It is easy to see that two-colored Grand-Motzkin paths are in
one-to-one correspondence with pairs of lattice paths, but the bijection to polyominoes
is different from ours. We will say more in Section 3.2.

As above, we can sum the rows of the table and conclude that the number of directed
convex polyominoes with perimeter 2s are the central binomial coefficients

Ds =

(
2s− 4

s− 2

)
,

which was also known before [LC, B-M], [OEIS, A000984].
Our investigation of pairs of lattice paths has led, as a side result, to formulas for

the first and second moments of the number of intersections between two lattice paths,
see Section 5.

For completeness, we state the well-known formulas for parallelogram polyominoes,
which contain both the lower left and the upper right corner of R. A proof can be easily
obtained by Lemma 1 below (see Section 3).

Proposition 1. The number of parallelogram polyominoes of width w ≥ 1 and height
h ≥ 1 is given by a Narayana number

Bwh =
1

s− 1

(
s− 1

w

)(
s− 1

h

)
. [OEIS, A001263]

The number of convex parallelogram polyominoes of perimeter 2s is equal to the (s−1)th
Catalan number

Bs =
1

s

(
2s− 2

s− 1

)
. [OEIS, A000108]

For a bijective proof of the second formula and some references to its history see
Stanley [Sta, p. 66].

2 Conventions

Before going into the proofs, we clarify some notations that we will use. We label the
four sides of R by N, S, E, W. Accordingly, we call the corners of R NE corner, SE
corner, and so on. We place R in the first quadrant with the SW corner at the origin.

By an edge, we mean a unit-length boundary segment of a grid square. On the
boundary of a polyomino, several edges may lie straight in succession, but they are
considered as separate edges.

https://oeis.org/A008459
https://oeis.org/A000984
https://oeis.org/A001263
https://oeis.org/A000108
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(w − i− 1, h + i)

(1, 0)
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Figure 2: Splitting the boundary at the diagonal (a) and reflecting at the N-side and
E-side. (b) An implicit edge on each side of R is highlighted. (c) The implicit edges
from the N-side and the E-side are removed.

If P is a polyomino with enclosing rectangle R and K ∈ {N, S, E, W}, then the
K-side of P is the intersection of P with the respective side of R.

3 Directed Convex Polyominoes

We start with the easier and more restricted case of directed polyominoes, i.e., polyomi-
noes that contain the SW corner (0, 0) (Theorem 2). This serves also as a preparation
for our treatment of general polyominoes in Section 4, where some of the arguments will
recur.

We will relate directed polyominoes to certain monotone paths in the square lattice.
A monotone path is a lattice path whose steps go in only two orthogonal directions.

Traverse the boundary clockwise, starting from the origin. Between the N-side and
the E-side, the boundary intersects the diagonal y − x = h− w through the NE corner
at a unique point X = (w, h)− (i, i) for some i ≥ 0. see Figure 2.

We cut the boundary path at X. We reflect the path between the N-side and X
across the N-side of R. Similarly, we reflect the path between X and the E-side across
the E-side of R. We get two monotone paths W1 and W2, ending in (w, h) + (−i, i), and
(w, h) + (i,−i). It would be easy to count pairs of these paths but the transformation
would not be bijective. We have to ensure two properties.

(a) The boundary must not cross itself.

(b) The boundary must have at least one edge on each of the four sides of R.

We take care of (b) by declaring the first edge on the E- and the N-side to be an implicit
edge. If we remove these edges from the two paths, we obtain paths W̄1 and W̄2 that
end in (w, h) + (−i − 1, i), and (w, h) + (i,−i − 1). The implicit edges on the W-side
and the S-side are easier to take care of: We know that the boundary starts with an
up-step and ends with a left-step. Thus, we simply let W̄1 start in the point (0, 1), and
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we let W̄2 start (1, 0). Now we have a bijection: There is a one-to-one correspondence
between directed polyominoes and pairs (W̄1, W̄2) of non-intersecting monotone lattice
paths from (0, 1) to (w, h) + (−i− 1, i), and from (1, 0) to (w, h) + (i,−i− 1), for some
0 ≤ i < min{w, h}. Indeed, given such a pair of non-intersecting paths, we re-insert the
implicit edge into each path, reflect the paths outside R back, and join the two pieces
together. This process is reversible, and it does not introduce or destroy intersections.

We still have to take care of self-intersections. It is known how to count pairs of
non-intersecting monotone lattice paths. We will use the basic Lemma 1 below, which
is the first nontrivial case of the Gessel–Viennot Lemma. We include its proof because
we will extensively use the underlying uncrossing idea. The Gessel–Viennot Lemma is
more general: it counts families of non-intersecting paths between more than two pairs
of terminal nodes in acyclic directed graphs.

