
ON-LINE CHAIN PARTITIONS OF ORDERS:A SURVEYBART LOMIEJ BOSEK, STEFAN FELSNER, KAMIL KLOCH, TOMASZ KRAWCZYK,GRZEGORZ MATECKI, AND PIOTR MICEKAbstrat. On-line hain partition is a two-player game between Spoiler and Algo-rithm. Spoiler presents, point by point, a partially ordered set. Algorithm assignsinoming points (immediately and irrevoably) to the hains whih onstitute a hainpartition of the order. The value of the game for orders of width w is a minimum num-ber val(w) suh that Algorithm has a strategy using at most val(w) hains on orders ofwidth at most w. There are many reent results about variants of the general on-linehain partition problem. With this survey we attempt to give an overview over thestate of the art in this �eld. As partiularly interesting aspets of the artile we see:{ The sketh of the proof for the new sub-exponential upper bound of Bosek andKrawzyk: val(w) 6 w16 lg(w).{ The new lower bound: val(w) > (2� o(1))�w+12 �.{ The inlusion of some simpli�ed proofs of previously published results.{ The omprehensive aount on variants of the problem for interval orders.{ The new lower bound for 2-dimensional up-growing orders.1. General problemPartitioning graphs and orders into simple omponents is a fundamental ombinatorialtask. The on-line approah to these problems is reeiving muh attration not onlybeause of its natural appliation avor but also beause of the beautiful mathematisevolving in the area. The lassial theorem of Dilworth says that an order of width wan be partitioned into w hains. The dual of Dilworth's theorem is also true: an orderof height h admits a partition into h antihains. In the on-line setting the hallengeis to onstrut suh a partition of the smallest possible size, assuming that the pointsonstituting the order are revealed one at a time and have to be assigned to a blok ofthe partition immediately.An on-line algorithm an be understood as an algorithm running without the fullknowledge of the input. Instead, the input is revealed piee by piee and for eah newpiee of the input an irrevoable ation must be taken before the next piee is shown.Suh a senario surely applies in many real-world problems. In this paper the setting ofon-line algorithms and their performane is disussed in terms of two-person games andstrategies for the two players of suh games.The �rst results about on-line algorithms for problems on orders were obtained in theontext of reursive ombinatoris, this is a logis program aiming for onstrutive ex-istene proofs of in�nite strutures. The introdution of Kierstead's survey [Kie86℄ hasa more detailed aount. In our terminology [Kie86℄ ould have been entitled On-lineproblems for orders. In the late 1980's the idea of on-line algorithms and ompetitiveDate: February 19, 2011.Key words and phrases. on-line, hain partition, order.1



2 B. BOSEK, S. FELSNER, K. KLOCH, T. KRAWCZYK, G. MATECKI, AND P. MICEKanalysis beame popular in omputer siene and quikly found its way into ombina-toris. Sine then most of the work in the area is using this terminology.Our interest lies primarily in the on-line hain partition problem. We like to desribethis problem as a two-player oloring game. The players are named Spoiler and Algo-rithm. The game is played in rounds. In eah round Spoiler adds one new point to thepresent order and desribes all omparabilities to already existing points. Algorithmresponds by making an assignment of the new point to one of the hains in the hainpartition that he maintains. Think of the hains as being olored with di�erent olorsand of the point to be olored in the olor of the hain ontaining them, it then makessense to say that a move of Algorithm onsists in assigning a olor to the new point.The aim of Algorithm is to use few olors while Spoiler tries to fore many olors. InFig. 1 we show the smallest example that an fore any on-line algorithm to use morethan w hains on an order of width w.
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Figure 1. Spoiler fores 3 hains on an order of width 2. The whiteelement is the new element of a round. 1, 2, 3 are hains. In the thirdround Algorithm has three hoies for x: The ase x = 3 is an immediatewin for Spoiler, the other two ases are symmetri and lead to Spoiler'swin in round 4.To measure the quality of the on-line algorithm we onsider upper bounds on thenumber of hains in the onstruted partition as a funtion of the width w. This isnatural beause by Dilworth's theorem an optimal o�-line algorithm would produe ahain partition with exatly w hains.The value val(w) of the game is the least integer s suh that Algorithm has a strategyusing at most s hains on any on-line order of width at most w. It an be veri�ed thatval(w) is equivalently the largest s for whih Spoiler has a strategy foring any algorithmto use s hains on an order of width w.Obviously val(1) = 1 but at �rst glane it is not lear if val(2) is well-de�ned, i.e.,that there exists a onstant  suh that Algorithm an partition any on-line order ofwidth 2 into at most  hains. Leaving out the detailed bounds on val(w) for Setion 3,here we only mention that the best-known lower bound for val(w) is quadrati while thebest-known upper bound is super-polynomial (until 2009, it had been exponential). Inour belief, this huge gap represents one of the most intriguing hallenges in the wholedomain of partially ordered sets.This paper is organized as follows. In Setion 2 we deal with on-line antihain par-titions. Sine this problem is muh easier than on-line hain partitioning this setionmay serve as a warm-up. Setion 3 is onerned with the on-line hain partition prob-lem for general orders. Theorem 3.1 is a lower bound onstrution due to Szemeredi.Theorem 3.2 is a new lower bound gaining a fator of almost two. The up-growingvariant of the on-line hain partition problem is introdued. We show the tight upper



