
Orthogonal Structures in Directed GraphsStefan Felsner�Fachbereich MathematikTU BerlinStrae des 17. Juni 136D-1000 Berlin 121 IntroductionLet P be a �nite partially ordered set. Dilworth's theorem states that the maximal size ofan antichain equals the minimal number of chains partitioning the elements of P . Triviallyevery chain partition provides a bound on the maximal size of an antichain. One commonlyknown proof for the existence of a chain partition - antichain pair meeting equality is dueto Fulkerson [6]. He derives the result from the well-known K�onig-Egerv�ary theorem whichsays that in a bipartite graph a maximal matching and a minimal vertex cover have the samesize.Apply this theorem to the bipartite graph B(P ) having as vertices two copies P 0; P 00 ofP and an edge (x0; y00) whenever x < y in P . A matching M corresponds to a partition ofP into jP j � jM j chains. Begin with the partition of P into 1{element chains. For each edge(x0; y00) 2M hook the tail of the chain ending with x to the beginning of the chain startingwith y thus reducing the number of chains by one. To a vertex cover U of B(P ) take theantichain A = fx 2 P j x0; x00 62 Ug. Dilworth's theorem follows from max jM j = min jU jsince jAj = jP j � jU j can be shown.A slight modi�cation of the sketched proof associates with U a function � : P ! f�1; 0; 1gde�ned by �(x) = 1 � jfx0; x00g \ U j. Extend � to subsets of P by �(X) = Px2X �(x).Properties of � then are: �(C) � 1 for all chains C and �(P ) = jP j � jU j. Now in turn wede�ne a 1{weighting of P to be a function � : P ! f�1; 0; 1g with �(C) � 1 for all chainsC and pose the problem of maximizing the value �(P ). As in the case of antichains, everychain partition provides a bound on max�(P ), too.From the K�onig-Egerv�ary theorem we get the duality: The maximum value of an 1{weighting of P equals the minimal number of chains partitioning P . To derive Dilworth'stheorem two observations su�ce:1) For any 1{weighting ��1(1) is an antichain.2) For 1{weightings of maximal value ��1(�1) = ;.Thus a 1{weighting of maximal value is the characteristic function of an antichain.Greene and Kleitman [9] found a nice generalization of Dilworth's result. De�ne a kantichain family to be a family of k pairwise disjoint antichains.Theorem 1 For any partially ordered set P and any positive integer kmaxXA2A jAj = minXC2Cmin(jCj; k)�partially supported by Deutsche Forschungsgesellschaft1



where the maximum is taken over all k antichain families A and the minimum over all chainpartitions C of P .A chain partition C which minimizes the right hand side is called k-saturated. In fact asomewhat stronger result was obtained in [9].Theorem 2 For any k � 1 there is a chain partition which is simultaneously k-saturatedand (k + 1)-saturated.Greene [8] stated the duals of these theorems. Let a ` chain family be a family of `pairwise disjoint chains.Theorem 3 For any partially ordered set P and any positive integer `maxXC2C jCj = minXA2Amin(jAj; `)where the maximum is taken over all ` chain families C and the minimum over all antichainpartitions A of P .Again a partition which minimizes the right hand side is called `-saturated. A transitionphenomenon similar to that of theorem 1 holds.Theorem 4 For any ` � 1 there is an antichain partition which is simultaneously `-saturatedand (`+ 1)-saturated.A further theorem of Greene [8] can be interpreted as a generalization of the Robinson-Shensted correspondence and its interpretation given by Greene [7].To a partially ordered set P with n elements a partition � of n is associated, such thatfor the Ferrers diagramm G(P ) corresponding to � we get:Theorem 5 The number of squares in the ` longest columns of G(P ) equals the maximalnumber of elements covered by a ` chain family of P and the number of squares in the k longestrows of G(P ) equals the maximal number of elements covered by a k antichain