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Abstract
Arrangements of pseudolines are classic objects in discrete and computational geometry. They
have been studied with increasing intensity since their introduction almost 100 years ago. The
study of the number Bn of non-isomorphic simple arrangements of n pseudolines goes back to
Goodman and Pollack, Knuth, and others. It is known that Bn is in the order of 2Θ(n2) and finding
asymptotic bounds on bn = log2(Bn)

n2 remains a challenging task. In 2011, Felsner and Valtr showed
that 0.1887 ≤ bn ≤ 0.6571 for sufficiently large n. The upper bound remains untouched but in 2020
Dumitrescu and Mandal improved the lower bound constant to 0.2083. Their approach utilizes the
known values of Bn for up to n = 12.

We tackle the lower bound by utilizing dynamic programming and the Lindström–Gessel–Viennot
lemma. Our new bound is bn ≥ 0.2721 for sufficiently large n. The result is based on a delicate
interplay of theoretical ideas and computer assistance.
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1 Introduction

Levi [22] introduced arrangements of pseudolines as a natural generalization of line arrange-
ments in 1926. Ringel studied them in the 1950’s and Grünbaum [16] popularized them in his
1972 monograph Arrangements and Spreads. In the 1980’s Goodman and Pollack initiated a
thorough study and related them to many other objects of interest in discrete geometry. For
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XX:2 An Improved Lower Bound on the Number of Pseudoline Arrangements

a more detailed account to the history and the relevant references we refer the interested
reader to the handbook article [11].

An arrangement of pseudolines in the Euclidean plane R2 is a finite family of simple
curves, called pseudolines, such that each curve approaches infinity in both directions and
every pair intersects in exactly one point where the two curves cross. More generally, we
call a collection of pseudolines partial arrangement if every pair intersects in at most one
crossing-point. Pseudolines which do not intersect are said to be parallel. Note that, while
for partial arrangements of proper lines the relation ’parallel’ is transitive, this is no longer
true in partial pseudoline arrangements.

In this article, the focus will be on simple arrangements, that is, no three or more
pseudolines intersect in a common point (called multicrossing). Moreover, we consider all
arrangements to be marked, that is, they have a unique marked unbounded cell, which is
called north-cell. Two arrangements are isomorphic if one can be mapped to the other by an
orientation preserving homeomorphism of the plane that also preserves the north-cell.

While it is known that the number Bn of non-isomorphic arrangements of n pseudolines
grows as 2Θ(n2), it remains a challenging problem to bound the multiplicative factor of
the leading term of log2 Bn = Θ(n2). Determining precise values for small values of n is
a challenging task as well, see Table 1. Our focus will be on finding better estimates on
the lower bound constant c− := lim infn→∞

log2 Bn

n2 . One can analogously define the upper
bound constant c+ := lim supn→∞

log2 Bn

n2 . It seems to be open whether c+ and c− coincide,
i.e., whether the limit exists.

n Bn

3 2
4 8
5 62
6 908
7 24698
8 1232944
9 112018190 [19, Section 9]
10 18410581880 [10]
11 5449192389984 [28]
12 2894710651370536 [26]
13 2752596959306389652 [18]
14 4675651520558571537540 Yuma Tanaka 2013
15 14163808995580022218786390
16 76413073725772593230461936736 Günter Rote 2021 [17]

Table 1 The known values of Bn. Sequence A6245 in the OEIS [27].

A lot of work has been done on finding good estimates for c− and c+. In the 1980’s Good-
man and Pollak [15] investigated pseudopoint configurations, which are dual to pseudoline
arrangements, and established the lower bound c− ≥ 1

8 . An alternative and slightly easier
construction for c− ≥ 1

12 was given by Matoušek in his Lectures on Discrete Geometry [24,
Chapter 6]. As pointed out in [8] one also obtains c− ≥ 1

8 from Matoušek’s construction
via recursion. Concerning the upper bound, Edelsbrunner, O’Rourke and Seidel [9] showed
c+ < ∞ via an algorithm that constructs an arrangement of n pseudolines in O(n2) time. It
is worth noting that an upper bound can also be obtained via planar graphs: The dual graph

https://oeis.org/A006245
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of arrangement of n pseudolines is planar quadrangulation on m =
(

n
2
)

+ n + 1 vertices. Since
the number of m-vertex planar graphs is at most 2O(m) [3, 4], it follows that Bn ≤ 2O(n2).

In the 1990’s Knuth [19, Section 9] improved the bounds to c− ≥ 1
6 and c+ < 0.7925, and

conjectured that c+ ≤ 0.5. The upper bound was lowered to c+ < 0.6974 by Felsner [10].
In 2011, Felsner and Valtr [13] further narrowed the gap by showing c− > 0.1887 and
c+ < 0.6571, and, in 2020 Dumitrescu and Mandal [8] proved the currently best lower
bound c− > 0.2083.

In this article, we make a substantial step on the lower bound by proving c− > 0.2721.

▶ Theorem 1. The number Bn of non-isomorphic simple arrangements of n pseudolines
satisfies the inequality Bn ≥ 2cn2−O(n log n) with c > 0.2721.

2 Outline

Our approach is in the spirit of several previous bounds. We consider a specific partial
arrangement L of n lines consisting of k bundles L1, . . . , Lk of equally-spaced parallel lines.
We then define a class of local perturbations to L and consider the number of arrangements
that can be obtained by these perturbations. This number is a lower bound on Bn, and
it can be improved by recursively applying the same construction to each of the parallel
classes Li.