For integer points p, q, u, v in the plane, we denote by X̄u,v
p,q the number of non-

intersecting pairs of monotone grid paths in the NE direction from p to u and from q to
v, and by Xu,v

p,q the number of intersecting pairs of such paths. By Nu
p , we denote the

number of monotone paths in the NE direction from p to u. This is equal to a binomial
coefficient, for which we temporarily introduce the abbreviation

Zy
x =

(
x+ y

x

)
.

Thus,

N
(c,d)
(a,b) = N

(c−a,d−b)
(0,0) = Zd−b

c−a .

Lemma 1. Assume that the number of non-intersecting pairs of paths from p to v and
from q to u is zero. Then the number of intersecting pairs of paths from p to u and from
q to v is

Xu,v
p,q = Nv

pN
u
q . (5)

Consequently, the number of non-intersecting pairs of paths is

X̄u,v
p,q = Nu

pN
v
q −Nv

pN
u
q . (6)

Proof. For each intersecting pair of paths we can perform a crossover switch at the
first intersection point, leading to a pair of paths where the end terminals are swapped.
Conversely, every pair of paths with swapped endpoints must intersect, by assumption,
and hence we can perform a crossover at the first intersection point. These two operations
are inverses, thus establishing (5) by bijection.

The lemma gives

Dwh =
∑
i≥0

X̄
(w−i−1,h+i),(w+i,h−i−1)
(0,1),(1,0)

=
∑
i≥0

(Zw−i−1
h+i−1 · Z

w+i−1
h−i−1 − Z

w−i−2
h+i · Zw+i

h−i−2)

= Zw−1
h−1 Z

w−1
h−1 − Z

w−2
h Zw

h−2 + Zw−2
h Zw

h−2 − Zw−3
h+1 Z

w+1
h−3 + Zw−3

h+1 Z
w+1
h−3 − · · · . (7)

This is a telescoping sum. Its terms become eventually zero, because the horizontal
distances w − i− 1 and the vertical distances h− i− 1 become negative for large i.
Thus, only the very first term remains, and therefore

Dwh = Zw−1
h−1 Z

w−1
h−1 =

(
s− 2

w − 1

)2

.
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(w + h, h− w)

(w + h− 1, h− w − 1− i)

(1,−1)

(1, 1) f(z)

g(z)

z

(w + h− 1, h− w + 1 + i)

Figure 3: Two functions f and g.

3.1 A bijection for directed convex polyominoes

The formula
(
s−2
w−1
)2

has an obvious combinatorial interpretation: it counts ordered pairs
of monotone paths from (0, 0) to (w− 1, h− 1). By analyzing the cancellation that hap-
pens in the telescoping sum (7), we can derive a bijection to directed convex polyominoes
of height h and width w.

We start from a pair of paths from (0, 0) to (w − 1, h − 1). It is more convenient
to turn the grid by 45◦ and scale it by

√
2, using the transformation

(
x
y

)
7→
(
x+y
y−x
)
. We

let the first path start at (1, 1) and the second path at (1,−1), like the desired paths of
Figure 2c, see Figure 3. This leads to two paths with endpoints (w + h− 1, h− w + 1)
and (w + h − 1, h − w − 1). The paths can be viewed as graphs of two functions
f, g : {1, 2, . . . , s−1} → Z that make steps ±1: |f(z+1)−f(z)| = 1 and |g(z+1)−g(z)| =
1. Now we will modify these two functions to ensure that they don’t intersect. In general,
we will have two functions on {1, 2, . . . , s− 1}. The starting heights are +1 and −1, and
the ending heights are given by h− w + 1 + 2i and h− w − 1− 2i, for some i ≥ 0.
Initially i = 0. If the paths intersect we make a crossover at the rightmost intersection
point, swapping the initial parts to the left of this point. Then we shift the first path by
+2 and the second path by −2. Schematically, this is shown as follows (see also Figure 4
for an example):[

+1→ h−w+1 + 2i
−1→ h−w−1− 2i

]
crossover

=⇒
[
−1→ h−w+1 + 2i
+1→ h−w−1− 2i

]
vertical shift

=⇒
[
+1→ h−w+1 + 2i+ 2
−1→ h−w−1− 2i− 2

]
We repeat this procedure as long as the functions intersect. The same procedure would
also work if we systematically take the leftmost intersection. Both versions, if imple-
mented naively, take quadratic time. The current version is better because the parts
to the right of the intersection point are always moved further apart. This means that
no new intersection points appear there, and we can find the sequence of rightmost
intersection points in a single right-to-left sweep.

