
ON-LINE CHAIN PARTITIONS OF ORDERS:A SURVEYBART LOMIEJ BOSEK, STEFAN FELSNER, KAMIL KLOCH, TOMASZ KRAWCZYK,GRZEGORZ MATECKI, AND PIOTR MICEKAbstra
t. On-line 
hain partition is a two-player game between Spoiler and Algo-rithm. Spoiler presents, point by point, a partially ordered set. Algorithm assignsin
oming points (immediately and irrevo
ably) to the 
hains whi
h 
onstitute a 
hainpartition of the order. The value of the game for orders of width w is a minimum num-ber val(w) su
h that Algorithm has a strategy using at most val(w) 
hains on orders ofwidth at most w. There are many re
ent results about variants of the general on-line
hain partition problem. With this survey we attempt to give an overview over thestate of the art in this �eld. As parti
ularly interesting aspe
ts of the arti
le we see:{ The sket
h of the proof for the new sub-exponential upper bound of Bosek andKraw
zyk: val(w) 6 w16 lg(w).{ The new lower bound: val(w) > (2� o(1))�w+12 �.{ The in
lusion of some simpli�ed proofs of previously published results.{ The 
omprehensive a

ount on variants of the problem for interval orders.{ The new lower bound for 2-dimensional up-growing orders.1. General problemPartitioning graphs and orders into simple 
omponents is a fundamental 
ombinatorialtask. The on-line approa
h to these problems is re
eiving mu
h attra
tion not onlybe
ause of its natural appli
ation 
avor but also be
ause of the beautiful mathemati
sevolving in the area. The 
lassi
al theorem of Dilworth says that an order of width w
an be partitioned into w 
hains. The dual of Dilworth's theorem is also true: an orderof height h admits a partition into h anti
hains. In the on-line setting the 
hallengeis to 
onstru
t su
h a partition of the smallest possible size, assuming that the points
onstituting the order are revealed one at a time and have to be assigned to a blo
k ofthe partition immediately.An on-line algorithm 
an be understood as an algorithm running without the fullknowledge of the input. Instead, the input is revealed pie
e by pie
e and for ea
h newpie
e of the input an irrevo
able a
tion must be taken before the next pie
e is shown.Su
h a s
enario surely applies in many real-world problems. In this paper the setting ofon-line algorithms and their performan
e is dis
ussed in terms of two-person games andstrategies for the two players of su
h games.The �rst results about on-line algorithms for problems on orders were obtained in the
ontext of re
ursive 
ombinatori
s, this is a logi
s program aiming for 
onstru
tive ex-isten
e proofs of in�nite stru
tures. The introdu
tion of Kierstead's survey [Kie86℄ hasa more detailed a

ount. In our terminology [Kie86℄ 
ould have been entitled On-lineproblems for orders. In the late 1980's the idea of on-line algorithms and 
ompetitiveDate: February 19, 2011.Key words and phrases. on-line, 
hain partition, order.1



2 B. BOSEK, S. FELSNER, K. KLOCH, T. KRAWCZYK, G. MATECKI, AND P. MICEKanalysis be
ame popular in 
omputer s
ien
e and qui
kly found its way into 
ombina-tori
s. Sin
e then most of the work in the area is using this terminology.Our interest lies primarily in the on-line 
hain partition problem. We like to des
ribethis problem as a two-player 
oloring game. The players are named Spoiler and Algo-rithm. The game is played in rounds. In ea
h round Spoiler adds one new point to thepresent order and des
ribes all 
omparabilities to already existing points. Algorithmresponds by making an assignment of the new point to one of the 
hains in the 
hainpartition that he maintains. Think of the 
hains as being 
olored with di�erent 
olorsand of the point to be 
olored in the 
olor of the 
hain 
ontaining them, it then makessense to say that a move of Algorithm 
onsists in assigning a 
olor to the new point.The aim of Algorithm is to use few 
olors while Spoiler tries to for
e many 
olors. InFig. 1 we show the smallest example that 
an for
e any on-line algorithm to use morethan w 
hains on an order of width w.
1 1 2 1 2 1 2x 2

Figure 1. Spoiler for
es 3 
hains on an order of width 2. The whiteelement is the new element of a round. 1, 2, 3 are 
hains. In the thirdround Algorithm has three 
hoi
es for x: The 
ase x = 3 is an immediatewin for Spoiler, the other two 
ases are symmetri
 and lead to Spoiler'swin in round 4.To measure the quality of the on-line algorithm we 
onsider upper bounds on thenumber of 
hains in the 
onstru
ted partition as a fun
tion of the width w. This isnatural be
ause by Dilworth's theorem an optimal o�-line algorithm would produ
e a
hain partition with exa
tly w 
hains.The value val(w) of the game is the least integer s su
h that Algorithm has a strategyusing at most s 
hains on any on-line order of width at most w. It 
an be veri�ed thatval(w) is equivalently the largest s for whi
h Spoiler has a strategy for
ing any algorithmto use s 
hains on an order of width w.Obviously val(1) = 1 but at �rst glan
e it is not 
lear if val(2) is well-de�ned, i.e.,that there exists a 
onstant 
 su
h that Algorithm 
an partition any on-line order ofwidth 2 into at most 
 
hains. Leaving out the detailed bounds on val(w) for Se
tion 3,here we only mention that the best-known lower bound for val(w) is quadrati
 while thebest-known upper bound is super-polynomial (until 2009, it had been exponential). Inour belief, this huge gap represents one of the most intriguing 
hallenges in the wholedomain of partially ordered sets.This paper is organized as follows. In Se
tion 2 we deal with on-line anti
hain par-titions. Sin
e this problem is mu
h easier than on-line 
hain partitioning this se
tionmay serve as a warm-up. Se
tion 3 is 
on
erned with the on-line 
hain partition prob-lem for general orders. Theorem 3.1 is a lower bound 
onstru
tion due to Szemeredi.Theorem 3.2 is a new lower bound gaining a fa
tor of almost two. The up-growingvariant of the on-line 
hain partition problem is introdu
ed. We show the tight upper



ON-LINE CHAIN PARTITIONS OF ORDERS: A SURVEY 3bound for this variant in Theorem 3.5. In Subse
tion 3.1 we sket
h the proof of the newsub-exponential upper bound (Theorem 3.4).In Se
tions 4 to 6 we dis
uss variants of the problem on restri
ted 
lasses of orders.In Se
tion 4 we begin with interval orders and 
onsider variants where the order isgiven with or without representation and with or without the up-growing restri
tion.Se
tion 5 is 
on
erned with semi-orders. The value of the up-growing game on this 
lassis based on the golden ratio (Theorem 5.2). For some variants where the order is givenwith a geometri
 representation the value of the game remains elusive. In Se
tion 6 wereview the state of the art regarding d-dimensional orders. This se
tion also 
ontainsa new lower-bound proof for up-growing 2-dimensional orders presented with a realizer(Theorem 6.2).Playing on spe
ial 
lasses of orders, as in the up-growing variant or adding informationregarding a representation, is restri
ting the power of Spoiler. In Se
tions 7 and 8 wetalk about variants where the power of Algorithm is modi�ed. In Se
tion 7 we report onresults about First-Fit, this takes all freedom from Algorithm, the 
olor of the new point
an be pre-
al
ulated by Spoiler. Still there are situations where First-Fit has its merits.In Se
tion 8 we dis
uss the adaptive version of the game. In this setting Algorithm mayassign a point to several 
hains and withdraw it from some of these 
hains in later stagesof the game. We 
on
lude in Se
tion 9 with some open problems.2. On-line anti
hain partitionsDilworth's Theorem is mu
h harder to prove than its dual version. The di�eren
e in`hardness' 
arries over to the on-line setting. As shown below, the value of the on-lineanti
hain partition problem is pre
isely known while the situation for 
hains (Se
tion 3)is mu
h more intri
ate.The following pre
ise result must be provided with two 
omplementary strategies: forSpoiler and for Algorithm. Algorithm's strategy using at most �h+12 � anti
hains on ordersof height h appears in [Kie86℄ where it is attributed to James S
hmerl. Kierstead [Kie86℄also des
ribes a strategy for Spoiler that for
es any on-line algorithm to use at least �h+12 �anti
hains on an order of height h. The strategy is attributed to Emre Szemer�edi. Wedes
ribe a 
amou
age version for Szemer�edi's lower bound below in Theorem 3.1. Totranslate the proof of Theorem 3.1 to the anti
hain problem it has to be noted that theorder P presented by Spoiler has dimension 2 and 
an be presented together with anon-line realizer. Reverting one of the linear extensions of the realizer yields the 
onjugateorder P
 whi
h has the property that 
hains of P are in bije
tion to anti
hains of P
and vi
e versa. (For details on dimension 2 and 
onjugate orders we refer to [M�oh89℄.)Theorem 2.1 (S
hmerl, Szemer�edi). The value of the on-line anti
hain partition gamefor orders of height h is �h+12 �.Proof of the upper bound. Algorithm will maintain an anti
hain partition using a familyof anti
hains A(a;b) indexed by pairs (a; b) of numbers 1 6 a; b and a + b 6 h + 1. Sin
ethere are exa
tly �h+12 � su
h pairs (a; b) this will prove the theorem.When Spoiler presents a new point x Algorithm determines the size a of the longest
hain in the already presented order that has x as its maximum element and the size bof the longest 
hain that has x as its minimum element. As the size of any 
hain in thealready presented order is at most h we get a + b 6 h+ 1.