family.Since then several proofs of the cited results have been proposed [3], [5], [10] and [12].The Greene-Kleitman theorem has been generalized to acyclic directed graphs in [11], [2], [1]and [13]. An excellent survey is given by West [14].The proof by Andr�as Frank [5] is particularly elegant. Following Frank we call a chainfamily C and an antichain family A an orthogonal pair i�1. P = � [A2AA� [ �[C2CC�,2. jA \ Cj = 1 for all A 2 A; C 2 C.If C+ is obtained from C by adding the rest of P as singeltons and C is orthogonal to ak-antichain family A, thenXA2A jAj = XC2C+ XA2A jA \ Cj = XC2C+min(jCj; k):Thus C+ is k-saturated. Similarly a `-saturated antichain partition can be obtained from anorthogonal pair A; C where C is a ` chain family.Using the minimal cost ow algorithm of Ford and Fulkerson [4], Frank could prove theexistence of a sequence of orthogonal chain and antichain families. This sequence is richenough to allow the derivation of the whole theory (i.e. theorems 1 to 5).2



The purpose of this paper is to show how the concept of 1{weightings and the techniqueused by Frank can be used to obtain a similar theory for directed graphs.In the next section we develop the network ow method and show how this method canbe used to obtain a sequence of orthogonal pairs in directed graphs. The role of k antichainfamilies is taken by k weighting families (i.e k `disjoint' 1{weightings), a family of disjointpaths and cycles including ` paths takes care of the role of ` chain families.In section 3 we show how the orthogonal structures of section 2 allow generalizations oftheorems 1-5 to acyclic directed graphs and partly even to arbitrary directed graphs.2 The Network Flow MethodThe proof of theorems 1-5 given by Frank is based on the construction of a well-behavedsequence of orthogonal pairs. Given a directed graph D = (V;E) (partially ordered sets haveE = f(x; y)j x < yg ), we associate the Frank network N = (VN ; EN ) as follows.VN = fs; tg [ fx0j x 2 V g [ fx00j x 2 V gEN = f(s; x0)j x 2 V g [ f(x0; x00)j x 2 V g [ f(x00; t)j x 2 V g [ f(x0; y00)j (x; y) 2 EgWe set all arc capacities c(e) for e 2 EN to one and take costs asa(e) = � 1 if e = (x0; x00) for some x 2 V0 otherwise.A maximal ow that can be sent from s to t through this network has ow value n = jV jand costs � n. The Ford Fulkerson algorithm solves the problem of �nding a minimal costow for all ow values v with 0 � v � n. It invokes dual variables �(x) (`potentials') assignedto the vertices of N . The fundamental feature of the algorithm is given by the theorem.Theorem. Let f be a ow with value v. If there exists a potential � such that(i) �(s) = 0; �(t) = k (k is called the potential value)(ii) �(y)� �(x) < a(x; y) ) f(x; y) = 0(iii) �(y)� �(x) > a(x; y) ) f(x; y) = c(x; y)then f has minimal cost among the ows of value v.The algorithm begins with zero potential and zero ow. It iteratively increases either theow or the potential, always maintaining the optimality criteria given in the theorem. Thedecision, which step is carried out to reach the next stage, depends on an auxiliary networkN� = (VN ; E�). With an edge (x; y) 2 EN we have(�) (x; y) 2 E� () �(y)� �(x) = a(x; y) and f(x; y) < c(x; y)(��) (y; x) 2 E� () �(y)� �(x) = a(x; y) and f(x; y) > 0The steps of the algorithm then are:Step (F)If a path leading from s to t exists in N�.� Increase the ow along this path by one.� Actualize the auxiliary network.Step (P)If there is no s! t path in N�.Let I(s) = fxj there is no s! x path in N�g3