The changes left of the intersection points are best understood in terms of their effect
on the difference function δ(z) := f(z)−g(z). Swapping f and g amounts to negating δ,
and the vertical shift will add 4 to δ. Together, these two operations will perform the
mapping δ 7→ 2− δ.
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(1,−1)

(1, 1)
f(z)

g(z)

(1,−1)

(1, 1) f(z)

g(z)

(a) (b)

(1,−1)

(1, 1)
f(z)

g(z)

(1,−1)

(1, 1)

(c) (d)

Figure 4: (a)–(c): A sequence of untangling operations for an intersecting path pair.
The rightmost intersection pairs are marked. (d): The final mapping from the non-
intersecting paths to the polyomino.

Performing this operation twice will restore the original function. We can therefore
leave the functions intact and, instead of searching for zeros of δ, alternately search for
the values 0 and 4. The following is a streamlined version of this algorithm, where δ
does not explicitly appear. After the sequence of intersection points is determined in
the first phase, we compute the resulting noncrossing paths F,G : {1, 2, . . . , s− 1} → Z
of the bijection in a left-to-right sweep.

−− Phase 1. Right-to-left sweep:
−− identify all intersection points
swapped := False
target := 0
s := 0
for z := s− 1, s− 2, . . . , 2, 1:

if f [z]− g[z] = target :
intersection[z] := True
swapped := not swapped
target := 4− target

else:
intersection[z] := False

−− Phase 2. Left-to-right sweep:
if swapped :

shift := 2
else:

shift := 0
for z := 1, 2, . . . , s− 1:

if swapped :
F [z] = g[z] + shift
G[z] = f [z]− shift

else:
F [z] = f [z] + shift
G[z] = g[z]− shift

if intersection[z] :
swapped := not swapped
shift := shift + 2
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3.2 Two-colored Grand-Motzkin paths

When we found our proof, we were not aware of the bijective proof of Theorem 2 by
Barcucci, Frosini, and Rinaldi [BFR]. There are differences as well as commonalities,
which we will now discuss, glossing over superficial details. In particular, the idea of
cutting at the point of intersection X with the diagonal through the upper right corner is
also used. This leads, in our case, to a pair of functions f, g such that f always remains
above g. Barcucci et al. [BFR, Section 3] represent the same information in terms of
the difference function δ = f − g. This function has only even values. When δ makes
a step of size 2, i. e., δ(z + 1) = δ(z) ± 2, it is possible to infer the change of f and
g. However, if δ is stationary, this means that f and g either both go up or both go
down. One therefore has to distinguish these possibilities by marking each horizontal
step of δ with one of two colors. After dividing δ by 2, this leads to the notion of a
“two-colored Grand-Motzkin path” as an alternative way to represent the pair (f, g):
A Grand-Motzkin path is a sequence of steps from {0,±1} starting and ending at the
same height, and a Motzin path has the additional requirement of never going below the
initial height.

The main part of the proof concerns the bijective mapping from a pair (f, g) of
functions with difference δ(s − 1) = 2 at the endpoint to a pair (F,G) of noncrossing
functions with endpoints at difference F (s−1)−G(s−1) = 2+4i, for some i. In contrast
to our bijection, which scans the sequence from right to left, Barcucci et al. [BFR,
Section 3.1.3] process the sequence from left to right. Their bijection has a very elegant
pictorial description in terms of Grand-Motzkin paths [BFR, Figs. 13–14]. Translated
to our notation, it can be described as follows: Look for the leftmost point z where
δ(z) = 0, δ(z) = −2, δ(z) = −4, etc. Arriving at such a point, f must have taken a
down-step: f(z) = f(z− 1)− 1, and g must have taken an up-step: g(z) = g(z− 1) + 1.
Modify f by adding 2 to f(z), f(z+ 1), . . ., changing the down-step into an up-step, and
modify g similarly by subtracting 2. If the minimum value of δ is initially 2−2i, then this
procedure is carried out cumulatively for i different positions z, and the final difference
at the endpoints is F (s−1)−G(s−1) = 2 + 4i. We have achieved that F (z) ≥ G(z) + 2
throughout. This bijection is clearly different from our algorithm, which was derived
from the cancellation in (7) and from Lemma 1. It is simpler as it does not need to swap
parts of f and g.

The inverse mapping, from (F,G) to (f, g) is just as easy: If F (s−1)−G(s−1) = 2+4i,
perform a right-to-left scan: look for the rightmost points z where F (z) − G(z) = 2i,
2i − 2, . . . , 4, 2. These are the points where up-shifts must be inverted to down-shifts
and vice versa.

4 General Convex Polyominoes

4.1 S-walks

We will first introduce a definition that includes all convex polyominoes but also allows
some self-intersection of the boundaries.