4 B. BOSEK, S. FELSNER, K. KLOCH, T. KRAWCZYK, G. MATECKI, AND P. MICEKNow, Algorithm inserts x into A(a;b). It has to be shown that A(a;b) remains ananti
hain. Indeed, suppose that x is 
omparable with some y that was previously putinto A(a;b), and say x > y. Membership of y in A(a;b) is 
erti�ed by 
hain C of size a withmaximum y. Sin
e C [ fxg is a 
hain of of size a + 1 with maximal element x we have
ontradi
ted x 2 A(a;b). In the 
ase where x < y, argue with a 
hain of size b having yas minimum to obtain a similar 
ontradi
tion. �3. On-line 
hain partitionsThe material of this se
tion is in the 
ore of the problem. We start with Szemer�edi'slower bound and a new one improved by a fa
tor of almost two. Theorem 3.3 is Kier-stead's 
lassi
 upper bound and Theorem 3.4 is a new sub-exponential upper bound,obtained by Bosek and Kraw
zyk in 2009. The main ideas for that result will be pre-sented at the end of the se
tion in Subse
tion 3.1. We present the status of the problemfor width 2 and 3. After that we introdu
e the up-growing version of the problem. Inthis variant the value of the on-line 
hain partition game is pre
isely known. We in
ludea proof of the result.The lower bound �w+12 � 6 val(w) is often attributed to Szemer�edi (published in [Kie86℄)but in fa
t Szemer�edi is the author of the dual 
onstru
tion for the on-line anti
hainpartition game and Saks is the one who translated it for the 
hain partition game. Al-though we are going to prove the same bound in a mu
h more restri
ted setting (seeTheorem 6.2) we would like to share this ni
e and short 
onstru
tion with the reader.Szemer�edi's argument 
an be improved to obtain the result twi
e as good.Theorem 3.1 (Szemer�edi). The value of the on-line 
hain partition game is at least �w+12 �.Proof. We use indu
tion on w and present a strategy S(w) for Spoiler for
ing Algorithmto use �w+12 � 
hains on an order of width w. For w = 1 it suÆ
es to introdu
e a singlepoint. Then, indeed, �1+12 � = 1 
hain is for
ed.For w > 1 the strategy S(w) 
onsists of two steps. First, Spoiler 
onstru
ts a 
olorful
hain C of size w. Colors used by Algorithm on C will be blo
ked for further usage.The 
onstru
tion of C goes as follows. Put initially C = ;. As long jCj < w, Spoilerintrodu
es a new point x greater than all points in C and in
omparable with the rest.If Algorithm uses a new 
olor on x then x is in
orporated to C. Otherwise, C remainsunmodi�ed (see Fig. 2). Note that ea
h 
olor used by Algorithm on C may be usedat most on
e outside C. Therefore the pro
edure stops with an order 
onsisting of the
olorful 
hain C with jCj = w and a rest R(w) of at most w � 1 additional points.
1 2 4 21

5433 S(4) 1243
5

Figure 2. Strategy S(5) for Spoiler.Now, Spoiler plays S(w � 1) in su
h a way that every new point is in
omparablewith all elements of C and lies below all elements of R(w). Algorithm is not allowed to
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olors used on C. Using the indu
tion hypothesis for S(w � 1) it followsthat w + �w2� = �w+12 � 
olors are for
ed in total. As the largest anti
hain in the orderpresented by S(w� 1) is of size w� 1 and any su
h anti
hain may be extended only byone point (from C), the width of the order is w. �Theorem 3.2. The value of the on-line 
hain partition game is at least (2�o(1))�w+12 �.Proof. The strategy of Spoiler starts by repeating the strategy from Theorem 3.1. Theresult is an order PH with an anti
hain x1; : : : ; xw of minimal elements. Ea
h xi is abottom of a 
hain Xi of size i with i di�erent 
olors used on it. Also, distin
t Xi'sare totally in
omparable. Next, essentially the same strategy is played in an up-sidedown way below PH . The result is an order PL with an anti
hain y1; : : : ; yw of maximalelements su
h that xi > yj for all i; j where ea
h yi is a top of an i-
olorful 
hain Yi.We 
laim that there is an index i su
h that jYwj+jXij > 2w�p2w (the sizes of Xi andYw are the same as the number of di�erent 
olors on them). Given this index i Spoiler
ontinues re
ursively with the strategy for width w � 1 su
h that all the new pointsare below ea
h of x1; : : : ; xi�1; xi+1; : : : ; xw and their su

essors, above y1; : : : ; yw�1 andtheir prede
essors but in
omparable with Xi and Yw. It follows that the 
olors used inXi [ Yw 
an not be used again. By indu
tion we �nd that the number of 
hains for
edby Spoiler is wXk=1(2k �p2k) > 2�w + 12 �� wp2w = (2� o(1))�w + 12 �:It remains to prove the 
laim. To minimize the maximum of jXi [ Ywj it is best to havejXi \ Ywj = k�(w� i) for all i > w�k. In this 
ase jXi [ Ywj = 2w�k for all i > w�k.Of 
ourse we have to respe
t the fa
t that jYwj = w and hen
e Pi>w�k(k� w+ i) 6 w.This implies �k+12 � 6 w, i.e., k2 + k 6 2w and �nally k < p2w. �Theorem 3.3 (Kierstead [Kie81℄). The value of the on-line 
hain partition game is atmost 5w�14 .A good outline of the beautiful proof of the theorem is given in Trotter's 
hapter [Tro95℄in the Handbook of Combinatori
s. The strength of this result may be measured by thefa
t that no progress has been made for more than 25 years. Only in 2009, Bosek andKraw
zyk managed to improve the upper bound. Their new sub-exponential bound is:Theorem 3.4 (Bosek and Kraw
zyk). The value of the on-line 
hain partition game isat most w16 lgw.We give a sket
h of the quite involved proof further in Se
tion 3.1.Additionally, in the paper from 1981 Kierstead presented a general lower bound 4w�3 6 val(w). Today the pre
ise value of val(w) is known only for w 6 2, where val(2) = 5(by Kierstead's lower bound and Felsner's upper bound given in [Fel97℄). In the next
ase w = 3 there is still a gap. Re
ently, Bosek [Bos08℄ improved the upper bound andthe 
urrent state of the art is: 9 6 val(3) 6 16.The strategy for Spoiler enfor
ing 5 
olors on orders of width 2 
an be plugged intoSzemer�edi's strategy and with a few ideas from the proof of Theorem 3.2 it 
an produ
ea slightly better lower bound for val(w). The authors 
laim that val(w) > (54 � o(1))w2.Nevertheless, the latter seems to be pretty far from the best possible result.