The main difference between the approaches lies in the number of bundles k and the
choice of locality. Matoušek and also Felsner and Valtr used three bundles but the locality
was increased from considering just a triple intersection with its two simple resolutions to the
full intersection pattern of three bundles. Dumitrescu and Mandal [8] increased the number k

of bundles to 12 but restricted the locality to the possible resolutions of the multicrossings.
Our approach combines higher values of k (we discuss cases with k equal to 4, 6, and 12

in this paper) with an increased locality for the perturbations, i.e., we allow reroutings of sets
of pseudolines in designated regions, which we call patches. Figure 1 gives an illustration.

When rerouting a partial arrangement within a patch P , the order of the crossings along
the pseudolines may change. In Section 5.1 we show that the boundary information of P

determines which pairs of pseudolines cross within P , but the order of crossings along the
pseudolines is not determined in general. Outside of P , the arrangement remains unaffected,
which allows us to count the number of reroutings for each patch independently. The
total number of perturbations is obtained as the product of the numbers computed for the
individual patches. Details on how we computed the number of possibilities within a patch
are given in Section 5 .

To eventually use computer assistance, we choose patches of high regularity and reasonably
small complexity. In fact, since the initial arrangement is extremely regular, it is sufficient
to determine the rerouting possibilities only for a small number of patch-types. Only a
negligible fraction of patches along the boundaries are different. As we only want to find an
asymptotic lower bound on Bn, the small number of irregular patches along the boundary of
the regions will be ignored for the counting.

To eventually prove Theorem 1, we perform the following two steps:

In the first step (Section 3) we specify the parameters of the construction: For k = 4
(Section 3.1), k = 6 (Section 3.2), and k = 12 (Section 3.3) we construct the initial
arrangement with k bundles of

⌊
n
k

⌋
parallel lines and cover the multicrossing points by

patches. By resolving the multicrossing points within the patches, and taking the product

SoCG 2024
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L1

L2

L3

Figure 1 Left: An arrangement of k = 3 bundles of parallel lines and a collection of interior-
disjoint patches (highlighted red) such that each multicrossing point is covered by a patch. Right: A
partial pseudoline arrangement with the same parallel bundles obtained by rerouting within the
patches.

over all patches we obtain a lower bound on the number Fk(n) of partial arrangements
with k bundles of

⌊
n
k

⌋
parallel pseudolines.

In the second step (Section 4), we recursively account for crossings in bundles of pseudolines
which had been parallel before. The product of the so-computed possibilities yields the
improved lower bound on the number Bn of simple arrangements on n pseudolines.

3 Step 1: bundles of parallel lines, patches, and perturbations

For the start we fix an integer k and construct an arrangement L of k bundles of
⌊

n
k

⌋
parallel

lines as in [8]. If n is not an odd multiple of k, the remaining lines are discarded, or not used
in the counting. We then cover all multicrossing points by a family of disjoint patches, and
reroute the line segments within the patches so that all multicrossing points are resolved
and the arrangement is simple. Since we use computers it is convenient to construct patches
with a high regularity. Moreover, for simplicity in the computational part (cf. Section 5) we
ensure that no crossings of L are located on the boundary of a patch and no patch has a
touching with a line.

Extremum 1: If we use one tiny patch for each of the multicrossings, the counting
will give the same results as in [8], where each multicrossing was rerouted locally in all
possible ways for various configurations with k up to 12.

Extremum 2: If we choose one gigantic patch containing all crossings of L, then all
partial arrangements of n pseudolines with the same parallel bundles as in L will be
counted, that is Fk(n). For the case of k = 3 bundles, Felsner and Valtr [13] determined
that F3(n) = 2cn2+o(n2) where c = log2(3)

2 − 2
3 ≈ 0.1258.

3.1 Construction with 4 bundles
First we construct a partial arrangement L of n = 4m lines, consisting of 4 bundles L1, . . . , L4
of m parallel lines. See Figure 2 for an illustration.



F. Cortés Kühnast, J. Dallant, S. Felsner, and M. Scheucher XX:5

L2

L4

L3

L1

R3

R4

R3R3

R3

L2

L4

L3

L1

Figure 2 Construction with 4 bundles as in [8].

The construction comes with crossings of order 2, 3, and 4. We restrict our attention
to regions with multicrossings since regions with 2-crossings do not allow reroutings. As
illustrated on the right-hand side figure, there are two types of regions with multicrossings:

R3 contains multicrossings of degree 3;
R4 contains multicrossings of degree 4.

We use different patches in the regions R3 and R4 but in both cases rectangular patches
can be used to tile the full region apart from a negligible area at its boundary. See Figure 3
for the patch P4 we used to cover R4. Note that each copy of P4 intersects with L in an
equivalent way. This will be true implicitly of all patches we consider from now on. Since
R3 has a special pattern of intersection, we were able to compute the number of reroutings
using a more efficient method (see Section 5.2) than our more general dynamic programming
approach (see Section 5.1). This enabled us to use a square of side length 1000 as our patch
P3 for R3, which is much larger geometrically compared to P4.

Figure 3 An illustration of the tiling for region R4 in the 4-slope construction. The patch P4 is
a square of side length 8

√
2

2 and area 32.

SoCG 2024
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Next we determine the numbers µi of patches of type Pi. Since the number of crossings
in our construction is asymptotically quadratic in n and each patch contains only a constant
number of crossings, the number of patches of type Pi is also quadratic. It is important to
note that the patches along the boundary of Ri behave differently. However, since there are
only linearly many of these irregular patches, they only affect the lower order error term.
Hence we can omit them in the calculations.

We use a simple area calculation to obtain the µi’s. First we fix area(R3 ∪ R4) = (m − 1)2

which implies area(R3) = area(R4) = (m−1)2

2 . Next we determine the areas of the patches.
Since at this point all of our patches are rectangular, this amounts to determining their side
lengths. The distance between adjacent lines in L2 or L4 is 1 and between those in L1 or L3
it is

√
2

2 . Thus the areas of the patches are
area(P3) = 10002

area(P4) = (8 ·
√

2
2 )2 = 32.

