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1 Introduction

Let P be a finite partially ordered set. Dilworth’s theorem states that the mazimal size of
an antichain equals the minimal number of chains partitioning the elements of P. Trivially
every chain partition provides a bound on the maximal size of an antichain. One commonly
known proof for the existence of a chain partition - antichain pair meeting equality is due
to Fulkerson [6]. He derives the result from the well-known Konig-Egervary theorem which
says that in a bipartite graph a mazimal matching and a minimal vertex cover have the same
size.

Apply this theorem to the bipartite graph B(P) having as vertices two copies P', P" of
P and an edge (z',y") whenever z < y in P. A matching M corresponds to a partition of
P into |P| — | M| chains. Begin with the partition of P into 1-element chains. For each edge
(z',y") € M hook the tail of the chain ending with z to the beginning of the chain starting
with y thus reducing the number of chains by one. To a vertex cover U of B(P) take the
antichain A = {z € P|z',2" ¢ U}. Dilworth’s theorem follows from max || = min|U|
since |A| = |P| — |U| can be shown.

A slight modification of the sketched proof associates with U a function X : P — {—1,0,1}
defined by X(z) = 1 — [{z',2"} N U|. Extend X to subsets of P by X(X) = Y . X(z).
Properties of X then are: x(C) < 1 for all chains C' and X(P) = |P| — |U|. Now in turn we
define a 1-weighting of P to be a function X : P — {—1,0,1} with x(C) < 1 for all chains
C and pose the problem of maximizing the value X(P). As in the case of antichains, every
chain partition provides a bound on max X(P), too.

From the Konig-Egervary theorem we get the duality: The mazimum value of an 1-
weighting of P equals the minimal number of chains partitioning P. To derive Dilworth’s
theorem two observations suffice:

1) For any 1-weighting X !(1) is an antichain.
2) For 1-weightings of maximal value X *(—1) = ().

Thus a 1-weighting of maximal value is the characteristic function of an antichain.

Greene and Kleitman [9] found a nice generalization of Dilworth’s result. Define a k
antichain family to be a family of & pairwise disjoint antichains.

Theorem 1 For any partially ordered set P and any positive integer k

max Z |A| = min Z min(|C|, k)

AcA cec
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where the mazimum is taken over all k antichain families A and the minimum over all chain
partitions C of P.

A chain partition C which minimizes the right hand side is called k-saturated. In fact a
somewhat stronger result was obtained in [9].

Theorem 2 For any k > 1 there is a chain partition which is simultaneously k-saturated
and (k + 1)-saturated.

Greene [8] stated the duals of these theorems. Let a £ chain family be a family of ¢
pairwise disjoint chains.

Theorem 3 For any partially ordered set P and any positive integer ¢

max Z |C| = min Z min(|A|, £)

cecC AcA

where the mazimum is taken over all £ chain families C and the minimum over all antichain
partitions A of P.

Again a partition which minimizes the right hand side is called ¢-saturated. A transition
phenomenon similar to that of theorem 1 holds.

Theorem 4 For any { > 1 there is an antichain partition which is simultaneously £-saturated
and (¢ + 1)-saturated.

A further theorem of Greene [8] can be interpreted as a generalization of the Robinson-
Shensted correspondence and its interpretation given by Greene [7].

To a partially ordered set P with n elements a partition A of n is associated, such that
for the Ferrers diagramm G(P) corresponding to A we get:

Theorem 5 The number of squares in the ¢ longest columns of G(P) equals the mazimal
number of elements covered by a £ chain family of P and the number of squares in the k longest
rows of G(P) equals the mazimal number of elements covered by a k antichain family.

Since then several proofs of the cited results have been proposed [3], [5], [10] and [12].
The Greene-Kleitman theorem has been generalized to acyclic directed graphs in [11], [2], [1]
and [13]. An excellent survey is given by West [14].

The proof by Andréds Frank [5] is particularly elegant. Following Frank we call a chain
family C and an antichain family A an orthogonal pair iff

1. P:(UA)U(UO),
AEA cec
2. |[ANC| =1 forallAe A, C€C.

If C* is obtained from C by adding the rest of P as singeltons and C is orthogonal to a
k-antichain family A, then

A=Y Y lAnc= > min(C|k).

A€ A Ccect AcA cect

Thus C7 is k-saturated. Similarly a ¢-saturated antichain partition can be obtained from an
orthogonal pair A,C where C is a £ chain family.

Using the minimal cost flow algorithm of Ford and Fulkerson [4], Frank could prove the
existence of a sequence of orthogonal chain and antichain families. This sequence is rich
enough to allow the derivation of the whole theory (i.e. theorems 1 to 5).