6 B. BOSEK, S. FELSNER, K. KLOCH, T. KRAWCZYK, G. MATECKI, AND P. MICEKNote that partitioning an order of width w into n 
hains is equivalent to 
oloring a
o-
omparability graph of 
lique size at most w using n 
olors. Consider, for a moment,an on-line 
oloring game in whi
h Spoiler introdu
es a graph and Algorithm maintains aproper 
oloring. Su
h a game on 
oloring graphs is more 
hallenging for Algorithm thanthe previous on-line 
hain partition game as a 
o-
omparability graph does not 
onveythe information about the dire
tion of the poset. In parti
ular, Kierstead's algorithmfrom Theorem 3.3 made expli
it use of the orientation of the order relation. These
onsiderations led S
hmerl to ask whether there exists a strategy for Algorithm in theon-line 
oloring game on 
o-
omparability graphs with 
liques of size at most w using a
ertain number of 
olors bounded in terms of w. S
hmerl's question has been answeredby Kierstead, Penri
e and Trotter in [KPT94℄. They show that for every tree T of radiustwo there exists a fun
tion fT : N ! N su
h that there is a strategy for Algorithm inon-line 
oloring games on graphs of 
lique-size at most w and without T as an indu
edsubgraph whi
h uses at most fT (w) 
olors. In other words, if Spoiler is not allowed toprodu
e an indu
ed 
opy of T then there is a reasonable strategy for Algorithm. Let S bethe subdivision ofK1;3. Clearly S is a radius two tree. As 
o-
omparability graphs do not
ontain an indu
ed S the question posed by S
hmerl is answered aÆrmatively. A moredetailed a

ount to on-line 
oloring games on graphs 
an be found in the survey [Kie98℄by Kierstead whi
h in
ludes a proof that the 
lass of graphs that have no indu
ed S ison-line �-bounded.Felsner [Fel97℄ introdu
ed a variant of the 
hain partitioning game in whi
h Spoiler'spower is limited by the 
ondition that the new element has to be a maximal element ofthe order presented so far. In other words, a possible 
omparability of a new elementx to an old element y has to be of the form x > y. On-line posets with this propertyare 
alled up-growing. Felsner determined the pre
ise value of the game for up-growingorders. In this paper, the lower bound is as a 
onsequen
e of Theorem 6.2. The followingstrikingly simple argument for the upper bound is taken from the paper of Agarwal andGarg [AG07℄.Theorem 3.5 (Felsner [Fel97℄). The value of the on-line 
hain partition game for up-growing orders of width w is �w+12 �.Proof of the upper bound. Algorithm maintains a family F1, . . . , Fw of sets of 
hainswhere Fi 
ontains at most i 
hains. Together, all the 
hains form a partition of thepresent order. Denote by Tops(Fi) the set of maximum elements (tops) of 
hains from Fi.The invariant maintained by Algorithm is the following:Tops(Fi) is an anti
hain, for every i.Now, suppose that Spoiler has just introdu
ed a new maximal point x. Let j be theleast number su
h that jFjj < j or there is a point in Tops(Fj) whi
h is dominated by x.Su
h j does exist as otherwise Fw would have to be of size w and x would have to bein
omparable with all w points from Tops(Fw), so that the set fxg [ Tops(Fw) wouldform an anti
hain of size w + 1.If j is determined and x is 
omparable with the top of some 
hain C 2 Fj, thenAlgorithm adds x to C. Otherwise, if x is in
omparable to all elements in Tops(Fj) butjFjj < j then Algorithm de�nes a new 
hain C = fxg and introdu
es it into Fj.
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e x may have been 
omparable to several elements in Tops(Fj) something has tobe done to restore the invariant. This 
an only happen if j > 1. In this 
ase Algorithmmodi�es the families Fj�1 and Fj as follows (new Fi's are marked with a plus sign):F+j�1 = Fj � fCg ; F+j = Fj�1 [ fCg :From the 
hoi
e of j it follows that the invariant is again true. The total number of
hains used by Algorithm is bounded by 1 + 2 + : : :+ w = �w+12 �. �3.1. The sub-exponential upper bound { sket
h of the proof. We give a briefa

ount of the main ideas of the proof of Theorem 3.4, i.e., the sub-exponential upperbound val(w) 6 w16 lg(w).In the �rst part of the proof, the general 
hain partition problem is redu
ed to a familyof instan
es of a more stru
tured problem, 
alled a regular game. The se
ond part is ades
ription and analysis of the algorithm for the regular game.The regular game of width k is an on-line game with players Spoiler and Algorithm.The des
ription is based on the notion of a regular board. A regular board after t turns isa poset (Sti=1Ai;6) of width k. All the Ai's are anti
hains of size k. They are pairwisedisjoint and linearly ordered with respe
t to v, where X v Y if for all x 2 X there isy 2 Y with x < y. Ea
h anti
hain Ai is introdu
ed by Spoiler during his round as oneatomi
 move. The index i represents the time when the anti
hain was introdu
ed intothe board. The �rst two anti
hains A1; A2 are �xed to be the borders of the board, i.e.,a1 < a2 for all a1 2 A1; a2 2 A2 and all further anti
hains are to be presented in betweenA1 and A2 with respe
t to v. Let Ap(i) and As(i) denote the immediate prede
essor andthe immediate su

essor of Ai in the v-order at time i.{ Orders (Ap(i) [ Ai;6) and (Ai [ As(i);6) are strong orders; where (X [ Y;6) is astrong order if for every two 
omparable points x 2 X, y 2 Y there is a minimum-size 
hain partition of (X [ Y;6) with x; y in the same 
hain.The move of Spoiler on the board at round t > 3 begins with a 
hoi
e of two 
onse
utiveanti
hains in the v-order, they will be
ome Ap(t) and As(t). Next Spoiler presents anew anti
hain At and strong orders (Ap(t) [ At;61) and (At [ As(t);62) su
h that thetransitive 
losure of 61 [ 62 restri
ted to Ap(t)[As(t) is a subset of 6. The board after tturns is (Sti=1Ai;6+), where 6+ is the transitive 
losure of 6 [ 61 [ 62. In parti
ular,(St�1i=1 Ai;6) is the indu
ed suborder of (Sti=1Ai;6+) exa
tly as one should expe
t in anon-line setting (see Fig. 3).
A1A2 A1A3A2

A1A3A4A2
Figure 3. The �rst two moves of Spoiler in a regular game of width 4.The reply of Algorithm is a 
oloring of the elements of At su
h that all points in thegame with the same 
olor form a 
hain.



8 B. BOSEK, S. FELSNER, K. KLOCH, T. KRAWCZYK, G. MATECKI, AND P. MICEKThe redu
tion from the general 
hain partition problem to the regular game is donein two steps. First the order P is split into a sequen
e P1; : : : ; Pw of suborders su
h thatthe width of P1 [ : : : [ Pi is at most i. This is done on-line by assigning the new pointx to the �rst Pi where it does not violate the width 
onstraint. Ea
h Pi is then used to
onstru
t a regular game of width i su
h that the 
oloring produ
ed in this regular gameyields a 
hain partition of Pi. The essen
e of the redu
tion is 
aptured in the followingproposition:Proposition 3.6. If Algorithm has a strategy whi
h uses at most reg(v) 
hains ona regular game of width v then there is a strategy for Algorithm whi
h uses at mostPv6w reg(v) 6 w � reg(w) 
hains in the general on-line 
hain partition game for ordersof width w.Now, we sket
h the strategy of Algorithm for the regular game. During round t, justbefore 
oloring the points of an in
oming anti
hain, Algorithm assigns a 
olor to ea
h
omparability edge (x; y) of the in
oming strong orders, i.e., x <1 y in (Ap(t) [ At;61)or x <2 y in (At [ As(t);62), in su
h a way that(?) the set of all points in
ident to edges 
olored with 
 is a 
hain in 6.The next step is easy. To x 2 At, Algorithm assigns a 
olor of any edge in
ident to thevertex x. Condition (?) guarantees that all points with the same 
olor lie in one 
hain.Therefore, in the following we fo
us on 
oloring new edges of the in
oming strong orders.Algorithm's edge-
oloring strategy is based on the idea of a node. A node is a 
on-ne
ted 
omponent (in the 
omparability graph of the order) of one of the strong orderspresented by Spoiler during the game. From the de�nition of strong order and be
ausewidth is at most k it simply follows that a node has the same number of minimal andmaximal points. Also, ea
h edge belongs to exa
tly one node. The essential property ofnodes is:{ The set of all nodes of strong orders in a regular game 
an be organized in a treeT , 
alled the tree of the game (see Fig. 4). The root of T is the node (A1; A2).
LH