Now we can easily write down the µ′
is:

µ3(P3, n) = area(R3)
area(P3) − O(n) = m2/2

10002 − O(n) = n2

32000000 − O(n)

µ4(P4, n) = area(R4)
area(P4) − O(n) = m2/2

32 − O(n) = n2

1024 − O(n).

To compute the number F (P4) of all possible reroutings within the patches of type P4,
we ran our dynamic program; see Section 5.1 for details. To compute the number F (P3) of
all possible reroutings within the patches of type P3, we made use of the Lindström-Gessel-
Viennot lemma; see Section 5.2. We obtained:

F (P3) > 2349033

F (P4) = 10233480626615962155895931163981261674.
Combining the possibilities from the two types of patches according to the estimate Fk(n) ≥∏k

i=3 F (Pi)µi(Pi,n) yields

▶ Proposition 2. F4(n) ≥ 2cn2−O(n) with c > 0.1637.

By writing ci := limn→∞
µi(n)

n2 · log2 F (Pi), we can see the contributions of the patches P3
and P4 to the leading constant c = c3 + c4 from Proposition 2; see Table 2.

region log2(# of reroutings) # of patches contribution computing time
R3* 1397192.00 1/32000000 0.04366 -
R4 122.94 1/1024 0.12006 20199.30s∑

- - 0.16373 20199.30s

Table 2 Summary of our computational results for each of the patches in the k = 4 slope
construction. The first entry (marked with a star) is computed using the LGV lemma; see Table 5
for details. The first column shows the name of the region; the second column shows the number
of reroutings (log2(F )); the third column shows the number of patches (lim µ

n2 ); the forth column
shows the contribution of the region to the leading constant, i.e., the product of the second and
third column; the last column shows the computing time in CPU seconds.

3.2 Construction with 6 bundles
In this section we consider a partial arrangement L of n lines consisting of 6 bundles L1, . . . , L6
of m parallel lines. See Figure 4 for an illustration.

The construction comes with four types of regions with multicrossings:
Ri for i ∈ {3, 4, 5} only contains multicrossings of order i and
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R6 contains multicrossings of order 3 and 6.
Note that in contrast to the k = 4 bundle construction from Section 3.1, multicrossings of
order 3 now occur in R3 and R6. For each of the four regions Ri we will use a different

R3

R3

R3

R3

R3

R4

R4

R4

R4 R5

R5

R5

R5

R5

R6

R5R4

L3

L5

L1

L6

L4

L2

R3

R4

Figure 4 Construction with 6 bundles as in [8].

type of patch Pi that is based on a regular tiling of the plane to ensure regularity. Figure 5
illustrates the tiling for R6, R5 and R4. For R3 we use a rhombic tiling such that each patch
P3 contains exactly 1000 · 1000 crossings of order 3; see Section 5.2. Pause to note that P3
and P4 are affine transformations of the patches used in the 4 slopes setting in Section 3.1.
Therefore they allow the same number of reroutings F (P3) and F (P4).

We have to determine the number µi of patches of type i. Towards this end we perform a
similar area calculation as we did for k = 4 bundles. This time both our patches and regions
are a little more complex and numerous. To avoid human error, we automated the calculation
of both area types in different ways. For the patches, we decided to simply count the number
of highest degree crossing within the patch, because that can be done automatically without
rounding. There is a one-to-one correspondence between such crossings and the fundamental
parallelogram σ of the lattice of crossings between lines from the bundles L2, L4 and L6.
Since every patch of the same type contains the same number of such crossings and the
patches are part of a potentially infinite tiling, we obtain the area of Pi by simply multiplying
the two numbers: area(Pi) = #{crossings of highest degree} · area(σ). If we take the area of
σ to be 1 then the count corresponds exactly to the desired area. We obtain

area(P3) = 10002, area(P4) = 32, area(P5) = 12, area(P6) = 7.

SoCG 2024



XX:8 An Improved Lower Bound on the Number of Pseudoline Arrangements

(a) (b) (c)

Figure 5 Three of the four types of patches for our construction on k = 6 bundles: (a) For R6

we use a hexagonal tiling such that each patch P6 contains exactly 7 crossings of order 6 and
14 crossings of order 3. (b) For R5 we use a hexagonal tiling such that each patch P5 contains
exactly 12 crossings of order 5. (c) For R4 we use a rectangular tiling such that each patch P4

contains exactly 8 · 4 = 32 crossings of order 4.

Since each region is made up of convex polygons whose supporting lines are known, their
areas are easy to compute using computer algebra software. In our supplemental data [1], we
provide a Sage script which carries out this task, and can be used for different constructions
as well. The areas are

area(R3) = 3(m−1)2

4 , area(R4) = (m−1)2

4 , area(R5) = (m−1)2

4 , area(R6) = (m−1)2

4 .

Using n = 6m we can calculate the µi’s as we did previously:
µ3(P3, n) = area(R3)

area(P3) − O(n) = 3n2

144·10002 − O(n)

µ4(P4, n) = area(R4)
area(P4) − O(n) = n2

144·32 − O(n)

µ3(P5, n) = area(R5)
area(P5) − O(n) = n2

144·12 − O(n)

µ3(P6, n) = area(R6)
area(P6) − O(n) = n2

144·7 − O(n).