� Increase the potential of all x 2 I(s) by one.� Actualize the auxiliary network.If this algorithm is applied to a Frank network we can state an additional invariant.Lemma 1 For the actual potential � at any stage of the algorithm and all edges (x0; y00) 2 EN�(y00)� �(x0) � a(x0; y00):Proof. To get �(y00) � �(x0) > a(x0; y00) we would have to come across a situation with�(y00)� �(x0) = a(x0; y00) and x0 62 I(s), y00 2 I(s).Let x0 62 I(s) and suppose f(x0; y00) = 0 then (x0; y00) 2 E�. By de�nition of I(s) thereexists a s! x0 path in N�. This path can be enlarged to a s! y00 path, thus y00 62 I(s).On the other hand if x0 62 I(s) and f(x0; y00) = 1, then the ow in this edge comes from(s; x0), thus (s; x0) 62 E�. This forces the last edge of the s! x0 path in N� to be a backwardedge. The only choice for this edge is (x0; y00), thus revealing a s! y00 path, again y00 62 I(s).2This Lemma together with property (ii) from the theorem gives(iv) f(x0; y00) = 1 ) �(y00)� �(x0) = a(x0; y00)Now let D = (V;E) be a directed graph on n vertices.De�nition. A family W = fW1; : : : ;Wtg of disjoint subsets of V is called a ` path/cyclefamily of D if each Wi is either the support of a simple path or the support of a simple cycleand at most ` of the Wi are the support of a path.De�nition. A function � is called a k{weighting (k a positive integer) of D i�1. � : V ! f�k; : : : ;�1; 0; 1g2. �(P ) � k if P is the support of a path in D3. �(C) � 0 if C is the support of a cycle in D.Two 1{weightings �1; �2 are disjoint if ��11 (1) \ ��12 (1) = ;. A family of k pairwise disjoint1{weightings is called a k weighting family.Remark. If �1; : : : ; �k are disjoint 1{weightings, thenPk1 �i is a k{weighting. The oppositeis true too, any k{weighting admits a decomposition into disjoint 1{weightings. The secondfact is nontrivial but remains unproved here.Consider a stage of the minimum cost ow computation in the Frank network of D. Let(f; �) be the current ow-potential pair, with ow value v and potential value k.Associate with f a (n� v) path/cycle family W :Let Hf = fx 2 V j f(x0; x00) = 1g and note that jHf j is just the cost of f . Start from thepartition of V nHf into 1-element paths. Use the edges (x; y) with x 6= y and f(x0; y00) = 1 tohook the tail of the path ending with x with the beginning of the path starting with y, thusreducing the number of paths by one. In graphs which are not acyclic this procedure mayconnect the ends of a single path to produce a cycle. In the path/cycle family correspondingthis way to the ow f we �nd (n� jHf j)� (v � jHf j) = n� v as the number of paths.Associate with � a k weighting family �:De�ne the function �j for 1 � j � k by:�j(x) = 8<: 1 i� �(x0) < j � 12 < �(x00);�1 i� �(x0) > j � 12 > �(x00);0 otherwise.4
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1 2 3 4 5 6x001x01 x002x02 x003&x03 x004x04 x005x05 x06x006Figure 1: Potential diagram of a path x1; : : : ; x6Lemma 2 The set f�j j 1 � j � kg is a k weighting family for D.Proof. By de�nition �j : V ! f�1; 0; 1g for all j. Now let P = x1; : : : ; xr be a path in D.Consider the potential diagram of this path (cf. Figure 1).By de�nition the value �j(P ) is just the number of dashed arrows crossing the potentialj � 1=2 downwards minus the number of dashed arrows crossing j � 1=2 upwards.From the continuity of the arrow sequence we get that the di�erence of downward crossingand upward crossing (arbitrary) arrows is 1; 0 or�1. Lemma 1 spezializes to �(x00i+1)��(x0i) �0, thus forcing the slope of the nondashed arrows to be non positive. The restriction of thedi�erence to the dashed arrows can therefore only deminish the result and we get the secondproperty of 1{weightings, namely �j(P ) � 1 for all j between 0 and k.If C = x1; : : : ; xr is a cycle in D, then we get an additional nondashed arrow from �(x0r)to �(x001 ) and the di�erence over all crossings is exactly 0. Again the restriction to dashedarrows can only deminish the result of the di�erence and we get �j(C) � 0.The disjointness of �j1 and �j2 with j1 6= j2 again follows from lemma 1. This time weconclude �(x00i )� �(x0i) � 1, therefore the dashed downarrows have length � 1 and can onlycontribute to a single �j . 