H
LMFigure 4. A node in the strong order (L;H) and its four sons in strongorders (L;M) and (M;H).The 
hara
teristi
s of a node N = (L;H), where L is the lower and H is the higherlevel of N , 
onsists of its width(N) = jLj = jHj and its surplus s(N) whi
h is the largestk su
h that for all non-empty X � L we have jsu

(X)j > minfjXj + k; jHjg, wheresu

(X) denotes the su

essors in H of elements of X. For N being a 
omplete bipartitegraph the 
ondition is true for every k and we put s(N) =1. Note that by the de�nitionof strong order s(N) > 1 for every nodeN . A useful property of the 
hara
teristi
s is that
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endant of N in the tree T then width(N 0) 6 width(N) and width(N 0) =width(N) implies s(N 0) 6 s(N), i.e., the pairs (width, surplus) of 
hara
teristi
s areweakly de
reasing with respe
t to the lexi
ographi
 order along paths in the tree.A 
ross of a node N = (L;H) is a set fx1; x2; y1; y2g with x1; x2 2 L, y1; y2 2 H, withthe four relations xi < yj, su
h that there is an extension of 
hains fx1; y1g, fx2; y2g toa minimum-size 
hain partition of N . A node is vital if it 
ontains a 
ross. For ea
hvital node N a representative 
ross X(N) is �xed.A vital node N with 
hara
teristi
s (u; s) is 
alled a
tive if it has no an
estor in thetree with the same 
hara
teristi
s. On the set of a
tive nodes with 
hara
teristi
s (u; s)de�ne an order P (u; s) by the rule that N <(u;s) N 0 i� there is a maximum y 2 X(N)and a minimum x0 2 X(N 0) with y 6 x0. The key property of P (u; s) is:{ The width of P (u; s) is at most w=2.Algorithm re
ursively generates an on-line 
hain partition of P (u; s).For a 
hain C in P (u; s) 
onsider the set E(C) of all edges of nodes in C, i.e, E(C) =f(x; y) : x 2 L, y 2 H, x < y and (L;H) 2 Cg. On the set of these edges de�ne theorder relation <E where (x; y) <E (x0; y0) if and only if y 6 x0. The key properties of(E(C); <E) are:{ (E(C); <E) is (2w � 1) + (2w� 1)-free and its width is at most w3.Hen
e, First-Fit 
an partition this order on-line using at most 3(2w�1)(w3)2 
hains(
f. Se
tion 7).There are only w2 possible 
hara
teristi
s (u; s). Suppose that Algorithm 
an partitionon-line orders of width v < w into alg(v) 
hains. Then we 
an summarize the result ofthis part as:Proposition 3.7. There is a strategy for Algorithm to 
olor the edges of all a
tive nodeswith at most �(w) = 3(2w�1)(w3)2 �w2 �alg(w2 ) 
olors in su
h a way that (?) is preserved.It remains to take 
are of non-a
tive nodes, or more pre
isely, of edges lying in non-a
tive nodes of strong orders presented by Spoiler in the regular game. With an a
tivenode N we asso
iate a set D(N) of dependent nodes. It is the set of nodes N 0 su
h thatN is the �rst a
tive node on the path from N 0 to the root of T . Sin
e (A1; A2), the rootof T , is a
tive, the set fD(N) : N is a
tiveg forms a partition of all nodes in T .The basi
 idea is to repla
e ea
h of the �(w) 
olors used for the edges of a
tive nodes(Proposition 3.7) by a bundle of � 
olors. Then the 
olors in the bundles asso
iatedwith the edges of an a
tive node N are used to 
olor the edges of all nodes N 0 2 D(N).An easy but important property of non-vital nodes is:{ All des
endants of a non-vital node are also non-vital and therefore if N 0 is a non-vital node in D(N) then all des
endants of N 0 are also in D(N).Although a non-vital N 0 2 D(N) may have a lot of des
endants, the fa
t that it doesnot 
ontain a 
ross results in:{ There is a greedy strategy that extends an edge 
oloring of a non-vital node N 0 toan edge 
oloring with property (?) of all edges of des
endants of N 0. This extensiondoes not require additional 
olors.Now, in order to 
olor all the edges in D(N) it remains to deal with the edges of vitalnodes and of �rst non-vital 
hildren of N in the tree of the game (we brie
y 
all them�rst-non-vital nodes). Unless N represents a 
omplete bipartite graph we have:



10 B. BOSEK, S. FELSNER, K. KLOCH, T. KRAWCZYK, G. MATECKI, AND P. MICEK{ All vital nodes in D(N) have the same 
hara
teristi
s as N and they form a pathin the tree T (see Fig. 5).
N = V1

V2F1 V3F1F2 F3 V4F1F2 F3F4 F5
F1V2 F3F2V3 F5V4F4

N = V1
{ a
tive { vital { non-vitalD(N)

Figure 5. The tree-stru
ture and the path of vital nodes in D(N).Note that 
onse
utive vital nodes on a path inD(N) split �rst-non-vital nodes inD(N)into two regions. Let V be the last vital node on this path and let A(N) respe
tivelyB(N) be the edges of �rst-non-vital nodes above respe
tively below V in the sense of<E. De�ne the order relation <E (the same as previously) on the edges of A(N) andB(N). Now, 
onsider the orders (A(N); <E), (B(N); <E) as on-line orders:{ The orders (A(N); <E) and (B(N); <E) are down-growing and up-growing ordersof width at most w3, respe
tively. Hen
e, ea
h of these orders 
an be partitionedon-line into at most �w3+12 � 
hains (
f. Theorem 3.5).To an edge z < u in A(N) [B(N) we want to assign a 
olor that is used on some edgex < y of N su
h that property (?) is preserved. That is we need x 6 z < u 6 y. Su
h a
olor assignment is 
ertainly possible if only every edge x < y of N has 2 �w3+12 � 
olorsin its bundle.It remains to 
olor edges of vital nodes and possibly �rst-non-vital nodes that appearas sons of the last vital node in D(N). To take 
are of all these edges it is suÆ
ient tohave two additional 
olors in the bundle of every edge x < y in N .The 
ase where N represents a 
omplete bipartite graph 
an be handled with similarideas.Proposition 3.8. If ea
h edge of an a
tive node N is 
olored with a bundle of 2�w3+12 �+2
olors then Algorithm 
an 
olor the edges of nodes in D(N) using only 
olors from thebundles on edges of N .The 
ombination of the previous three propositions yields the following:alg(w) 6 w � (2�w3 + 12 �+ 2) � 3(2w � 1)(w3)2 � w2 � alg(w2 )6 poly(w) � w16 lgw:For more details we send the reader to [BK℄.