An S-walk is a shortest closed walk on the grid that spans its enclosing rectangle R.
By spanning, we mean that it contains at least one edge on each of the four sides of R,
while shortest says that the length of the walk equals the perimeter of R; in particular,
the S-walk is contained in R. (The letter S in S-walks has nothing to do with the South
direction.) We orient the S-walk by the convention that the edges on the S-side are
traversed from right to left, i.e., in the W direction. (If the S-walk is non-intersecting,
this means that it is oriented clockwise.) If R is an h × w rectangle, then an S-walk
consists of exactly h steps in each of the E and W directions, and exactly w steps in each
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SWNE

SNWE SWEN

+ −

− +

+

+
−

−−

−

+

+

Figure 5: The possible orders in which an S-walk can touch the four sides of the enclosing
rectangle, and the possibilities of self-intersections. Some rising and falling parts are
marked by + and −.

of the N and S directions, so its total length is 2(h+w). An S-walk forms the boundary
of a convex polyomino if and only if it does not intersect itself.

The S-walk will not necessarily visit the four sides in the correct order. We choose
the leftmost point on the S-side as the starting point, as shown in Figure 1. Since we
are moving in the W direction, the S-walk will meet the W-side before the E-side. This
leaves three possible orders in which the walk can hit the sides: SWNE, SNWE, and
SWEN. They are shown schematically in Figure 5. The “normal” order, which corre-
sponds to the non-intersecting case, is SWNE. In the two other orders, an intersection
is forced. Removing the parts where the S-walk touches the rectangle boundary decom-
poses it into four pieces, each of which may be empty. Each piece is a monotone grid
path, and we classify these paths either as rising or falling, by looking at them as the
graph of a function and reading them from left to right (independent of the traversal
direction). Thus, for example the path between the W-side and the N-side is always
rising. Whenever the walk hits a boundary edge, it alternates between rising and falling.
Thus, there will always be two rising paths and two falling paths. Looking at Figure 5,
it is easy to convince oneself that a self-intersection can occur either between the two
rising paths, or between the two falling paths, but not both simultaneously. For exam-
ple, in the SWNE case, the two falling paths can cross only if the rightmost point of the
walk on the N-side is to the left of the leftmost point of the walk on the S-side, and the
bottommost point of the walk on the W-side is higher than the topmost point of the
walk on the E-side. This precludes the two rising paths from intersecting. Of course,
there may be multiple intersections between two rising/falling paths.

Thus, given an h×w enclosing rectangle, denoting by P̃wh the number of all S-walks,
and by P ∗wh the number of S-walks in which the rising paths intersect, we can compute
the number Pwh of convex polyominoes by the formula

Pwh = P̃wh − 2P ∗wh. (8)

The factor 2 reflects the fact that the intersection of the falling paths is symmetric to
the rising case. In the following two subsections, we will determine P̃wh and P ∗wh.

4.2 The number of all S-walks

We start the walk at the leftmost point (a, 0) on the S-side with an up-step. Given the
starting point in the range 0 ≤ a ≤ w − 1, we code the walk by recording a sequence
over the alphabet {V,H}, representing the walking steps sequence whether we make a
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(w, h)

(w + i, h− i− 1)

(w − i− 1, h + i)

E

N

(a)

(c)

(−i,−i)

X

W̄2

W̄1

(j, j) Y

(−j, j + 1)

(j + 1,−j)

W

S

(w, h)

(w + i, h− i)

(w − i, h + i)

(b)

W1

W2(−j, j)

(j,−j)

Figure 6: Splitting the boundary at two diagonals (a) and reflecting at each side. (b) An
implicit edge on each side of R is highlighted. (c) The four implicit edges are removed.

vertical or horizontal step. It is not necessary to record the orientation in which the steps
go (left versus right, or up versus down), because this information can be recovered by
tracing the path when it hits the boundary of the rectangle. Furthermore, the walk must
contain at least one edge on each of the four sides of the rectangle. These four steps
are implicit steps and are not coded. A code is translated into an S-walk as follows:
We start at (a, 0) and follow the {V,H}-code to trace the walk. Whenever we touch
one of the four sides W,N,S,E of R for the first time, an implicit step along that side
is inserted. In addition, the first up-step at (a, 0) is also not coded. If a = 0, the first
up-step coincides with the implicit W-step. (This corresponds to directed polyominoes.)
Then the code consists of 2h − 2 V’s and 2w − 2 H’s. If 1 ≤ a ≤ w − 1, we need only
2h− 3 V’s. In total, the number of S-walks is therefore

P̃wh =

(
2s− 4

2w − 2

)
+ (w − 1)

(
2s− 5

2w − 2

)
=

(
2s− 4

2w − 2

)
+

(
2s− 6

2w − 3

)
2s− 5

2
. (9)

The factor w − 1 counts the number of nonzero possibilities for a.
This coding is very similar to the code used by Hochstättler, Loebl and Moll [HLM]

for generating convex polyominoes of given perimeter, see also Section 6.1.