To compute the numbers F (Pi) of all possible perturbations within the patch type Pi

for i = 4, 5, 6, we used our dynamic programming approach; see Section 5.1 for more details.
For region F (P3) we were able to use the same number already computed for Section 3.1.
The computation was based on the LGV lemma; see Section 5.2. Altogether we computed

F (P3) > 2349033

F (P4) = 10233480626615962155895931163981261674
F (P5) = 32207077855497546508132740267
F (P6) = 5489259325039519956333073658900.

From Fk(n) ≥
∏k

i=3 F (Pi)µi(n), we can now derive:

▶ Proposition 3. F6(n) ≥ 2cn2−O(n) with c > 0.2118.

By writing ci := limn→∞
µi(n)

n2 · log2 F (Pi), we can see the contributions of the patches P3,
P4, P5 and P6 to the leading constant c = c3 + c4 + c5 + c6 from Proposition 3; see Table 3.
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region log2(# of reroutings) # of patches contribution computing time
R3* 1397192.00 1/48000000 0.02911 -
R4 122.94 1/4608 0.02668 18787.90s
R5 94.70 1/1728 0.05480 4219.49s
R6 102.11 1/1008 0.10130 868737.00s∑

- - 0.21190 891744.39s

Table 3 Summary of our computational results for each of the patches in the k = 6 slope
construction. See Table 2 for description of columns.

3.3 Rectangular construction with 12 bundles
Finally we consider a partial arrangement L of n lines consisting of 12 bundles L1, . . . , L12
of m parallel lines. See Figure 6 for an illustration.

Up to symmetries of L, the construction produces 19 regions that contain intersections of
at least three bundles, see Figure 7. Since structurally different regions may meet the same
numbers of bundles, we differentiate them by adding lowercase Latin letters to their label
arbitrarily. Similar as above, we cover each region (except for a small area at its boundary)
using a regular tiling and count the numbers of reroutings within each tile using a computer.

For region R12 even a 1 × 1 square is too complex for our dynamic program to handle
in reasonable time/memory. Therefore, we used two sub-patches as illustrated in Figure 8.
Multiplying the obtained numbers of reroutings in the two sub-patches yields a lower bound
for the 1 × 1 square. Note that the smaller patch contains only one crossing of degree 12.
Since all pairs of pseudolines cross, the number of reroutings is exactly the number B12 of
arrangements of 12 pseudolines.

For the other regions we used specific patches which are available in our supplemental
data [1]. To obtain the numbers µix of copies of patch Pix, we simply divide the area of the
whole region Rix by the area of the patch:

µix = area(Rix)
area(Pix) − O(n),

see Table 4. There are different ways to compute the areas of the patches. We found it
most convenient to count the number of points with crossings of highest degree (i.e. points
with integer coordinates) within the patch, since that can be done computationally without
rounding. This is equal to the area (no just an approximation) because the patch is part of a
potentially infinite tiling and each tile will contain the same number of grid vertices. The
areas of the regions can be computed automatically from the specification of the bundles
using a Sage script that we provide with our supplemental data [1].

Now we compute the numbers F (Pix) of possible reroutings within each patch, see
Table 4. To cope with the large patches in the two regions R3a and R3b, we again used
the Lindström-Gessel-Viennot lemma, see Section 5.2. For all the other patches we used a
dynamic programming approach, see Section 5.1. Using the estimate Fk(n) ≥

∏
F (Pix)µix(n)

we derive:

▶ Proposition 4. F12(n) ≥ 2cn2−O(n) with c > 0.2494.

By writing cix := limn→∞
µix(n)

n2 · log2 F (Pix), we can see the contributions of the patches
to the leading constant c =

∑
cix from Proposition 4. All the data discussed above are

summarised in Table 4.

SoCG 2024
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Figure 6 The construction with 12 bundles as in [8].

(a) (b)

Figure 7 Regions with multi-crossings in the rectangular 12-slope construction.
(a) shows the nine outer regions R3a, R3b, R4a, R4b, R5a, R5b, R6a, R6b, R7a.
(b) shows the ten inner regions R7b, R8a, R8b, R8c, R9a, R9b, R10a, R10b, R11, R12.
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Figure 8 To partition region R12 in the k = 12 bundle construction, we use a square-shaped
patch P12 which is further partitioned into two sub-patches.

region log2(# of reroutings) # of patches contribution computing time
R3a* 1397192.00 1/144000000 0.00970 -
R3b* 1397192.00 1/432000000 0.00323 -
R4a 122.94 1/6912 0.01779 18345.70s
R4b 122.94 1/69120 0.00178 18345.70s
R5a 94.70 1/6480 0.01461 4463.95s
R5b 94.70 1/17280 0.00548 4463.95s
R6a 111.79 1/17280 0.00647 98184.90s
R6b 113.74 1/17280 0.00658 38082.70s
R7a 93.74 1/7560 0.01240 1204.09s
R7b 91.12 1/20160 0.00452 8392.94s
R8a 148.77 1/24192 0.00615 148199.00s
R8b 109.24 1/15120 0.00722 57856.50s
R8c 105.70 1/6048 0.01748 142085.00s
R9a 107.55 1/30240 0.00356 8577.60s
R9b 102.98 1/10080 0.01022 316.13s
R10a 144.70 1/17280 0.00837 68991.30s
R10b 70.78 1/4320 0.01639 1430.85s
R11 99.03 1/4320 0.02292 2059.67s
R12 128.89 1/1728 0.07459 47.15s∑

- - 0.24946 621047.12s

Table 4 Summary of our computational results for each of the patches in the k = 12 slope
construction. See Table 2 for description of columns.