ON-LINE CHAIN PARTITIONS OF ORDERS: A SURVEY 114. Interval ordersAn order P = (X;6) is an interval order if there is a fun
tion I whi
h assigns to ea
hx 2 X a 
losed interval I(x) = [lx; rx℄ on the real line R so that x < y in P if and onlyif I(x) < I(y), i.e., rx < ly. The fun
tion I is 
alled a representation of P; see Fig. 6for an example. Fishburn [Fis70℄ 
hara
terized interval orders as the orders withoutindu
ed (2 + 2), i.e., without four elements a; b; 
; d su
h that a < b and 
 < d are theonly 
omparabilities. a dfb e g
a b 
d e fgFigure 6. Interval order P = (fa; b; 
; d; e; f; gg ;6) with its representation.We start o� with a result for anti
hain partitioning. Gy�arf�as and Lehel [GL88℄ provedthat any 
hordal graph G 
an be 
overed on-line with 2�(G)� 1 
liques (where �(G)is the maximum size of an independent set in G). This immediately implies that thevalue of the on-line anti
hain partition game for interval orders of height h is at most2h� 1, and this bound is tight (see [KQ95℄).The value of the on-line 
hain partition game for interval orders was settled in theearly 80's by Kierstead and Trotter. Like all other results at that time it was expressedin the language of re
ursive 
ombinatori
s. Several years later Chrobak and �Slusarekproved the same result, this time using the terminology of on-line algorithms.Theorem 4.1 (Kierstead, Trotter [KT81℄; Chrobak, �Slusarek [C�S88℄). The value of theon-line 
hain partition game for interval orders of width w is 3w � 2.There is one subtle issue distinguishing the two results. In the on-line games 
onsideredso far Spoiler always presented an on-line order as a set of points. Interval orders 
anbe presented in a new way: not as points, but as intervals. In this new variant ofthe game Spoiler adds some extra information to the order. The task for Algorithmremains the same, i.e., assign 
olors to intervals in su
h a way that two interse
tingintervals have always a di�erent 
olor. The 
orresponding notion for the width of theposet is the 
lique-size { the maximum size of the set of mutually interse
ting intervals.This new variant of the game is 
alled a variant with representation. Kierstead andTrotter analyzed the variant without representation. Chrobak and �Slusarek analyzedthe variant with representation. Below we re
all Spoiler's strategy for intervals andAlgorithm's strategy for the 
ase without representation.The same argument works also for a game in whi
h Spoiler presents ar
s on a 
ir
le andAlgorithm 
olors them avoiding mono
hromati
 interse
tions. �Slusarek [�Slu95℄ showedthat the value of this game remains 3w � 2, here w denotes the maximum size of a setof ar
s sharing a point on the 
ir
le. The proof does not work when Spoiler presentsa 
ir
ular ar
 graph without underlying ar
 representation. The problem is that notall 
liques in a 
ir
ular ar
 graph admit a representation with a non-empty 
ommoninterse
tion and the argument relies on su
h 
liques.



12 B. BOSEK, S. FELSNER, K. KLOCH, T. KRAWCZYK, G. MATECKI, AND P. MICEKProof of Theorem 4.1. First, for the lower bound, we provide a strategy S(w) for Spoilerfor
ing Algorithm to use at least 3w � 2 
olors on a 
olle
tion of intervals of 
lique-sizeat most w. The strategy S(1) is trivial, it suÆ
es to present a single interval. Forstrategy S(k + 1) Spoiler plays many strategies S(k) on disjoint areas of the real line.On ea
h 
opy of S(k) Algorithm has to use at least 3k � 2 
olors (by indu
tion). If3k + 1 or more 
olors are used in total, we are done. Otherwise, Algorithm only has� 3k3k�2� possible sele
tions of 
olors for a single 
opy of S(k). When the number of S(k)'sis large enough, Spoiler for
es four of them, say C1, C2, C3, C4 (read from left to right)to use the same set of 3k � 2 
olors. Now, Spoiler introdu
es two intervals: the �rst
overs all intervals from C1 and is disjoint with the rest, the other 
overs C4, againbeing disjoint from the rest (see Fig. 7). On both of these intervals (and also on all theC1 : : :: : : : : :: : : C3 C4C2 : : :Figure 7. S(k + 1): Two intervals interse
ting C1 and C4.following ones) Algorithm has to use 
olors that have not been used on the Ci's. If thesame 
olor is used for both new intervals then Spoiler introdu
es the next two as in theleft part of Fig. 8. Otherwise, if Algorithm uses two di�erent 
olors, then the third 
oloris for
ed by presenting an interval as shown in the right part of Fig. 8.C1 : : :: : : : : :: : : C3 C4C2 : : :321 1 C1 : : :: : : : : :: : : C3 C4C2 : : :31 2
Figure 8. S(k + 1): Algorithm has to use three di�erent 
olors.If all interse
tions between the new intervals are restri
ted to the gaps between 
on-se
utive S(k)'s, then the 
lique size of the resulting 
olle
tion of intervals is at mostk + 1. Sin
e Spoiler for
ed at least (3k � 2) + 3 
olors we are done.In order to prove the upper bound we present a strategy for Algorithm using at most3w � 2 
hains on any interval order of width at most w. We use indu
tion and assumethat strategies A(k) that handle interval orders of width k < w with 3k� 2 
olors exist.Strategy A(1) has to 
olor an order of width one with one 
olor.Strategy A(w) maintains a partition of the order into two sets G and R su
h that thewidth of G is bounded by w � 1. A new point x is put into G if it does not violatethe width 
ondition for G [ fxg. Otherwise, x is put into R. To deal with points in Galgorithm A(w) re
ursively 
alls A(w� 1). By indu
tion at most 3w� 5 
olors are usedon G. It suÆ
es to show that points in R may be 
olored on-line using 3 
hains.To visualize the argument we �x an interval representation and identify points withtheir intervals. Ea
h interval r 2 R belongs to 
lique of size w together with w � 1elements g1; : : : ; gw�1 from G. Let 
(r) be any point on the real axis in the interse
tiong1 \ : : : \ gw�1 \ r of intervals. For r0 2 R � frg we note that 
(r) 2 r0 would provethe existen
e of an anti
hain of size w + 1 (see Fig. 9). Hen
e, no two intervals from R
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: : :R rG g1 \ : : : \ gk \ rFigure 9. 
(r) 62 r0 for all r0 2 R� frg.
ontain ea
h other. In parti
ular, every r0 2 R interse
ting r must 
ontain an endpointof r. Moreover, no interval from R is 
ontained in the union of all other intervals fromR. This implies that there is no point on the real axis that is 
ontained in three or moreintervals from R.From these 
onsiderations it follows that the 
o-
omparability graph of the orderindu
ed on R is a subgraph of a path. A greedy strategy 
an 
olor su
h graphs on-linewith three 
olors. A 
oloring 
orresponds to a partition of R into three 
hains. �The up-growing variant of the game for interval orders has also been explored. WhenSpoiler presents points (not intervals) then the value is 2w�1, proved in [BBM07℄. Belowwe present an argument for an upper-bound whi
h is mu
h shorter than the original one.The observation is that the on-line algorithm from Theorem 4.1 is also optimal in theup-growing setting.Theorem 4.2 (Baier, Bosek, Mi
ek [BBM07℄). The value of the on-line 
hain partitiongame for up-growing interval orders of width w is 2w � 1.Proof of the upper bound. The strategy A(w) for Algorithm is the same as in the proofof Theorem 4.1. We are going to indu
t that A(w) uses at most 2w � 1 
hains on anyup-growing interval order of width at most w. Assume that this is true for all naturalsup to k < w and 
onsider A(w).The set G is re
ursively 
overed by A(w�1) using 2w�3 
hains and all we have to dois to show a way to 
over points in R with only 2 
hains. Suppose that x is a maximalpoint just introdu
ed by Spoiler and it is put in R.For visualization purposes we again �x an interval representation and identify pointswith their intervals.Following the proof of Theorem 4.1 all intervals r 2 R interse
ting x must 
ontain oneof x's endpoints. In fa
t, due to the up-growing restri
tion, more is true:{ every r 2 R interse
ting x has to 
ontain the left endpoint of x.To see this re
all that by the de�nition of 
(r) 2 r the intervals 
ontaining 
(r) forman anti
hain of size w. If r would 
ontain the right endpoint of x, then 
(r) would alsobe to the right of x. Sin
e there is no anti
hain of size w + 1 this implies that one ofthe intervals 
ontaining 
(r) is 
ompletely to the right of x. This is impossible sin
e thenew element x has to be a maximal element.From the proof of Theorem 4.1 we know that there is at most one interval in Rthat 
ontains the left endpoint of x, i.e., x is in
omparable to at most one element ofR. It follows that Algorithm 
an use the obvious greedy strategy to 
over R with two
hains. �



14 B. BOSEK, S. FELSNER, K. KLOCH, T. KRAWCZYK, G. MATECKI, AND P. MICEKThe up-growing 
ase with representation does not pose a big 
hallenge for Algorithm.In this setting there is enough information to make even the Nearest-Fit algorithm usethe optimal (off-line) number of 
olors.Theorem 4.3 (Broniek [Bro05℄). The value of the on-line 
hain partition game forup-growing interval orders of width w presented with representation is w.Proof. The strategy for Algorithm: from all legal 
olors (i.e., 
olors not used for intervalsinterse
ting the new interval) 
hoose the 
losest one used rightmost (in other words,
hoose a legal 
olor used on an interval with the right endpoint nearest to the newinterval). We prove that this strategy (
alled the Nearest-Fit algorithm) uses no more
olors than the 
lique-size of the presented 
olle
tion of intervals.Let top(
) denote the top element of the 
-
hain, this is the rightmost interval 
oloredwith 
. Let x = [lx; rx℄ = top(�) be the interval with the leftmost right endpoint fromall top elements.We 
laim that rx is 
ontained in an interval of ea
h 
olor used by Algorithm. Considerany 
olor � used during the game. The right endpoint of top(�) is to the right of rx. Iftop(�) 
ontains rx then it is the interval we are looking for. Otherwise, � 6= � and top(�)is 
ompletely to the right of rx. Now, let y be the leftmost interval among those 
oloredwith � and 
ompletely to the right of rx (see Fig. 10). By the up-growing property, xmust have been presented prior to y. The Nearest-Fit algorithm 
olored y with � 6= �while � was also legal for y. This means that there is an interval z of 
olor � to the leftof y but with rz > rx. Our 
hoi
e of y implies that z 
ontains rx.Hen
e, for all the �'s we have found an interval 
olored with � and 
ontaining rx.Therefore, the number of intervals 
ontaining rx is at least the number of 
olors used byAlgorithm. As these intervals form an anti
hain, the proof is �nished. �
x = top(�) rxz top(�)y : : :

Figure 10. Ea
h 
olor is used on an interval 
ontaining rx.5. Semi-ordersAn order P = (X;6) is a semi-order if there is a fun
tion I assigning to ea
h pointx 2 X a 
losed, unit-length interval I(x) = [lx; lx + 1℄ of the real line R so that forall x; y 2 X we have x < y in P iff lx + 1 < ly. In other words, an interval order isa semi-order if it has a representation formed by unit-length intervals. An intervalrepresentation is proper if there is no in
lusion between intervals. Proper interval ordersare the interval orders admitting a proper representation. It is a well known theoremof Roberts [Rob69℄, that the 
lasses of proper interval orders and semi-orders 
oin
ide.A representation-free 
hara
terization of semi-orders is due to S
ott-Suppes [SS58℄: an
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tly if it has no indu
ed (2 + 2) and no indu
ed (3+ 1), thisis a four element order on a; b; 
; d su
h that b < 
 < d are the only 
omparabilities.The on-line 
hain partition game for semi-orders in its most general form is relativelyeasy to analyze.Proposition 5.1. The value of the on-line 
hain partition game for semi-orders of widthw is 2w � 1.Proof. The strategy for Spoiler for
ing 2w � 1 
hains on a semi-order of width w is asfollows:Phase 1. Present two anti
hains A and B, both 
onsisting of w points in su
h a way thatA < B, i.e., all points from A are below all points from B. If Algorithm uses 2w � 1 ormore 
hains, the 
onstru
tion is �nished. Otherwise, suppose that k 
hains (2 6 k 6 w)are used twi
e, on
e in A on a1; : : : ; ak and on
e in B, on b1; : : : ; bk respe
tively so thatai and bi have the same 
olor.Phase 2. Present k � 1 in
omparable points x1; : : : ; xk�1 su
h that the only 
ompara-bilities are a1; : : : ; ai < xi < bi+1; : : : ; bk. Their interval representation may look as inFig. 11. The width of the resulting order is w. It is easy to verify that Algorithm isfor
ed to use 2w � 1 
hains as ea
h xi has to go into a new 
hain.
a1a2a3 . . .. . .ak b1b2b3. . . bk. . .. . .x1x2 xk�1Figure 11. Strategy for Spoiler for
ing Algorithm to use 2w � 1 
hainson a semi-order of width w.To prove the upper bound we show that a greedy strategy for Algorithm never needsmore than 2w�1 
hains. This fa
t will be
ome quite obvious with a little help of geom-etry. Fix a proper representation of the order and identify points with their intervals.Let x be the new point and let In
(x) denote the set of points in
omparable with x. Theonly 
hains forbidden for x are those used in In
(x). If y 2 In
(x) then intervals x andy interse
t. Moreover, sin
e y 
annot lie in the interior of x, it must 
ontain one of theendpoints of x. The number of intervals sharing a 
ommon point does not ex
eed thewidth of the order w. This implies that j In
(x)j 6 2(w � 1) = 2w � 2, proving that atleast one out of a set of 2w � 1 
hains is legal for x. �The analysis of the up-growing 
ase turned out to be mu
h more involved. The resultis shown in the next theorem. The proof 
an be found in an independent paper [FKMM℄.Theorem 5.2 (Felsner, Klo
h, Mate
ki, Mi
ek [FKMM℄). The value of the on-line 
hainpartition game for up-growing semi-orders of width w is b1+p52 w
.We now turn to the variants where the semi-order is presented together with a repre-sentation. There are two variants:(i) P is presented with unit intervals.



16 B. BOSEK, S. FELSNER, K. KLOCH, T. KRAWCZYK, G. MATECKI, AND P. MICEK(ii) P is presented with a proper representation.In both 
ases the value of the game is still unknown. Rather unsatisfa
tory bounds aregiven in Proposition 5.3.Proposition 5.3. The value of the on-line 
hain partition game for semi-orders ofwidth w presented with representation (unit-length or proper) is at least b32w
 and atmost 2w � 1.Proof. The upper bound is valid for any greedy algorithm (see Proposition 5.1). For thelower bound we present a strategy for Spoiler whi
h for
es 3k 
olors on a 
olle
tion ofunit-length intervals of 
lique-size 2k. The strategy is as follows:Phase 1. Present a 
lique A of k identi
al, unit-length intervals. Let 1; : : : ; k be the
olors used by Algorithm.Phase 2. Present a 
lique B of 2k unit-length intervals in su
h a way that:(i) their left endpoints lie within a unit distan
e from the right border of A,(ii) Algorithm is for
ed to use new 
olors on the k leftmost intervals from B.We now explain how to build B satisfying (i) and (ii). Present the �rst interval so thatthe distan
e between its left endpoint and the right border of A is 12 . For the rest of the
onstru
tion maintain a partition of B into two (possibly empty) sets B0 [ B1, whereB0 (B1, respe
tively) 
ontains intervals with a new (old) 
olor, and additionally all leftends of intervals from B0 lie to the left of all left ends of intervals from B1 (see Fig. 12).Introdu
e any further interval into the gap between B0 and B1, i.e., put it slightly tothe right of all left ends of B0 and slightly to the left of all left ends of B1. Dependingon the 
olor used by Algorithm, the new interval extends either B0 or B1. Sin
e B has2k intervals and there are at most k old 
olors used on B, we indeed get jB0j > k, whi
his exa
tly 
ondition (ii).: : :A : : : : : : B0 { new 
olorsB1 { old 
olorsnew interval B
Figure 12. Constru
tion of B = B0 [B1.Phase 3. Present k identi
al unit-length intervals interse
ting A and the k leftmostintervals in B.The k intervals presented in Phase 3 need new 
olors. Therefore 3k 
olors have to beused in total but the largest anti
hain only has size 2k. �The upper bound 2w � 1 is tight for greedy strategies of Algorithm, i.e., strategiesusing a new 
olor only when they have to (noted in [C�S88℄). To for
e 2w � 1 
olorsSpoiler presents two 
liques of intervals: a1; : : : ; aw and b1; : : : ; bw, where la1 < : : : <law < ra1 < : : : < raw < lb1 < : : : < lbw < rb1 < : : : < rbw . The order of presentation is:a1; b1; : : : ; aw; bw. Clearly, a greedy Algorithm assigns i-th 
olor to ai and bi. Now,Spoiler presents x1; : : : ; xw�1 (exa
tly as in the proof of Proposition 5.1) su
h that the
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omparabilities are a1; : : : ; ai < xi < bi+1; : : : ; bw and Algorithm must use w�1 new
olors. The presented 
olle
tion is of 
lique-size w and 
an be realized by unit-lengthintervals. 6. d-dimensional ordersAn extension of an order P = (X;P ) is an order Q = (X;Q) su
h that x 6 y inP implies x 6 y in Q. If an extension Q of P is a linear order, it is 
alled a linearextension. A set of linear extensions of P interse
ting to P is 
alled a realizer of P. Thedimension of P, denoted by dim(P), is the least number n su
h that there is a realizerof P 
onsisting of n linear extensions. This de�nition is due to Dushnik and Miller in[DM41℄. Clearly, an order is of dimension 1 if and only if it is a 
hain. The dimension ofan anti
hain A with jAj > 1 is exa
tly 2. Indeed, for any linear extension L of A the setR = fL; L�g is a realizer, here L� denotes the reverse of L. For a 
omprehensive a