4.3 Self-intersecting S-walks

To count S-walks where the two rising paths intersect, we adapt the approach of Sec-
tion 3, splitting the walk at diagonals and moving falling paths outside by reflection.
The two relevant cases are SWNE (the “normal case”) and SWEN (the “flipped case”).
This time, we split the curve not only at the upper right part but also at the lower left
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part, see Figure 6. More precisely, in addition to splitting the S-walk at the intersection
point X of the falling path between the N-side and E-side with the diagonal through
the NE corner, we also split it at the intersection point Y of the falling path between
the S-side and W-side with the diagonal through the SW corner. Both in the normal
case SWNE, which is illustrated in Figure 6, and in the flipped case SWEN, there is a
falling path between S and W and another falling path between N and E, so that the
intersection points X and Y are well-defined.

The two resulting paths intersect if and only if the two rising paths of the S-walk
intersect. Thus we are interested in the number of intersecting pairs of paths. In the
normal case SWNE, this is∑

i≥0

∑
j≥0

X
(w+i,h−i−1),(w−i−1,h+i)
(j+1,−j),(−j,j+1) =

∑
i≥0

∑
j≥0

N
(w+i,h−i−1)
(−j,j+1) N

(w−i−1,h+i)
(j+1,−j) . (10)

For the flipped case SWEN, we get a pair of paths from (−j, j + 1) to (w + i, h− i− 1)
and from (j + 1,−j) to (w − i − 1, h + i). All these path pairs are forced to intersect
by the positions of their endpoints, and their number equals the same expression (10).
Consequently,

P ∗wh = 2
∑
i≥0

∑
j≥0

N
(w+i,h−i−1)
(−j,j+1) N

(w−i−1,h+i)
(j+1,−j) = 2

∑
i≥0

∑
j≥0

(
s− 2

w + i+ j

)(
s− 2

w − 2− i− j

)
.

We note for later use that the number of S-walks of the normal type SWNE in which
the rising paths intersect is P ∗wh/2.

Since i and j always occur together in the above summation for P ∗wh, we group terms
with the same sum i+ j:

P ∗wh = 2
∑
i≥0

∑
j≥0

(
s− 2

w + i+ j

)(
s− 2

w − 2− i− j

)

= 2
∑
k≥0

∑
i+j=k
i,j≥0

(
s− 2

w + i+ j

)(
s− 2

w − 2− i− j

)
= 2

∑
k≥0

(k + 1)

(
s− 2

w + k

)(
s− 2

w − 2− k

)
.

In order to get rid of the factor (k + 1) we split it into two terms (w + k) − (w − 1),
which can be more readily incorporated into the binomial coefficients:

P ∗wh = 2
∑
k≥0

(w + k)

(
s− 2

w + k

)(
s− 2

w − 2− k

)
− 2

∑
k≥0

(w − 1)

(
s− 2

w + k

)(
s− 2

w − 2− k

)

= 2
∑
k≥0

(s− 2)

(
s− 3

w + k − 1

)(
s− 2

w − 2− k

)
− 2

∑
k≥0

(w − 1)

(
s− 2

w + k

)(
s− 2

w − 2− k

)
= 2(s− 2)T1 − 2(w − 1)T2.

We will analyze the two sums T1 and T2 in the last expression separately. For the first
sum

T1 =
∑
k≥0

(
s− 3

w + k − 1

)(
s− 2

w − 2− k

)
,

we have the following combinatorial interpretation, see Figure 7. Let A = s − 3. From
the numbers 1, 2, . . . up to (s− 3) + (s− 2) = 2s− 5 = 2A+ 1, we have to select a subset
S of (w + k − 1) + (w − 2− k) = 2w − 3 elements, under the additional constraint that
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1 2 31 2 3

A A1

2A+1

︸ ︷︷ ︸
≥ w − 1

. . .︸ ︷︷ ︸
2w − 3

A+1

reflection

. . .. . .

Figure 7: The combinatorial model for the expression T1.

the number of elements selected out of the first A = s − 3 integers is at least w − 1.
(More precisely, it is w − 1 + k.) T1 counts the number of these subsets.

We consider the subsets S under the reflection operation S 7→ S̄ which maps each
integer x to its “mirror image” 2A+2−x. Obviously, for any pair (S, S̄), at most one of
the two sets can satisfy the additional constraint. If S contains at least w − 1 elements
in the first A integers, then S contains at most 2w − 3 − (w − 1) = w − 2 in the last
A integers, so S̄ contains at most w − 2 elements in the first A integers. If both S and
S̄ contain at most w − 2 elements in the first A integers, we have the exceptional pairs
(S, S̄), which are characterized as those pairs where S contains exactly w − 2 elements
from the first A integers, exactly w − 2 elements from the last A integers, and also the
central element A+ 1.

Thus, to count the subsets that fulfill the additional constraint, we take all subsets
of size 2w − 3, subtract the exceptional pairs, and divide by 2.