SoCG 2024
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4 Step 2: resolving parallel bundles

With the second and final step, we obtain a simple arrangement of pairwise intersecting
pseudolines from a partial arrangement of k bundles of m =

⌊
n
k

⌋
parallel pseudolines. To do

so, we use a recursive scheme as in [13, 8] to make each pair of parallel pseudolines cross:
For each i = 1, . . . , k, we consider a disk Di such that
(1) Di intersects all parallel pseudolines of the bundle Li and no other pseudolines, and
(2) no two disks overlap.
Within each disk Di we can place any of the Bm arrangements of m pseudolines. This makes
all the pseudolines of a bundle cross. Figure 9 gives an illustration for the case k = 3.

L1

L2

L3

D3

D2

D1

Figure 9 Left: A partial arrangement of 3 bundles of parallel pseudolines and a collection of
interior-disjoint disks (highlighted blue) such that each bundle is covered by one disk.
Right: A proper pseudoline arrangement obtained by rerouting within the disks.

Since all D′
is are independent and there are Bm possibilities to reroute within each Di,

we obtain the estimate

Bn ≥ Fk(n)︸ ︷︷ ︸
Step 1

· (Bm)k︸ ︷︷ ︸
Step 2

,

where m =
⌊

n
k

⌋
. With the following lemma we can derive c− ≥ k

k−1 c where c is the constant
obtained in Section 3. The construction with k = 4 bundles yields c− > 0.2183, which is
already an improvement to the previous best bound by Dumitrescu and Mandal [8]. The
construction with k = 6 bundles allows a bigger step: It gives the lower bound c− > 0.2542.
The biggest improvement comes from the construction with k = 12 bundles, which yields
c− > 0.2721 and therefore completes the proof of Theorem 1.

▶ Lemma 5. If Fk(n) ≥ 2cn2−O(n) for some c > 0 then Bn ≥ 2
k

k−1 cn2−O(n log n).

The proof of Lemma 5 is defered to Appendix A.

5 Counting all possible reroutings in a patch

In the following we present two approaches how to compute the number F (P ) of all possible
perturbations within a patch P . In Section 5.1 we discuss a general approach based on
dynamic programming which can deal with any patch. In Section 5.2 we discuss the special
case of 3 slopes, where the reroutings can be derived more efficiently with the Lindström-
Gessel-Viennot lemma.
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5.1 Counting reroutings via dynamic programming
Consider a patch P with boundary curve C. Since C has no touching with any line, the
intersection of P with any line L ∈ L yields proper line segments. And because C passes
no crossings all the end points of segments are distinct. We can label the end points on C

according to the index of the resulting line segments and since every index occurs twice, we
call the cyclic sequence of end points along C a bipermutation. Note that in the case of a
non-convex boundary curve C, the intersection of a line with P consist of several segments,
they have to be distingushed by distinct labels. Figure 10 gives an illustration.

P 1
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5566
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4
33

77

4
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Figure 10 An illustration of how to recurse on a patch P . When cutting along segment 1,
highlighted purple, there are intersections with the segments 3, 4, and 7. As the segments 3 and
7 do no cross within P , there are only three possibilities for placing the three crossings along the
segment 1, namely 4–3–7 (right top), 3–4–7 (right center) and 3–7–4 (right bottom).

The number of possible reroutings within a patch P is computed recursively: Choose a
segment z, it splits P into two parts. For every segment a ̸= z we can determine whether a

crosses z by looking at the occurrences of a and z in the bipermutation. If up to cyclic shifts
the pattern is azaz they cross in P , if the pattern is aazz they are parallel in P .

Now for every legal order π of the crossing segments on z we combine the two arcs of the
bipermutation defined by the two occurrences of z and combine them with π to obtain the
bipermutations of the two smaller patches P1 and P2. Figure 10 gives an example.

The legal orderings of crossings on z can be found as follows: Consider a pair of segments
a, b that both cross z. Either a and b are parallel in P (i.e., we see abzbaz in the bipermutation)
or they form a crossing in P which we denote by a × b (i.e., we see abzabz). In Figure 10
the segments 3 and 7 are parallel, and segments 3 and 4 cross, and the crossing point 3 × 4
can lie on either side of the segment 1. In the case where a and b are parallel, the order
of the two crossings a × z and b × z along z is uniquely determined. In the case where a

and b cross, the crossing point a × b can lie on either side of z, and the choice of the part
further determines the order of the two crossings a × z and b × z along z. Altogether, the
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e1

e2e3

s1s2

s3

s'1

s'2

s'3

e'1

e'2

e'3

s1s2

s3 e1

e2e3

Figure 11 Illustration of the correspondence between arrangements of the chord diagram and
disjoint paths in the directed acyclic graph.

bipermutation of P determines a partial order ≺ of all crossings on z such that the legal
orderings correspond to linear extensions of this partial ordering.

To count all possible reroutings within P , we iterate over all linear extensions ≺⋆ of ≺
and continue recursively. Note that linear extensions can be enumerated efficiently via back-
tracking: pick a maximal element and recurse on the remaining elements. Each extension ≺⋆

uniquely determines the order of crossings along z and therefore the two sides P1(z, ≺⋆) and
P1(z, ≺⋆) can be explicitely given via their bipermutations. By cumulatively summing up
the obtained numbers, we get

F (P ) =
∑

≺⋆ linear extension of ≺

F (P1(z, ≺⋆)) · F (P2(z, ≺⋆)).

We provide a computer-assisted framework [1] that allows to fully automatically compute
F (P ) for a given patch P . The input is given as IPE-file1. The program reads the collection
of lines and the polygonal boundary of P , computes the bipermutation, and then performs
a dynamic program to determine the number of reroutings within P . More specifically,
we compute for each bipermutation the lexicographic minimal among all relabelings of the
elements, and reuse previously computed values whenever possible.