The purpose of this paper is to show how the concept of 1-weightings and the technique
used by Frank can be used to obtain a similar theory for directed graphs.

In the next section we develop the network flow method and show how this method can
be used to obtain a sequence of orthogonal pairs in directed graphs. The role of k£ antichain
families is taken by k weighting families (i.e k ‘disjoint’ 1-weightings), a family of disjoint
paths and cycles including ¢ paths takes care of the role of £ chain families.

In section 3 we show how the orthogonal structures of section 2 allow generalizations of
theorems 1-5 to acyclic directed graphs and partly even to arbitrary directed graphs.

2 The Network Flow Method

The proof of theorems 1-5 given by Frank is based on the construction of a well-behaved
sequence of orthogonal pairs. Given a directed graph D = (V, E) (partially ordered sets have
E = {(z,y)|x <y} ), we associate the Frank network N = (Vn, En) as follows.

Vv ={s,t}Uu{a'|z € VIU{a" |2 €V}
Ey ={(s,2")|z € V}U{(a',2")[ 2 € V}U{(z", D) w € VI U{(",4")| (z,y) € E}

We set all arc capacities c¢(e) for e € En to one and take costs as

H — ! n
a(e)—{ lif e = (z',2") for some z € V

~ 1 0 otherwise.

A maximal flow that can be sent from s to ¢ through this network has flow value n = |V|
and costs < n. The Ford Fulkerson algorithm solves the problem of finding a minimal cost
flow for all flow values v with 0 < v < n. It invokes dual variables 7(z) (‘potentials’) assigned
to the vertices of N. The fundamental feature of the algorithm is given by the theorem.

Theorem. Let f be a flow with value v. If there exists a potential 7w such that
(i) w(s)=0; =(t)=k (k is called the potential value)
(ii) w(y) —7(z) <alz,y) = flz,y)=0
(iii) w(y) —7(x) >alz,y) = flz,y)=c=z,y)
then f has minimal cost among the flows of value v.

The algorithm begins with zero potential and zero flow. It iteratively increases either the
flow or the potential, always maintaining the optimality criteria given in the theorem. The
decision, which step is carried out to reach the next stage, depends on an auxiliary network
N* = (Vy, E*). With an edge (z,y) € Exy we have

(x)  (wy elE = 7wy —n(z)
(k) (y,2) € B <= 7(y)—n(z)

= a(z,y) and f(z,y) < c(z,y)
= a(z,y) and f(z,y) >0
The steps of the algorithm then are:
Step (F)
If a path leading from s to ¢ exists in N*.
e Increase the flow along this path by one.

e Actualize the auxiliary network.

Step (P)

If there is no s — ¢t path in N*.
Let I(s) = {z| there is no s — x path in N*}



e Increase the potential of all x € I(s) by one.

e Actualize the auxiliary network.

If this algorithm is applied to a Frank network we can state an additional invariant.

Lemma 1 For the actual potential w at any stage of the algorithm and all edges (', y") € En

m(y") — m(a') < ala’,y").
Proof. To get w(y") — n(z') > a(z',y") we would have to come across a situation with
w(y") —w(z') = a(z',y") and =’ & I(s), y" € I(s).
Let o' ¢ I(s) and suppose f(z',y") = 0 then (z',y") € E*. By definition of I(s) there
exists a s — z' path in N*. This path can be enlarged to a s — y" path, thus y" & I(s).
On the other hand if 2’ ¢ I(s) and f(2',y") = 1, then the flow in this edge comes from
(s, '), thus (s,z') ¢ E*. This forces the last edge of the s — 2’ path in N* to be a backward
edge. The only choice for this edge is (z',y"), thus revealing a s — y" path, again y" & I(s).
O

This Lemma together with property (ii) from the theorem gives
(iv) f('y")=1 = 7(y")—n() =al',y")

Now let D = (V, E) be a directed graph on n vertices.

Definition. A family W = {Wy,...,W;} of disjoint subsets of V is called a ¢ path/cycle
family of D if each W; is either the support of a simple path or the support of a simple cycle
and at most £ of the W; are the support of a path.

Definition. A function X is called a k—weighting (k a positive integer) of D iff

3

1L X:V—{-k,...,—1,0,1}
2. X(P) <k if P is the support of a path in D
3. X(C) <0 if C is the support of a cycle in D.

Two 1-weightings X1, X2 are disjoint if X7 (1) N x5 ' (1) = 0. A family of k pairwise disjoint
1-weightings is called a k weighting family.