ounton the topi
 and an extensive bibliography we refer the reader to Trotter's monograph[Tro92℄.A geometri
 interpretation of the dimension (and justi�
ation of the term) is thefollowing. Denote by Rd the standard Cartesian produ
t of real numbers, partiallyordered by inequality on ea
h 
oordinate: (x1; : : : ; xd) 6 (y1; : : : ; yd) if and only if xi 6 yifor ea
h 1 6 i 6 d. LetR = fL1; : : : ; Ldg be a realizer of a �nite poset P = (X;6). Withevery element x 2 X we asso
iate the point (x1; : : : ; xd) so that xi is the position of xin the linear extension Li. Su
h a mapping of X into Rd de�nes an embedding of theposet P into Rd . Conversely, proje
tions of su
h an embedding onto d 
oordinates give dlinear extensions yielding a realizer of P. An example of su
h an embedding of a posetinto a 2-dimensional grid is shown in Fig. 13.
a
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a b 
 d e f gFigure 13. Poset embedded into a 2-dimensional grid.The analysis of the on-line 
hain partition game restri
ted to d-dimensional ordersappears to be as hard as the general problem (even for d = 2). No better bound, spe
i�
for this 
lass, is known. On the other hand there is a ni
e result of Kierstead, M
Nultyand Trotter for the game in whi
h Spoiler introdu
es a d-dimensional order via itsembedding into Rd or equivalently, by providing on-line a realizer of size d.Theorem 6.1 (Kierstead, M
Nulty, Trotter [KMT84℄). The value of the on-line 
hainpartition game for d-dimensional orders of width w presented with representation is atmost �w+12 �d�1.



18 B. BOSEK, S. FELSNER, K. KLOCH, T. KRAWCZYK, G. MATECKI, AND P. MICEKProof. The workhorse of the proof is the following fa
t: Y is a 
hain in a 2-dimensionalorder P with realizer fL1; L2g if and only if Y is an anti
hain in P� de�ned by a realizerfL1; L�2g. In parti
ular, an anti
hain partition of P� (obtained e.g. by Theorem 2.1) isa 
hain partition of P.We des
ribe the strategy of Algorithm witnessing the upper bound using indu
tion ond. For d = 1 Spoiler presents a 
hain and Algorithm 
overs it optimally using 1 = �1+12 �0
hain.Fix d > 1. Let P be the presented order and fL1; : : : ; Ldg be its realizer given bySpoiler. Consider P� = L1 \ : : :\Ld�1 \L�d. Note that every 
hain in P� is an anti
hainin P and so height(P�) 6 width(P) 6 w. On the other hand if Y is an anti
hain in P�then the order indu
ed by Y in P is just (L1 \ : : :\Ld�1)jY and therefore Y a subposetof P with dimension at most d� 1.During the game, Algorithm uses S
hmerl's algorithm (see Theorem 2.1) to generatean on-line anti
hain partition of P� of size at most �h(P�)+12 � 6 �w+12 �. Ea
h anti
hain Ain the partition of P� is a suborder of P. Its width is at most w and L1jA; : : : ; Ld�1jAis a (d � 1) realizer. Therefore, it 
an re
ursively be partitioned into �w+12 �d�2 
hains.Altogether the Algorithm uses at most �w+12 �d�2+1 
hains. �The next theorem deals with up-growing orders presented with a 2-realizer. Themotivation to 
onsider su
h a restri
ted setting 
omes from the results of Szemer�edi andFelsner (see Theorems 3.1 and 3.5). The poset 
onstru
ted in the proof of Theorem 3.1is 2-dimensional but not up-growing. On the other hand, the up-growing order as usedin the original proof of Theorem 3.5 was not 2-dimensional. The following result showsthat the value �w+12 � remains a lower bound even if we 
onsider on-line orders whi
h areboth: up-growing and 2-dimensional.Theorem 6.2. The value of the on-line 
hain partition game for 2-dimensional up-growing orders of width w presented with representation is at least �w+12 �.Proof. The argument is inspired by the proof of the lower bound from Theorem 3.5from [Fel97℄. However, we have to take 
are that all 
onstru
tion steps preserve thedimension. This is a
hieved by restri
ting the operations used by the Spoiler's strategyto only very elementary ones. For the des
ription of the operations we need an easy fa
tabout 2-dimensional orders.Claim 6.3. IfP is a 2-dimensional order with a realizer L1, L2 and the maximal elementsof P are ordered as in L1, i.e., max(P) = fx1; : : : ; xwg and x1 <L1 : : : <L1 xw, then theirorder is reversed in L2, i.e., xw <L2 : : : <L2 x1. We 
all (x1; : : : ; xw) the sorted anti
hainof maximal elements of P.Given the sorted anti
hain (x1; : : : ; xw) of maxima and two indi
es 1 6 i 6 j 6 w weintrodu
e the following operations extending the order in an up-growing way:abovei;j Add a new element y with relations xi < y, xi+1 < y; : : : ; xj < y and all relationsimplied by transitivity but no others.lefti;j Always pre
eded by abovei;j. Add a set yi+1; yi+2; : : : ; yj of twin elements su
h thatea
h ys from this set has relations xi+1 < ys; : : : ; xj < ys and all relations implied bytransitivity but no others. The index of the element y introdu
ed by the pre
edingmove abovei;j is i, i.e., yi = y.
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eded by abovei;j. Add a set yi; yi+1; : : : ; yj�1 of twin elements su
hthat ea
h ys from this set has relations xi < ys; : : : ; xj�1 < ys and all relations impliedby transitivity but no others. The index of the element y introdu
ed by the pre
edingmove abovei;j is j, i.e., yj = y.The 
ombination of a move abovei;j followed by a move lefti;j is illustrated in Fig. 14.Throughout the strategy Spoiler repeatedly makes a move of type abovei;j and dependingon the 
olor given to the new element y, Spoiler 
ompletes the operation with a moveof type either lefti;j or righti;j.Claim 6.4. If L1, L2 is a realizer of P and P+ is obtained by a move abovei;j followed bylefti;j then L1, L2 
an be extended to a 2-realizer L+1 ; L+2 ofP+. The same holds if abovei;jis followed by righti;j. In other words: the operations preserve the 2-dimensionality ofthe order.
yi+1xi�1 yixi+1 ...

...
...

... yj
L1

L2
xj

xi
xj+1Figure 14. Combination of abovei;j followed by lefti;j.Re
all that top(�) is the top element of the �-
hain. If x is a maximal element ofan order partitioned into 
hains then private(x) is the set of 
hains � with top(�) 6 xand top(�) 66 y for all maximal elements y 6= x. The general idea is to keep tra
k ofthe number of private 
hains for the 
onse
utive maxima and make Algorithm produ
ea large number of them. The workhorse for the proof of the theorem is the followingproposition.Proposition 6.5. Fix a number Z 2 N. Let P be a 2-dimensional order of width wwith sorted anti
hain (x1; : : : ; xw) of maximal elements and let a 
hain partition of P begiven. There is a strategy S(i; j), for all i 6 j, whi
h extends P in an up-growing way byusing only the three operations des
ribed above su
h that the width remains w and everyon-line 
hain partitioning algorithm has to tolerate one of the following two results forthe sorted anti
hain of maximal elements (z1; : : : ; zw) of the resulting order:(i) jprivate(zr)j > r � i+ 1 for all r = i; : : : ; j, or(ii) the algorithm has used more than Z 
olors.Moreover for all s 62 fi; i+1; : : : ; jg we have zs = xs and private(xs) was not a�e
ted bythe play of S(i; j).