5.2 Counting reroutings via the Lindström-Gessel-Viennot lemma
We illustrate our approach on a small patch defined by a square of side length l = 2 (see
Figure 11). We can count the number of reroutings in this patch by starting with only the
black grid, and counting the number of combinatorially distinct ways to insert three curves
starting at s1, s2 and s3 respectively, and ending at e1, e2 and e3 respectively, such that
these three curves do not intersect, and each curve crosses every black segment at most once.
We can in turn translate this into counting the number of ways to have three paths in the
dual grid graph (with edges oriented left to right and top to bottom), starting and ending
at prescribed vertices, such that these paths do not cross (middle illustration in Figure 11).
Note that here by “not crossing” we do not mean vertex- or edge-disjoint, but that if a path
starts above/right of another, it can at no point go below/left of it. Given three such paths,
ordered from top right to bottom left, we can shift the second path one unit down and left
along the grid and the second path two units down and left along the grid. This results in
three vertex-disjoint paths (right illustration in Figure 11). The reverse is also true: given

1 IPE [5] is a drawing editor for creating vector graphics in XML or PDF format. Besides the supplemental
input files, also all figures in this article were created with it.
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Figure 12 The 20 reroutings of the patch.

three vertex-disjoint paths on the directed acyclic graph starting at s′
1, s′

2, s′
3 and ending

at e′
1, e′

2, e′
3, reversing the shifts produces three non-crossing paths starting at s1, s2, s3 and

ending at e1, e2, e3.
Thus, our question reduces to counting the number of ways to have three such vertex-

disjoint paths, whose set of starting vertices is s′
1, s′

2, s′
3 and set of ending vertices is e′

1, e′
2, e′

3.
Note that the vertex-disjointness ensures that in such a collection of paths, the path starting
at s′

i will end at e′
i for all 1 ≤ i ≤ 3. The Lindström–Gessel–Viennot lemma gives us an

efficient method to do so:

▶ Lemma 6 (Lindström [23], Gessel & Viennot [14]). Let G be a finite directed acyclic graph.
Consider starting vertices S = {s1, . . . , sk} and destination vertices E = {e1, . . . , ek}. For
any two vertices u and v, let p(u, v) be the number of paths from u to v. Assume that for
any tuple of k vertex-disjoint paths starting in S and ending in E, the path starting at si

necessarily ends at ei, for all 1 ≤ i ≤ k. Then the number of distinct such tuples is the
determinant of the matrix

M =


p(s1, e1) p(s1, e2) . . . p(s1, ek)
p(s2, e1) p(s2, e2) . . . p(s2, ek)

...
...

...
...

p(sk, e1) p(sk, e2) . . . p(sk, ek)

 .

In our specific case, the entries of this matrix are the number of paths going only down
or right between two specified vertices in a grid, which can be easily expressed as a binomial
coefficient. We have

M =


(2

1
) (3

0
)

0(3
3
) (4

2
) (3

0
)

0
(3

3
) (2

1
)
 =


2 1 0
1 6 1
0 1 2

 .

The determinant of this matrix is det(M) = 20, corresponding to the 20 reroutings of the
patch illustrated in Figure 12. In general, for a square patch of size l × l, the corresponding
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matrix is M = (mij)1≤i,j≤2l−1, with

mij =
(2l − |l − i| − |l − j|

2l−|l−i|−|l−j|+3|i−j|
2

)
.

For our actual bounds, we use a square patch of side length l = 1000. The number of
reroutings of this patch is too big to write explicitly here. In base 10, it is 420 597 digits long.
However, it is enough for us to know that log2(# of reroutings) > 1397192. Table 5 shows
the numbers and computation times for other side lengths. The computations suggest that
the ratio log2(# of reroutings)

l2 is converging as l increases. Hence, we expect that increasing l

only gives negligible improvements.

l log2(# reroutings) ratio computing time
10 130.523 1.3052 0.02s
20 539.561 1.3489 0.09s
50 3444.189 1.3777 0.62s

100 13877.972 1.3878 3.44s
200 55719.146 1.3930 37.96s
500 349033.080 1.3961 2473.19s

1000 1397192.106 1.3972 66467.25s

Table 5 Summary on the LGV computations for l × l square patches for different sizes l.

6 Discussion

All results presented in Tables 2–5 were computed on cluster nodes of TU Berlin with up to
1TB of RAM. The programs can also be run with fewer resources but the dynamic program
comes with a memory–time trade-off. Our programs and further details are available in our
supplemental data [1]. We also provide simpler patches for which the program only needs few
CPU seconds and low RAM. The simpler patches have also been verified by an independent
implementation [7]. They, however, give a slightly worse bound.

We performed quite some experiments to optimize the set of parameters. For the 4-
slope construction in Section 3.1, we so far manged to obtain c− > 0.2183 and for the
6-slope construction in Section 3.2, c− > 0.2542. For the rectangular 12-slope construction
in Section 3.3, we obtained c− > 0.2721, which is the currently best lower bound. It is
interesting that already the 4-slope construction gives a significant improvement to the
previous best bound by Dumitrescu and Mandal [8]. In the future we plan to investigate
also the construction with 16 slopes, from which we expect an improvement to 0.28.

While the results from [8] suggest that larger values of k give better bounds, the com-
putations get more and more complex. In fact, as the number k increases, the number of
different shape types and the complexity of the patches increases. Since our program can
only deal with patches containing about 30 to 40 segments in reasonable time, depending on
the structure of crossings within it, there is a trade-off between the number of crossings and
the number of bundles involved in a patch.