Remark. If Xy,..., X are disjoint 1-weightings, then Zlf X; is a k—weighting. The opposite
is true too, any k—weighting admits a decomposition into disjoint 1-weightings. The second
fact is nontrivial but remains unproved here.

Consider a stage of the minimum cost flow computation in the Frank network of D. Let
(f,m) be the current flow-potential pair, with flow value v and potential value k.

Associate with f a (n — v) path/cycle family W:

Let Hf = {z € V| f(2',2") = 1} and note that |Hy| is just the cost of f. Start from the
partition of V'\ Hy into 1-element paths. Use the edges (z,y) with z # y and f(z',y") =1 to
hook the tail of the path ending with z with the beginning of the path starting with y, thus
reducing the number of paths by one. In graphs which are not acyclic this procedure may
connect the ends of a single path to produce a cycle. In the path/cycle family corresponding
this way to the flow f we find (n — |H|) — (v — |Hf|) = n — v as the number of paths.

Associate with 7 a k weighting family O:
Define the function X; for 1 < j <k by:

1 iff 7(2') <j—3 <m("),
Xj(z) =4 -1 iff w(a') >j—1>n("),
0 otherwise.



Lemma 2 The set {X;|1 < j <k} is a k weighting family for D.

Proof. By definition X; : V — {-1,0,1} for all j. Now let P = x1,...,2, be a path in D.
Consider the potential diagram of this path (cf. Figure 1).

By definition the value X;(P) is just the number of dashed arrows crossing the potential
j — 1/2 downwards minus the number of dashed arrows crossing j — 1/2 upwards.

From the continuity of the arrow sequence we get that the difference of downward crossing
and upward crossing (arbitrary) arrowsis 1,0 or —1. Lemma 1 spezializes to 7(z}, ;) —7(z}) <
0, thus forcing the slope of the nondashed arrows to be non positive. The restriction of the
difference to the dashed arrows can therefore only deminish the result and we get the second
property of 1-weightings, namely X;(P) < 1 for all j between 0 and k.

IfC ==x,...,2, is a cycle in D, then we get an additional nondashed arrow from = (x}.)
to m(z}) and the difference over all crossings is exactly 0. Again the restriction to dashed
arrows can only deminish the result of the difference and we get X;(C) < 0.

The disjointness of X;, and X;, with j; # j» again follows from lemma 1. This time we
conclude 7 (z}) — w(z}) < 1, therefore the dashed downarrows have length <1 and can only
contribute to a single X;. O

Definition. Call a path/cycle family W and a weighting family © an orthogonal pair iff

Lov=(X) mu (WLEJWW),

Xee
2. X(P) =1 for all paths P € W and all X € ©.

Theorem 6 The families W and © associated with the current flow-potential pair (f, =) of
any stage of the algorithm are orthogonal.

Proof. 1) Let © € (Jy ¢y W, then by definition of W, we have f(z',2") = 1 and by (iv)
also m(2'") — m(2') = 1. We conclude X;(z) =1 for j = w(a").

2) Let P = x;,...,x, be a path in W. Consider the potential diagram of W and recall the
arguments used in the proof of lemma 2. This time we have flow in all the edges (z}, zj, ).
With (iv) we conclude m(z}, ;) — m(2;) = 0 and the slope of the nondashed arrows must be

0. Therefore X;(P) = 1 iff () > j and m(z]) < j. We complete the proof with two claims.

w(z!) = w(t). There is no flow entering the vertex z{, so, there can be no flow leaving the
vertex and f(z{,t) = 0. By (xx) we get w(t) — n(z}) < a(zf,t) =0, i.e. w(t) > w(z!),
but 7 (t) equals the number of potential increasing steps (i.e. Step(P) )accomplished by
now. Thus #(y) < w(t) for all y.

m(z]) = 0. There is no flow leaving ., so f(s,2.) = 0. Apply (xx) to get 7(z).) < 7w(s) =0
and compare with 7(y) > 0 for all y. O



Remark. If C = z4,...,z, is a cycle in W then, since f(z},z]) = 1, we have 7(z!) = m(x}).
This proves X(C) = 0 for all X € ©.

3 Duality Theorems for Directed Graphs

In the first part of this section we show how the orthogonal pairs arising from a run of the
Ford Fulkerson algorithm on the Frank network of an acyclic directed graph give raise to
generalizations of theorems 1 to 5. In the second part we analyse which part of the theory
can be adapted to arbitrary directed graphs.

3.1 The Acyclic Case

Since the graphs in question here never contain cycles we will replace the fussy ‘path/cycle’
simply by ‘path’ throughout this part.