2De�nition. Call a path/cycle family W and a weighting family � an orthogonal pair i�1. V = �X�2����1(1) [ � [W2WW�,2. �(P ) = 1 for all paths P 2 W and all � 2 �.Theorem 6 The families W and � associated with the current ow-potential pair (f; �) ofany stage of the algorithm are orthogonal.Proof. 1) Let x 62 SW2WW , then by de�nition of W , we have f(x0; x00) = 1 and by (iv)also �(x00)� �(x0) = 1. We conclude �j(x) = 1 for j = �(x00).2) Let P = x1; : : : ; xr be a path in W . Consider the potential diagram of W and recall thearguments used in the proof of lemma 2. This time we have ow in all the edges (x0i; x00i+1).With (iv) we conclude �(x00i+1) � �(x0i) = 0 and the slope of the nondashed arrows must be0. Therefore �j(P ) = 1 i� �(x001 ) > j and �(x0r) < j. We complete the proof with two claims.�(x001 ) = �(t). There is no ow entering the vertex x001 , so, there can be no ow leaving thevertex and f(x001 ; t) = 0. By (��) we get �(t) � �(x001 ) � a(x001 ; t) = 0, i.e. �(t) � �(x001 ),but �(t) equals the number of potential increasing steps (i.e. Step(P) )accomplished bynow. Thus �(y) � �(t) for all y.�(x0r) = 0. There is no ow leaving x0r, so f(s; x0r) = 0. Apply (��) to get �(x0r) � �(s) = 0and compare with �(y) � 0 for all y. 25



Remark. If C = x1; : : : ; xr is a cycle inW then, since f(x0r; x001 ) = 1, we have �(x00r ) = �(x01).This proves �(C) = 0 for all � 2 �.3 Duality Theorems for Directed GraphsIn the �rst part of this section we show how the orthogonal pairs arising from a run of theFord Fulkerson algorithm on the Frank network of an acyclic directed graph give raise togeneralizations of theorems 1 to 5. In the second part we analyse which part of the theorycan be adapted to arbitrary directed graphs.3.1 The Acyclic CaseSince the graphs in question here never contain cycles we will replace the fussy `path/cycle'simply by `path' throughout this part.Let P be a path and � a k weighting family, then P�2� �(P ) � min(jP j; k), since the1{weightings constituing � are disjoint and �(P ) � 1 for � 2 �. Summing up over the pathsof a path partition P we get P�2� �(V ) �PP2P min(jP j; k) for all k weighting families �and path partitions P .Now consider the families P and � associated with the current ow-potential pair afterthe algorithm did climb up to the potential value k. Let P+ be obtained from P by addingthe rest of V as 1-element paths. Since the k{weighting family � is orthogonal to P weobtain X�2��(V ) = XP2P+�X�2��(P )� = XP2P k + XP2P+nP 1 = XP2P+min(jP j; k):Thus we have proved the theorem:Theorem 7 For any acyclic directed graph D and any positive integer kmaxX�2��(V ) = minXP2Pmin(jP j; k)where the maximum is taken over all k weighting families � and the minimum over all pathpartitions P of D.A path partition P which minimizes the right hand side is called k-saturated.Theorem 8 For any k � 1 there is a path partition which is simultaneously k-saturated and(k + 1)-saturated.Proof. To obtain a simultaneously k and (k + 1)-saturated path partition consider thestep increasing the potential from k to k + 1. Let f be the current ow in this step. Ourconstruction gives a path family P being orthogonal to a k weighting family �k and a (k+1)weighting family �k+1. The partition P+ thus has the desired properties. 2To state the duals of theorem 7 and 8 we �rst have to de�ne the term `weighting partition'.De�nition. A weighting partition � of an acyclic directed graph D = (V;E) is a set of (notnecessarily disjoint) 1{weightings withX�2��(x) = 1 for all x 2 V:Now if � is a 1{weighting and P a ` path family then we would like to have ��SP2P P �less or equal to min(�(V ); `). This however will fail to be true in general. To overcome6