T1 =
1

2

[(
2s− 5

2w − 3

)
−
(
s− 3

w − 2

)2
]

For the second sum

T2 =
∑
k≥0

(
s− 2

w + k

)(
s− 2

w − 2− k

)
, (11)

an argument similar to T1 is possible, but it is easier to argue algebraically: Substituting
k = 2− k′ and renaming k′ to k again gives a summation of the same expression over a
nearly complementary range of k.

T2 =
∑

k′≤−2

(
s− 2

w − 2− k′

)(
s− 2

w + k′

)
=
∑
k≤−2

(
s− 2

w + k

)(
s− 2

w − 2− k

)
(12)

Summing up (11) and (12) gives almost the full range of integers k. We add the term
for k = −1 and get∑

k≤−2
+
∑
k=−1

+
∑
k≥0

=
∞∑

k−∞

(
s− 2

w + k

)(
s− 2

w − 2− k

)
=

(
2s− 4

2w − 2

)
.

On the other hand, from (11–12),

∑
k≤−2

+
∑
k=−1

+
∑
k≥0

= T2 +

(
s− 2

w − 1

)2

+ T2,
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and thus

T2 =
1

2

[(
2s− 4

2w − 2

)
−
(
s− 2

w − 1

)2
]
.

On the whole we get

P ∗wh = (s− 2)

[(
2s− 5

2w − 3

)
−
(
s− 3

w − 2

)2
]
− (w − 1)

[(
2s− 4

2w − 2

)
−
(
s− 2

w − 1

)2
]

= −(s− 2)×
(
s− 3

w − 2

)2

+ (w − 1)×
(
s− 2

w − 1

)2

,

because the two leading terms cancel. Taking out common factors, we get

P ∗wh =

(
(s− 3)!

(w − 1)!(h− 1)!

)2 [
−(s− 2)× (w − 1)2 + (w − 1)× (s− 2)2

]
=

(
(s− 3)!

(w − 1)!(h− 1)!

)2

(s− 2)(w − 1) [−(w − 1) + (s− 2)]

=

(
(s− 3)!

(w − 1)!(h− 1)!

)2

(s− 2)(w − 1)(h− 1) = (s− 3)

(
s− 2

w − 1

)(
s− 4

w − 2

)
. (13)

Substituting (13) and (9) into (8) proves Theorem 1.

4.4 Our proof and its relation to the proof of Guo and Zeng

Some of the ideas that we use are implicit in the proof of Guo and Zeng [GZ], of which
we were not aware when we developed this work. Their derivation makes heavy use of
Lemma 1, but the interpretation of the terms as crossing paths is soon lost in the alge-
braic manipulations. We will review their approach, using our notation and terminology.

The number of convex polyominoes are represented as a sum of five expressions:

Pwh = S0 + S1 + S2 − S3 − S4

The first term, S0 = Bwh, represents the number of parallelogram polyominoes, which
contain both the SW and the NE corners (Proposition 1). S1 represents the number
of directed polyominoes and the “opposite directed polyominoes” that contain the NE
corner, but exclude the parallelogram polyominoes. Thus, S1 = 2(Dwh − Bwh), and it
is possible to recover the formula for Dwh (Theorem 2) from the expressions for S0 and
S1 in [GZ, Eqs. (4) and (5)]. Like in our proof, the calculations leading to S1 involve a
telescoping sum.

The number of the remaining polyominoes are represented by S2−S3−S4. Here S2
counts S-walks that visit the sides in the normal SWNE order, with the exclusion of the
SW and NE corners. From this, one has to subtract the number S3 of those walks where
the falling pieces intersect, and the number S4 of walks where the rising pieces intersect.
In our notation, we can express this as S3 = P ∗wh/2, and indeed, formula (13) is in
accordance with the expression for S3 in [GZ, Eq. (9)]. S4 has to be computed separately
because the special treatment of the SW and NE corner has destroyed the symmetry
between ascending and descending intersections. As mentioned in the introduction, the
computation of S3 and S4 involves the use of generating functions.

By contrast, in our proof, we have tried to reduce the amount of computation and
to give bijective proofs whenever possible. Some ideas, like cutting at diagonals and
reflecting along the boundary, were helpful in this respect. Another distinguishing feature
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is that we include S-walks that touch the boundary in an arbitrary order. This has
allowed us to keep the proof simple and elementary. We did not have to resort to
generating functions, and we needed only moderate algebraic manipulations.

S-walks that touch the boundary in an arbitrary order also show up in the rejection-
sampling procedure of Hochstättler, Loebl and Moll [HLM] for convex polyominoes of
given perimeter, see Section 6.1, but their connection to the positive terms in (3) was
not noted.