Let P be a path and © a k weighting family, then ), g X(P) < min(|P|, k), since the

1-weightings constituing © are disjoint and X(P) < 1 for X € ©. Summing up over the paths
of a path partition P we get >\ .o X(V) < Y pep min(|P|, k) for all k& weighting families ©
and path partitions P.

Now consider the families P and © associated with the current flow-potential pair after
the algorithm did climb up to the potential value k. Let P* be obtained from P by adding
the rest of V as l-element paths. Since the k-weighting family © is orthogonal to P we

obtain
Sxvi= Y ()= k+ S 1= min(P|k)
Pep

XEO PeP+ X€© PEPH\P Pep+
Thus we have proved the theorem:

Theorem 7 For any acyclic directed graph D and any positive integer k
max Z X(V) = min Z min(|P|, k)
Xee PeP

where the mazimum is taken over all k weighting families © and the minimum over all path
partitions P of D.

A path partition P which minimizes the right hand side is called k-saturated.

Theorem 8 For any k > 1 there is a path partition which is simultaneously k-saturated and
(k + 1)-saturated.

Proof. To obtain a simultaneously k and (k + 1)-saturated path partition consider the
step increasing the potential from k to k + 1. Let f be the current flow in this step. Our
construction gives a path family P being orthogonal to a k weighting family @ and a (k+ 1)
weighting family @, ;. The partition PT thus has the desired properties. O

To state the duals of theorem 7 and 8 we first have to define the term ‘weighting partition’.
Definition. A weighting partition © of an acyclic directed graph D = (V, E) is a set of (not

necessarily disjoint) 1-weightings with

Y X(@)=1 forallzeV.
XeO

Now if X is a 1-weighting and P a ¢ path family then we would like to have X( Upep P)
less or equal to min(X(V),£). This however will fail to be true in general. To overcome



this difficulty we restrict our considerations to 1-weightings which are either positive i.e.
X" 1(=1) =0 or ¢ largei.e. X(V) > ¢.

Definition. A weighting partition © is called ¢ admissible if © consisting entirely of positive
and / large 1-weightings.

If © is a £ admissible weighting partition and P a ¢ path family then we conclude

S|P = Z(Z X(P)) < Yoo+ S xv) <Y minx(v),0).

PeP XEO® PcP X, € large X, positive XEO

Now consider the families P and © associated with the current flow-potential pair after
the algorithm did climb up to the flow value n — £. Let ©% be obtained from © by adding
1 — 3 vce X(z) copies of the singular 1-weighting for each € V. The singular 1-weighting
for z is defined by X(y) = 1 if z = y and X(y) = 0 otherwise. Since all 1-weightings X € ©
are ¢ large and the singular 1-weightings are positive we conclude: ©7T is a £ admissible
weighting partition. From the orthogonality between © and the ¢ path family P we obtain

S p= Y (Z x(P)) =S+ S 1= 3 min(x(v),0).

PeP xe®t PeP X€O Xeet\e xeot
This gives the theorem:

Theorem 9 For any acyclic directed graph D and any positive integer £

max Z |P| = min Z min(X(V), £)

PeP X€O

where the mazximum is taken over all £ path families P and the minimum over all ¢ admissible
weighting partitions © of D.

A (¢ admissible weighting partition which minimizes the right hand side is called ¢-
saturated.

Theorem 10 For any £ > 1 there is a (£+ 1) admissible weighting partition which is simul-
taneously (-saturated and (¢ + 1)-saturated.

Proof. A simultaneously ¢ and (¢ + 1)-saturated weighting partition is obtained from the
step increasing the flow value from n — ¢ — 1 to n — £. From the current potential we get a
weighting family © being orthogonal to both, a ¢ path family P, and a (£ + 1) path family
Per1- The weighting partition ©F then is (£ + 1) admissible as well as f-saturated and
(¢ + 1)-saturated. O

To an acyclic directed graph D with n elements a partition A of n is associated, such that
for the Ferrers diagramm G(D) corresponding to A we get:

Theorem 11 The number of squares in the £ longest columns of G(D) equals the mazimal
value ) pcp |P| of a £ path family P of D and the number of squares in the k longest rows
of G(D) equals the maximal value ), .o X(V') of a k weighting family © of D.

Proof. The proof of this theorem is best accomplished by means of a diagram. Applying
the Ford-Fulkerson algorithm to the Frank network of D we get a sequence of flow-potential
pairs and thereby a sequence of flow-value — potential-value pairs (v, k). Show the pairs (v, k)
as points in the diagram and connect two subsequent pairs by a line segment (cf. Figure 2).
The diagram, thus obtained, depends on D only, not on the concrete run of the algorithm.