this di�culty we restrict our considerations to 1{weightings which are either positive i.e.��1(�1) = ; or ` large i.e. �(V ) � `.De�nition. A weighting partition � is called ` admissible if � consisting entirely of positiveand ` large 1{weightings.If � is a ` admissible weighting partition and P a ` path family then we concludeXP2P jP j = X�2��XP2P �(P )� � X�; ` largè + X�; positive�(V ) �X�2�min(�(V ); `):Now consider the families P and � associated with the current ow-potential pair afterthe algorithm did climb up to the ow value n � `. Let �+ be obtained from � by adding1�P�2� �(x) copies of the singular 1{weighting for each x 2 V . The singular 1{weightingfor x is de�ned by �(y) = 1 if x = y and �(y) = 0 otherwise. Since all 1{weightings � 2 �are ` large and the singular 1{weightings are positive we conclude: �+ is a ` admissibleweighting partition. From the orthogonality between � and the ` path family P we obtainXP2P jP j = X�2�+�XP2P �(P )� = X�2� ` + X�2�+n� 1 = X�2�+min(�(V ); `):This gives the theorem:Theorem 9 For any acyclic directed graph D and any positive integer `maxXP2P jP j = minX�2�min(�(V ); `)where the maximum is taken over all ` path families P and the minimum over all ` admissibleweighting partitions � of D.A ` admissible weighting partition which minimizes the right hand side is called `-saturated.Theorem 10 For any ` � 1 there is a (`+1) admissible weighting partition which is simul-taneously `-saturated and (`+ 1)-saturated.Proof. A simultaneously ` and (` + 1)-saturated weighting partition is obtained from thestep increasing the ow value from n� `� 1 to n� `. From the current potential we get aweighting family � being orthogonal to both, a ` path family P` and a (` + 1) path familyP`+1. The weighting partition �+ then is (` + 1) admissible as well as `-saturated and(`+ 1)-saturated. 2To an acyclic directed graph D with n elements a partition � of n is associated, such thatfor the Ferrers diagramm G(D) corresponding to � we get:Theorem 11 The number of squares in the ` longest columns of G(D) equals the maximalvalue PP2P jP j of a ` path family P of D and the number of squares in the k longest rowsof G(D) equals the maximal value P�2� �(V ) of a k weighting family � of D.Proof. The proof of this theorem is best accomplished by means of a diagram. Applyingthe Ford-Fulkerson algorithm to the Frank network of D we get a sequence of ow-potentialpairs and thereby a sequence of ow-value { potential-value pairs (v; k). Show the pairs (v; k)as points in the diagram and connect two subsequent pairs by a line segment (cf. Figure 2).The diagram, thus obtained, depends on D only, not on the concrete run of the algorithm.The claim is, that the shape of the `squared' area in the diagram gives the Ferrer's diagramof a partition of n, meeting the properties stated by the theorem. Consider a ow increasing7
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11 22 3 4 nFigure 2: Kilter diagram of D.step going from stage (v; k) to (v + 1; k). Associated we �nd a k weighting family �k and` = n � v, respectively ` � 1 path families P` and P`�1. Since �k is orthogonal to bothfamilies we may use the construction, we used in proving theorem 9, to obtainXP2P` jP j = X�2�k ` + X�2�+k n�k1 and XP2P`�1 jP j = X�2�k(`� 1) + X�2�+k n�k1The values PP2P` jP j and PP2P`�1 jP j are maximal for ` and (` � 1) path families re-spectively and di�er by k; but this is just the number of squares below the line segment(v; k) ! (v + 1; k). Starting from the empty path family we inductively obtain that thenumber of squares in the ` longest columns equals the maximal value PP2P jP j of a ` pathfamily P .A n path family certainly will contain all of D, hence, there are exactly n `squares' in thekilter diagram of DNow consider a potential increasing step going from (v; k) to (v; k + 1). Associated wehave a ` = n� v path family P` and k, respectively (k+1) weighting families �k and �k+1.Since P` is orthogonal to both �k and �k+1 we may use theorem 7 to obtainX�2�k �(V ) = XP2P` k + XP2P+̀nP`1 and X�2�k+1�(V ) = XP2P`(k + 1) + XP2P+̀nP`1:Therefore the weights of �k and �k+1 di�er by `. The number of squares lying to the rightof the line segment (v; k)! (v; k + 1) is ` as well. We get that the number of squares in thek longest rows of the diagram equals the maximal valueP�2� �(V ) of a k weighting family�. 