5 Moments of Intersection Numbers Between Two Paths

In an early attempt to establish Theorem 1 we tried a different approach to treat in-
tersecting paths: In contrast to Lemma 1, which deals with intersections by swapping
the endpoints, we split the walk into an initial part up to the last intersection point,
plus a final part. The final part is a directed convex polyomino, for which we know the
formula. This approach leads to a sum that can be interpreted as the total number of
intersections of all pairs of monotone paths between two points. We failed to evaluate
this sum directly. However, as shown in Theorem 1, we found a different way to calcu-
late the result. Turning the argument around, we can therefore say something about the
total number of intersections of all path pairs (the unnormalized first moment). We can
even extend the method and compute the sum of squares of these intersection numbers
(the unnormalized second moment).

Theorem 3. Let w, h ≥ 0, and set s = w + h. Let Pwh denote the set of the
(
s
w

)
monotone grid paths from (0, 0) to (w, h).∑

U∈Pwh

∑
V ∈Pwh

|U ∩ V | =
(

2s+ 2

2w + 1

)
/2 [OEIS, A091044] (14)

∑
U∈Pwh

∑
V ∈Pwh

|U ∩ V |2 = (s+ 1)

(
s+ 2

w + 1

)(
s

w

)
−
(

2s+ 2

2w + 1

)
/2 [OEIS, A324010]

(15)

Dividing these formulas by the number
(
s
w

)2
of path pairs yields the (normalized)

first moment, i. e., the mean, and the second moment, from which the variance can be
calculated. The intersection points of U and V include the common endpoints, and
therefore, |U ∩ V | is always at least 2 (unless w = h = 0).

Proof. We will establish a bijection between the left side of (14) and weak directed S-
walks in a (w+ 1)× (h+ 1) rectangle, see Figure 8. Such a walk starts and ends at (0, 0)
but it need not contain an edge of the S- or W-side. The edges on the N- and E-side
are, however, required. Using the code in Section 4.2, such a walk can be coded with
2w + 1 V’s and 2h+ 1 H’s. We orient the walk by requiring that the N-side is touched
before the E-side.

The number D−wh of these walks is

D−wh =

(
2s+ 2

2w + 1

)
/2.

The factor 1/2 accounts for the orientation.
In a weak directed S-walk, a self-intersection can only occur between the two rising

pieces. Now we split the walk at the highest and rightmost intersection point (i, j). If
there is no intersection point, we set (i, j) = (0, 0). Now the part P2 that was split off is

https://oeis.org/A091044
https://oeis.org/A324010
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(i, j)

(w, h)

(w + 1, h+ 1)

U1

V1

V2

U2

(i, j)

Figure 8: A weak directed S-walk is split at the highest intersection point and converted
into a pair of paths.

a directed convex polyomino, spanning the rectangle [i, w+1]× [j, h+1], and containing
the SW corner (i, j) of this rectangle. We have established through Theorem 2 that such
directed convex polyominoes are in bijection with ordered pairs (V1, V2) of monotone
paths from (i, j) to (w, h). After splitting off P2 from the S-walk, an initial path U1 from
(0, 0) to (i, j) and a final path U2 from (i, j) to (0, 0) remain. We connect U1 with V1
and the reverse of U2 with V2, obtaining a pair of paths from (0, 0) to (w, h). We mark
the intersection point (i, j).

Conversely, consider a pair of paths from (0, 0) to (w, h), in which one of the inter-
section points (i, j) is marked. We split off the parts after (i, j) and turn them into a
directed polyomino, using the bijection of Theorem 2. We obtain a directed S-walk.

Thus we have established a bijection between weak directed S-walks and pairs of
paths W1,W2 ∈ Pwh in which an intersection in W1 ∩ W2 is marked. The number
of objects of the latter type is the number of path pairs, weighted by the number of
intersections; this is the quantity that is counted in (14).

We note that both the first point (0, 0) and the last point (w, h) are valid intersection
points to be marked. A mark on the first point corresponds to directed S-walks without
self-intersections. If the last point is marked, the bijection will expand it into a path
around a unit square.

To get the second moment (15), we perform the replacement on both ends. We
start with a pair of paths (U, V ) in which two indistinguishable marks are placed on
intersection points. The two marks can be placed on the same point. The number of
these objects is ∑

U∈Pwh

∑
V ∈Pwh

(
|U ∩ V |+ 1

2

)
.