The claim is, that the shape of the ‘squared’ area in the diagram gives the Ferrer’s diagram
of a partition of n, meeting the properties stated by the theorem. Consider a flow increasing
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Figure 2: Kilter diagram of D.
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step going from stage (v, k) to (v + 1,k). Associated we find a k weighting family @ and
{ = n — v, respectively £ — 1 path families Py, and P;_;. Since Oy is orthogonal to both
families we may use the construction, we used in proving theorem 9, to obtain

opi=>e+ > 1 and ) IPl=) -1+ Y 1

PeP, XEO Xee;r\ek PePi_q XEOy XE@:\GIC

The values > pcp, [P| and 3 p.p,  |P| are maximal for £ and (¢ — 1) path families re-
spectively and differ by k; but this is just the number of squares below the line segment
(v,k) = (v+ 1,k). Starting from the empty path family we inductively obtain that the
number of squares in the £ longest columns equals the maximal value ), |P| of a £ path
family P.

A n path family certainly will contain all of D, hence, there are exactly n ‘squares’ in the
kilter diagram of D

Now consider a potential increasing step going from (v, k) to (v,k + 1). Associated we
have a £ = n — v path family P, and k, respectively (k + 1) weighting families O and Oy 1.
Since Py is orthogonal to both ©; and O41 we may use theorem 7 to obtain

Sxm=>Yk+ > 1 ad Y x(M)=> k+1) + > 1L

XEOy, PcP, pefpz’\pé XEOk 41 PeP; PEPZ’\PZ

Therefore the weights of O and Oy differ by £. The number of squares lying to the right
of the line segment (v, k) = (v,k + 1) is £ as well. We get that the number of squares in the
k longest rows of the diagram equals the maximal value ), .o X(V') of a k weighting family
0. O

Remark. In the introduction we have sketched how a duality theorem for 1-weightings
and chains can be used to derive Dilworth’s theorem. We can use a similar observation to
recognize theorems 1 - 5 as instances of 7 - 11:

In a partially ordered set P = (V, <) every 1-weighting contained in a k weighting family
© maximizing ), g X(V) is positive, hence is the characteristic function of an antichain.
Therefore maximal k& weighting families in P are k antichain families.

3.2 The General Case

In the sequel let D be an arbitrary directed graph. As we have seen in theorem 6 the Ford-
Fulkerson algorithm gives a sequence of orthogonal pairs in D. Hence we may trace through
section 3.1 to see which statements made there can be adapted to the present case.

Let C be a cycle and © a k weighting family then ), o X(C) < 0. For a path P we
again obtain ), g X(P) < min(|P|, k). Hence for a path/cycle partition W, consisting of
its path subfamily P and its cycle subfamily C, we get ) g X(V) < > pcp min(| P, k).

Now, fill up a family W = (P, (), being orthogonal to a k weighting family ©, with 1-

Y

element paths. We obtain the path/cycle partition W+ = (P*+,C). Since, for C € C we have



Yoveo X(C) =0, we get >\ o X(V) = > pep+ min(|P|, k) and have proven the following
theorem.

Theorem 12 For any directed graph D and any positive integer k

max Z X(V) = min Z min(|P|, k)

Xee PeP

where the mazimum is taken over all k weighting families © and the minimum over all
path/cycle partitions W = (P,C) of D.

A path/cycle partition W which minimizes the right hand side is called k-saturated. With
a proof similar to the proof of theorem 8 we get:

Theorem 13 For any k > 1 there is a path/cycle partition which is simultaneously k-
saturated and (k + 1)-saturated.

A major distinction to the acyclic case is, that now a flow of value n will not have cost
n. In fact, the cost will be a(D) = |V| — max |[Js e C|, the maximum being taken over all
families of disjoint cycles. The parameter a(D) is called the acyclicity of D.

Since 1-weightings have X(C) < 0 for all cycles C, a set © of 1l-weightings with
Y veo X(z) < 1 will nessesarily fulfill ), o X(V) < a(D). A directed graph D, contain-
ing cycles, therefore will not admit weighting partitions in the sense of section 3.1. We may
ask, however, for partitions of the ‘acyclic part’ of D.

Definition. A weighting partition © of a directed graph D = (V, E) is a set of 1-weightings
with
1) > x(V) = a(D) 2) Y X(@)<lforallzeV.
Xeo Xe®

The existence of a weighting partition is established by the weighting family ©, corre-
sponding to the current potential while the flow increases from n — 1 to n. It seems unlikely,
however, that all weighting families, orthogonal to some ¢ path/cycle family, can be aug-
mented to ¢ admissible weighting partitions. Therefore, the question whether generalizations
of theorems 9-11 to arbitrary directed graphs exist, has to remain open.
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