2Remark. In the introduction we have sketched how a duality theorem for 1-weightingsand chains can be used to derive Dilworth's theorem. We can use a similar observation torecognize theorems 1 - 5 as instances of 7 - 11:In a partially ordered set P = (V;<) every 1-weighting contained in a k weighting family� maximizing P�2� �(V ) is positive, hence is the characteristic function of an antichain.Therefore maximal k weighting families in P are k antichain families.3.2 The General CaseIn the sequel let D be an arbitrary directed graph. As we have seen in theorem 6 the Ford-Fulkerson algorithm gives a sequence of orthogonal pairs in D. Hence we may trace throughsection 3.1 to see which statements made there can be adapted to the present case.Let C be a cycle and � a k weighting family then P�2� �(C) � 0. For a path P weagain obtain P�2� �(P ) � min(jP j; k). Hence for a path/cycle partition W , consisting ofits path subfamily P and its cycle subfamily C, we get P�2� �(V ) �PP2P min(jP j; k).Now, �ll up a family W = (P ; C), being orthogonal to a k weighting family �, with 1-element paths. We obtain the path/cycle partition W+ = (P+; C). Since, for C 2 C we have8



P�2� �(C) = 0, we get P�2� �(V ) = PP2P+ min(jP j; k) and have proven the followingtheorem.Theorem 12 For any directed graph D and any positive integer kmaxX�2��(V ) = minXP2Pmin(jP j; k)where the maximum is taken over all k weighting families � and the minimum over allpath/cycle partitions W = (P ; C) of D.A path/cycle partitionW which minimizes the right hand side is called k-saturated. Witha proof similar to the proof of theorem 8 we get:Theorem 13 For any k � 1 there is a path/cycle partition which is simultaneously k-saturated and (k + 1)-saturated.A major distinction to the acyclic case is, that now a ow of value n will not have costn. In fact, the cost will be �(D) = jV j �max jSC2C Cj, the maximum being taken over allfamilies of disjoint cycles. The parameter �(D) is called the acyclicity of D.Since 1-weightings have �(C) � 0 for all cycles C, a set � of 1-weightings withP�2� �(x) � 1 will nessesarily ful�ll P�2� �(V ) � �(D). A directed graph D, contain-ing cycles, therefore will not admit weighting partitions in the sense of section 3.1. We mayask, however, for partitions of the `acyclic part' of D.De�nition. A weighting partition � of a directed graph D = (V;E) is a set of 1-weightingswith 1) X�2��(V ) = �(D) 2) X�2��(x) � 1 for all x 2 V .The existence of a weighting partition is established by the weighting family �, corre-sponding to the current potential while the ow increases from n� 1 to n. It seems unlikely,however, that all weighting families, orthogonal to some ` path/cycle family, can be aug-mented to ` admissible weighting partitions. Therefore, the question whether generalizationsof theorems 9-11 to arbitrary directed graphs exist, has to remain open.References[1] R. Aharoni, I. Ben-Arroyo Hartman and A.J. Hoffman, Path Partitions andPacks of Acyclic Digraphs. Paci�c J. of Math. 118(1985), 249-259.[2] K. Cameron, On k-Optimum Dipath Partitions and Partial k-Colorings of AcyclicDigraphs. Europ. J. Comb. 7(1986), 115-118.[3] S.V. Fomin, Finite partially ordered sets and Young tableaux. Soviet Math. Dokl.19(1978), 1510-1514.[4] L.R. Ford and D.R. Fulkerson, Flows in Networks. Princeton Univ. Press, 1962.[5] A. Frank, On chain and antichain families of a partially ordered set. J. Comb. Th.(B) 29(1980), 176-184.[6] D.R. Fulkerson, Note on Dilworth's embedding theorem for partially ordered sets.Proc. Amer. Math. Soc. 7(1956), 701-702.[7] C. Greene, An extension of Schensted's theorem. Advances in Math. 14(1974), 254-265. 9
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