The pair of paths after the higher mark is replaced by a directed polyomino as above.
The pair of paths up to the lower mark is replaced by a another directed polyomino,
which is rotated by 180◦: instead of the lower left corner, it contains the upper right
corner of its enclosing rectangle. We obtain an S-walk of the normal type SWNE in a
(w + 2) × (h + 2) rectangle, whose rising parts intersect. As argued in Section 4.3 this
number is P ∗w+2,h+2/2, the other half being the flipped type SWEN. By (13), this gives

∑
U∈Pwh

∑
V ∈Pwh

(
|U ∩ V |+ 1

2

)
= (s+ 1)

(
s+ 2

w + 1

)(
s

w

)
/2. (16)

Since
(
k+1
2

)
= (k2 + k)/2, with k = |U ∩ V |, the claimed formula (15) for the second

moment is obtained by multiplying (16) by 2 and subtracting (14).
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6 Rejection Sampling for Convex Polyominoes

Since the formula (1) contains a subtraction, it does not suggest a way to bijectively
sample convex polyominoes with given height and width. However, it is straightforward
to randomly generate one of the P̃wh =

(
2s−4
2w−2

)
+ (w − 1)

(
2s−5
2w−2

)
S-walks. Note that

they correspond to the positive terms in formula (1). If the S-walk intersects itself, it is
rejected, and another random S-walk must be tried. The efficiency of the method is the
success probability of generating a valid polyomino.

For the square case w = h the probability of self-intersection goes to 0 like 4
√

2/πw,
and hence the efficiency goes to 1. In general, the efficiency is 1 − O(1/

√
min{w, h}).

For small values of h or w, the efficiency is around 1/2. The worst observed efficiency is
around 48%, for h = w = 4.

6.1 Sampling for given perimeter 2s

For sampling from the set of polyominoes with a given perimeter 2s, without regarding
the specific width and height, we can give a more explicit sampling procedure with
an efficiency that approaches 1 as s increases. A very similar procedure is proposed in
Hochstättler, Loebl and Moll [HLM]: its efficiency approaches 1/2 for large s. By adding
a small twist to their procedure, we can avoid throwing away 50 % of the samples.

The procedure is the same as above: We generate all S-walks. The sum

P̃s =
∑

w+h=s

P̃wh = 4s−2/2 + 4s−3/2 · (2s− 5)/2 = 4s−4(2s+ 3)

has a term 4s−2/2 for the directed polyominoes (a = 0) and another term 4s−3/2 · (2s−
5)/2 for the remaining polyominoes (a ≥ 1).

The S-walks for the directed polyominoes are obtained from strings of length 2s− 4
over the alphabet {V,H} with an even number of H’s. Their number is (1/2)22s−4 =
4s−2/2.

Let us now concentrate on the case a ≥ 1. We assume s ≥ 4. We start by generating
a random string of length 2s − 6 over the alphabet {V,H} with an odd number of H’s
(22s−7 possibilities). We generate a random position where to insert an additional H
(2s − 5 possibilities). The result is a random string of length 2s − 5 with some even
number #H ≥ 2 of H’s and an odd number #V ≥ 1 of V’s. We choose w and h such
that #H = 2w − 2 and #V = 2h− 3.

Suppose that the additional, inserted H is the ā-th H from the left. This gives a
random number ā in the range 1 ≤ ā ≤ 2w − 2. We reduce this number modulo w − 1
so that the resulting value a lies in the interval 1 ≤ a ≤ w − 1. This gives all the data
we need for an S-walk of height h and width w with 1 ≤ a ≤ w − 1.

We have started with 22s−7(2s− 5) possibilities, and we have used them to generate
one of 4s−3/2 · (2s − 5)/2 = 22s−8 · (2s − 5) random objects. Thus we have wasted one
bit. This happened at the reduction from ā to a modulo w − 1. If this loss is an issue,
the lost bit can be recovered from the reduction (by comparing ā against w − 1) and
recycled for the next round of random generation. We leave it as a challenge to avoid
the generation of the extra bit from the start.

The overall procedure, including the case a = 0, is as follows. We generate a random
string x of length 2s− 7 over the alphabet {V,H} and a random number Q in the range
1 ≤ Q ≤ 2s + 3. If Q > 2s − 5, we translate the eight possibilities into 3 bits and use
them to extend x by 2 more symbols. One bit is wasted. We add a parity symbol so
that we get a string of length 2s− 4 with an even number of H’s and V’s. This is used
as an S-walk with a = 0.
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If Q ≤ 2s − 5, we are in the case a ≥ 1. We extend x by a parity symbol to make
the number of H’s odd, and we use Q as the insertion point for the additional H, as
described above.

The efficiency of the method is easy to analyze. By comparing the negative term of
formula (3) against the positive term, one can see the probability of self-intersection is
goes to 0 like 4/

√
πs as s→∞. (If we don’t recycle the wasted bit, we additionally loose

1 bit out of 2s− 7 + log2(2s+ 3) bits.) Hence the efficiency approaches 1 as s increases.
The main difference in the procedure of Hochstättler, Loebl and Moll [HLM] is that

they generate the code string and the parameter a ∈ {0, 1, 2, . . . , s − 1} independently.
If the number of H’s is bigger than 2a, they certainly have to reject the sample. This
causes them to loose 50 % of the samples right away. Our improvement is essentially due
to a combinatorial interpretation of the equality in (9), followed by a summation over
all pairs w, h with w + h = s.
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