As long as one fixes k, the counting approach is implicitly limited by Fk(n), which is
much smaller than Bn. Since F3(n) = 2cn2+o(n2) with c = log2(3)

2 − 2
3 ≈ 0.1258 is known [13],

it would be interesting to determine limn→∞
log2 Fi(n)

n2 for i = 4, . . . , 12. We wonder how far
from the truth the constant in Propositions 2 and 3 is. However, since our tiling approach
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asserts a particular global structure on the arrangement, it is impossible to approximate Fk –
even under the assumption that we can process arbitrarily large (but finite) patches.

There is a lot of freedom for choosing the patches for each region, and we indeed
experimented with various shapes. The ones presented along Section 3 led to the best results.
As mentioned along Section 5.1, when recursively computing F (B), the choice of z can have
a significant impact on the computing time. Experiments showed that the best practical
performance is obtained by choosing a cutting-segment z such that

the complexity of the larger part P2 is as small as possible.
In practice this strategy tends to lead to

balanced cuts, that is, P1 and P2 are of similar sizes;
short cuts, that is, the number of intersections on z is relatively small; and
relatively small numbers of is legal orders.

In general each of those criteria may lead to a different cutting strategy. However, a properly
balanced cut may come with larger parts and hence might be less efficient. Also the shortest
cut will often be very unbalanced, resulting in one half that is only slightly smaller than the
whole path and thus more recursion steps might be required to deal with the patch.

A good splitting strategy should also take the number of legal orders into account because
a large number of legal orders will also negatively affect the computation time. The main
advantage of our strategy is that it minimizes the complexity of both P1 and P2. This allows
the algorithm to reach the bottom of the recursive search tree as fast as possible. In practice
it appeared to be more important to reach a low level in the search than to minimize the
number of legal orders because the number of cache-hits (pre-computed values) increases fast
as the level decreases. To obtain the best possible run-times we performed benchmarks and
made statistics for the computing time used in different layers in the recursive search tree.
However, in general, it is hard to tell which cutting strategy is the best because we do not
have any a priori estimates for the computation time or the number of reroutings for a patch.

Last but not least, since local rerouting is a well-known and frequently used technique in
combinatorial geometry, our technique might also be adapted to various other combinatorial
structures to derive improved lower bounds. We see for example great potential to improve
the lower bounds for arrangements of pseudocircles [12], simple drawings of the complete
graph [25, 20], or higher dimensional pseudohyperplane arrangements [2, Corollary 7.4.3],
which are all natural generalizations of pseudoline arrangements.

References
1 Supplemental data. https://github.com/fcorteskuehnast/counting-arrangements.
2 Anders Björner, Michel Las Vergnas, Bernd Sturmfels, Neil White, and Günter M. Ziegler.

Oriented Matroids, volume 46 of Encyclopedia of Mathematics and its Applications. Cambridge
University Press, 2 edition, 1999. doi:10.1017/CBO9780511586507.

3 Nicolas Bonichon, Cyril Gavoille, and Nicolas Hanusse. An information-theoretic upper bound
of planar graphs using triangulation. In Annual Symposium on Theoretical Aspects of Computer
Science (STACS 2003), pages 499–510. Springer, 2003. doi:10.1007/3-540-36494-3_44.

4 Nicolas Bonichon, Cyril Gavoille, and Nicolas Hanusse. An Information-Theoretic Upper
Bound on Planar Graphs Using Well-Orderly Maps, pages 17–46. Birkhäuser, 2011. doi:
10.1007/978-0-8176-4904-3_2.

5 Otfried Cheong. The Ipe extensible drawing editor. http://ipe.otfried.org/.
6 Fernando Cortés Kühnast. On the number of arrangements of pseudolines. Bachelor’s thesis,

Technische Universität Berlin, Germany, 2023. https://fcorteskuehnast.github.io/files/
bachelor_thesis.pdf.

SoCG 2024

https://github.com/fcorteskuehnast/counting-arrangements
https://doi.org/10.1017/CBO9780511586507
https://doi.org/10.1007/3-540-36494-3_44
https://doi.org/10.1007/978-0-8176-4904-3_2
https://doi.org/10.1007/978-0-8176-4904-3_2
http://ipe.otfried.org/
https://fcorteskuehnast.github.io/files/bachelor_thesis.pdf
https://fcorteskuehnast.github.io/files/bachelor_thesis.pdf


XX:18 An Improved Lower Bound on the Number of Pseudoline Arrangements

7 Justin Dallant. Improved Lower Bound on the Number of Pseudoline Arrangements.
arXiv:2402.13923, 2024.

8 Adrian Dumitrescu and Ritankar Mandal. New lower bounds for the number of pseudoline
arrangements. Journal of Computational Geometry, 11:60–92, 2020. doi:10.20382/jocg.
v11i1a3.

9 Herbert Edelsbrunner, Joseph O’Rourke, and Raimund Seidel. Constructing arrangements of
lines and hyperplanes with applications. SIAM Journal on Computing, 15(2):341–363, 1986.
doi:10.1137/0215024.

10 Stefan Felsner. On the Number of Arrangements of Pseudolines. Discrete & Computational
Geometry, 18(3):257–267, 1997. doi:10.1007/PL00009318.

11 Stefan Felsner and Jacob E. Goodman. Pseudoline Arrangements. In C.D. Toth, J. O’Rourke,
and J.E. Goodman, editors, Handbook of Discrete and Computational Geometry (3rd ed.).
CRC Press, 2018. doi:10.1201/9781315119601.

12 Stefan Felsner and Manfred Scheucher. Arrangements of Pseudocircles: On Circularizability.
Discrete & Computational Geometry, Ricky Pollack Memorial Issue, 64:776–813, 2020. doi:
10.1007/s00454-019-00077-y.