20 B. BOSEK, S. FELSNER, K. KLOCH, T. KRAWCZYK, G. MATECKI, AND P. MICEKProof. The proof is by indu
tion on j � i. For j = i we are in 
ase (i) without doinganything, just observe that the 
olor of the 
hain to whi
h xi has been assigned is anelement of private(xi), hen
e j private(xi)j > 1.For the indu
tion step we begin with strategy S(i + 1; j) whi
h may result in 
ase(ii) so that we 
an stop. In the interesting 
ase S(i+ 1; j) ends with a sorted anti
hainof maximal elements (y1; : : : ; yw) su
h that j private(yr)j > r � (i + 1) + 1 = r � i forr = i + 1; : : : ; j. The next step is a move of type abovei;j. Let the new element y beassigned to 
hain 
. We distinguish two 
ases:(a) If 
 62 private(yj) then a move righti;j follows. This results in a new sorted anti
hain(y1; : : : ; yw) of maximal elements with j private(yj)j > j � i+ 1. Playing S(i; j � 1)results in one of the two out
omes 
laimed for S(i; j).(b) If 
 2 private(yj) then 
ontinue with a move lefti;j. This results in a sorted anti
hain(y1; : : : ; yw) of maximal elements with one more 
hain 
 in the set private(yi) thanbefore. Continue with another iteration of strategy S(i + 1; j). This or one of thefollowing iterations of S(i+1; j) may result in 
ase (a). If 
ase (a) is avoided, thenafter Z iterations we have j private(yi)j > Z and, hen
e, state (ii) of the proposition.�To prove the theorem we �x Z > �w+12 �. Starting with an initial anti
hain (x1; : : : ; xw)apply strategy S(1; w). After 
ompletion of S(1; w) we either have rea
hed Z 
olors, or,the �nal sorted anti
hain (z1; : : : ; zw) of maximal elements has the property that theprivate 
olors of the elements obey j private(zi)j > i for ea
h 1 6 i 6 w. Hen
e, the totalnumber of 
hains used is at least 1 + 2 + : : :+ w = �w+12 �. �7. First-FitProbably, the simplest strategy for Algorithm in the on-line 
hain partition gameis First-Fit, a strategy assigning the new point to a 
hain with the smallest possiblenumber. Spoiler 
an make First-Fit use arbitrarily many 
hains already on orders ofwidth 2. An example of Kierstead [Kie86℄, see Fig. 15, shows how to for
e 3; 4; 5; : : :
hains.
3 x21 12x1x4 x3 31 121 4231 12x6x51 42 x7 35 12x11 x10x9x8

Figure 15. First-Fit for
ed to use 5 
hains on an order of width 2.Re
ently, Bosek, Kraw
zyk and Sz
zypka [BKS℄ proved that First-Fit uses at most3kw2 
hains on (k+ k)-free orders of width w, i.e., orders with no two in
omparable
hains of size k. It is likely that indeed First-Fit uses only O(w) 
hains on (k+ k)-freeorders (see Problem 3). Note that the 
ase k = 2 deals with interval orders.Several papers investigate the performan
e of First-Fit for interval orders. This provedto be an ex
iting and a 
hallenging problem. The upper bound for the number of 
hains



ON-LINE CHAIN PARTITIONS OF ORDERS: A SURVEY 21used by FF on interval orders has a long history: O(w2) by Woodall, 40w [Kie88℄, 26w[KQ95℄, 10w [PR05℄, and 8w [BKT℄, [NSB08℄. The paper of Pemmaraju and Raman[PR05℄ introdu
ed a 
ompletely new and elegant te
hnique 
alled the 
olumn 
onstru
-tion method. The authors a
hieved an upper bound of 10w, overlooking one detailleading later to 8w. From the other side, Chrobak and �Slusarek [C�S88℄ showed that FF
an be for
ed to use 4:4w � 
 
hains on a 
olle
tion of intervals with 
lique-size w, forsome 
onstant 
. Kierstead and Trotter [KT℄ have re
ently improved this to 4:99w � 
.8. On-line adaptive 
hain partitionsOn-line adaptive 
hain partitioning is a variant of the game where Algorithm isstronger than in the standard game. In the adaptive variant Algorithm may assigna non-empty set of 
olors to the new point. The 
hoi
e of the set is restri
ted by the
ondition that the set of all points 
ontaining 
 in their set must form a 
hain. Before
oloring an in
oming point, Algorithm may remove 
olors from the sets of some olderpoints. Of 
ourse at least one 
olor has to remain for ea
h point. Figure 16 shows anexample of an adaptive game.
f1g f2g f3g f1g f2g f3g f1g f2g f3gf1; 2g f3gx yf1; 2; 3g

Figure 16. Spoiler for
es 4 
olors on the order of width 3. If Algorithmsti
ks to three 
olors, either x or y has only one 
olor upon the arrival ofy. In both 
ases Spoiler may present a point for
ing the fourth 
olor.The value adapt(w) of the on-line adaptive 
hain partition game is the least integers su
h that Algorithm has a strategy using at most s 
olors on any on-line order ofwidth at most w. This variant of the game was introdu
ed in [Fel97℄ in the up-growingvariant. The motivation was that the value of this game equals the on-line dimension ofup-growing orders.Very little is known about adapt(w). In parti
ular, no strategy using substantiallyless 
olors than in the original 
hain partition game is known for Algorithm. Theorem8.1 gives the best-known lower bound for adapt(w). We expe
t that this bound is farfrom the best possible. Theorem 8.2 is a re
ent pre
ise result for up-growing orders ofheight 2.Theorem 8.1 (Bosek, Mi
ek [BM℄). The value of the on-line adaptive 
hain partitiongame for up-growing orders of width w is at least (2� o(1))w.Theorem 8.2 (Kozik, Mate
ki [KM℄). The value of the on-line adaptive 
hain partitiongame for up-growing orders of height at most 2 and width w is (1 + �= 
osh(p32 �) �o(1))w � 1:41w. 9. Open problemsDespite the re
ent progress, the big 
hallenge in the �eld of on-line 
hain partitionsremains to lower the gap between upper and lower bound in the unrestri
ted setting.



22 B. BOSEK, S. FELSNER, K. KLOCH, T. KRAWCZYK, G. MATECKI, AND P. MICEKHopefully we have 
onvin
ed the reader that 
onsidering variants and restri
ted ver-sions of this problem 
an also lead to interesting stru
tures and beautiful mathemati
s.We feel that together with the restri
tions to spe
ial 
lasses of orders, two types ofrestri
tion whi
h redu
e the power of Spoiler are interesting:(i) the up-growing 
ase,(ii) the 
ase where Spoiler has to present the order with a geometri
 representationwhi
h 
erti�es the membership of the order in a given 
lass.Below is a table of related results and open problems. Columns U and R of the tableindi
ate whether Spoiler has to play up-growing and with a geometri
 representation,respe
tively. In parti
ular it would be very interesting to answer the following questions:Problem 1. What is the value of the on-line 
oloring game in whi
h Spoiler presentsunit-length/proper intervals? It is likely that the values of these two variants of the
hain partition game for semi-orders with representation are di�erent. The best knownlower and upper bound is 32w and 2w � 1, respe
tively. Moreover, any greedy on-linealgorithm may be for
ed to use 2w � 1 
hains.Problem 2. What is the value of the on-line 
hain partitioning game for 3-dimensionalorders with geometri
al representation? In this 
ase the lower and upper bound are�w+12 � and �w+12 �2, respe
tively.Problem 3. Does the First-Fit algorithm use O(w) 
hains on (k+ k)-free orders?Problem 4. What is the stri
t bound for the number of 
olors (
hains) used by theFirst-Fit algorithm on a 
olle
tion of intervals with 
lique-size at most w? The 
urrentlower bound is 4:99w and upper bound is 8w. Trotter 
onje
tures it to be 5w.Problem 5. Is adapt(w) bounded from above by a polynomial of w? The linear lowerbound (2� o(1))w is rather weak. Referen
es[AG07℄ Anurag Agarwal and Vijay K. Garg. EÆ
ient dependen
y tra
king for relevant events in
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urrent systems. Distrib. Comput., 19(3):163{183, 2007.[BBM07℄ Patri
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ond Workshop on Computational Logi
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ations (CLA 2004),volume 140 of Ele
tron. Notes Theor. Comput. S
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