13 Stefan Felsner and Pavel Valtr. Coding and Counting Arrangements of Pseudolines. Discrete
& Computational Geometry, 46(3), 2011. doi:10.1007/s00454-011-9366-4.

14 Ira Gessel and Gérard Viennot. Binomial determinants, paths, and hook length formulae.
Advances in Mathematics, 58(3):300–321, 1985. doi:10.1016/0001-8708(85)90121-5.

15 Jacob E. Goodman and Richard Pollack. Multidimensional Sorting. SIAM Journal on
Computing, 12(3):484–507, 1983. doi:10.1137/0212032.

16 Branko Grünbaum. Arrangements and Spreads, volume 10 of CBMS Regional Conference
Series in Mathematics. AMS, 1972 (reprinted 1980). doi:10/knkd.

17 Günter Rote. NumPSLA – An experimental research tool for pseudoline arrange-
ments and order types, 2021. https://github.com/guenterrote/NumPSLA/blob/main/
NumPSLA-paper-2024-03-06.pdf.

18 Jun Kawahara, Toshiki Saitoh, Ryo Yoshinaka, and Shin-ichi Minato. Counting Primitive
Sorting Networks by πDDs. 2011. URL: https://api.semanticscholar.org/CorpusID:
9525480.

19 Donald E. Knuth. Axioms and Hulls, volume 606 of LNCS. Springer, 1992. doi:10/bwfnz9.
20 Jan Kynčl. Enumeration of simple complete topological graphs. European Journal of Combin-

atorics, 30(7):1676–1685, 2009. doi:10.1016/j.ejc.2009.03.005.
21 Fernando Cortés Kühnast, Stefan Felsner, and Manfred Scheucher. An Improved Lower Bound

on the Number of Pseudoline Arrangements. arXiv:2402.13107, 2024.
22 Friedrich Levi. Die Teilung der projektiven Ebene durch Gerade oder Pseudogerade.

Berichte über die Verhandlungen der Sächsischen Akademie der Wissenschaften zu Leipzig,
Mathematisch-Physische Klasse, 78:256–267, 1926.

23 Bernt Lindström. On the vector representations of induced matroids. Bulletin of the London
Mathematical Society, 5(1):85–90, 1973. doi:10.1112/blms/5.1.85.

24 Jiří Matoušek. Lectures on Discrete Geometry. Springer, 2002. doi:10.1007/
978-1-4613-0039-7.

25 János Pach and Géza Tóth. How many ways can one draw a graph? Combinatorica,
26(5):559–576, 2006. doi:10.1007/s00493-006-0032-z.

26 Matthew J. Samuel. Word posets, complexity, and Coxeter groups. arXiv:1101.4655, 2011.
27 Neil J. A. Sloane. The On-Line Encyclopedia of Integer Sequences.

http://oeis.org.
28 Katsuhisa Yamanaka, Shin-ichi Nakano, Yasuko Matsui, Ryuhei Uehara, and Kento Nakada.

Efficient enumeration of all ladder lotteries and its application. Theoretical Computer Science,
411(16):1714–1722, 2010. doi:10.1016/j.tcs.2010.01.002.

http://arXiv.org/abs/2402.13923
https://doi.org/10.20382/jocg.v11i1a3
https://doi.org/10.20382/jocg.v11i1a3
https://doi.org/10.1137/0215024
https://doi.org/10.1007/PL00009318
https://doi.org/10.1201/9781315119601
https://doi.org/10.1007/s00454-019-00077-y
https://doi.org/10.1007/s00454-019-00077-y
https://doi.org/10.1007/s00454-011-9366-4
https://doi.org/10.1016/0001-8708(85)90121-5
https://doi.org/10.1137/0212032
https://doi.org/10/knkd
https://github.com/guenterrote/NumPSLA/blob/main/NumPSLA-paper-2024-03-06.pdf
https://github.com/guenterrote/NumPSLA/blob/main/NumPSLA-paper-2024-03-06.pdf
https://api.semanticscholar.org/CorpusID:9525480
https://api.semanticscholar.org/CorpusID:9525480
https://doi.org/10/bwfnz9
https://doi.org/10.1016/j.ejc.2009.03.005
http://arXiv.org/abs/2402.13107
https://doi.org/10.1112/blms/5.1.85
https://doi.org/10.1007/978-1-4613-0039-7
https://doi.org/10.1007/978-1-4613-0039-7
https://doi.org/10.1007/s00493-006-0032-z
http://arXiv.org/abs/1101.4655
http://oeis.org
https://doi.org/10.1016/j.tcs.2010.01.002


F. Cortés Kühnast, J. Dallant, S. Felsner, and M. Scheucher XX:19

A Proof of Lemma 5

Choose L > 0 as a sufficiently large constant such that Fk(n) ≥ 2cn2−Ln holds for all n ≥ 1.
We show by induction that Bn ≥ 2c̃n2−G(n) where G(n) := L̃n logk(L̃n), L̃ := L + 2c̃, and
c̃ := k

k−1 · c. The base case n ≤ k is clearly satisfied if L is chosen sufficiently large. For the
induction step, we have

log2 Bn ≥ log2
(
Fk(n) · (Bm)k

)
= log2 Fk(n) + k log2 Bm

I.H.
≥ (cn2 − Ln) + k

(
c̃m2 − G(m)

)
≥ cn2 − Ln + c̃

k
(n − k)2 − kG(m)

= (c + c̃

k
)︸ ︷︷ ︸

=c̃

n2 − (L + 2c̃)︸ ︷︷ ︸
=L̃

n − kG(m) + ck︸︷︷︸
≥0

,

where m =
⌊

n
k

⌋
. Since kG(m) + L̃n ≤ G(n) holds by definition, this completes the proof of

Lemma 5.
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