ON-LINE CHAIN PARTITIONS OF ORDERS: A SURVEY 3bound for this variant in Theorem 3.5. In Subsetion 3.1 we sketh the proof of the newsub-exponential upper bound (Theorem 3.4).In Setions 4 to 6 we disuss variants of the problem on restrited lasses of orders.In Setion 4 we begin with interval orders and onsider variants where the order isgiven with or without representation and with or without the up-growing restrition.Setion 5 is onerned with semi-orders. The value of the up-growing game on this lassis based on the golden ratio (Theorem 5.2). For some variants where the order is givenwith a geometri representation the value of the game remains elusive. In Setion 6 wereview the state of the art regarding d-dimensional orders. This setion also ontainsa new lower-bound proof for up-growing 2-dimensional orders presented with a realizer(Theorem 6.2).Playing on speial lasses of orders, as in the up-growing variant or adding informationregarding a representation, is restriting the power of Spoiler. In Setions 7 and 8 wetalk about variants where the power of Algorithm is modi�ed. In Setion 7 we report onresults about First-Fit, this takes all freedom from Algorithm, the olor of the new pointan be pre-alulated by Spoiler. Still there are situations where First-Fit has its merits.In Setion 8 we disuss the adaptive version of the game. In this setting Algorithm mayassign a point to several hains and withdraw it from some of these hains in later stagesof the game. We onlude in Setion 9 with some open problems.2. On-line antihain partitionsDilworth's Theorem is muh harder to prove than its dual version. The di�erene in`hardness' arries over to the on-line setting. As shown below, the value of the on-lineantihain partition problem is preisely known while the situation for hains (Setion 3)is muh more intriate.The following preise result must be provided with two omplementary strategies: forSpoiler and for Algorithm. Algorithm's strategy using at most �h+12 � antihains on ordersof height h appears in [Kie86℄ where it is attributed to James Shmerl. Kierstead [Kie86℄also desribes a strategy for Spoiler that fores any on-line algorithm to use at least �h+12 �antihains on an order of height h. The strategy is attributed to Emre Szemer�edi. Wedesribe a amouage version for Szemer�edi's lower bound below in Theorem 3.1. Totranslate the proof of Theorem 3.1 to the antihain problem it has to be noted that theorder P presented by Spoiler has dimension 2 and an be presented together with anon-line realizer. Reverting one of the linear extensions of the realizer yields the onjugateorder P whih has the property that hains of P are in bijetion to antihains of Pand vie versa. (For details on dimension 2 and onjugate orders we refer to [M�oh89℄.)Theorem 2.1 (Shmerl, Szemer�edi). The value of the on-line antihain partition gamefor orders of height h is �h+12 �.Proof of the upper bound. Algorithm will maintain an antihain partition using a familyof antihains A(a;b) indexed by pairs (a; b) of numbers 1 6 a; b and a + b 6 h + 1. Sinethere are exatly �h+12 � suh pairs (a; b) this will prove the theorem.When Spoiler presents a new point x Algorithm determines the size a of the longesthain in the already presented order that has x as its maximum element and the size bof the longest hain that has x as its minimum element. As the size of any hain in thealready presented order is at most h we get a + b 6 h+ 1.



4 B. BOSEK, S. FELSNER, K. KLOCH, T. KRAWCZYK, G. MATECKI, AND P. MICEKNow, Algorithm inserts x into A(a;b). It has to be shown that A(a;b) remains anantihain. Indeed, suppose that x is omparable with some y that was previously putinto A(a;b), and say x > y. Membership of y in A(a;b) is erti�ed by hain C of size a withmaximum y. Sine C [ fxg is a hain of of size a + 1 with maximal element x we haveontradited x 2 A(a;b). In the ase where x < y, argue with a hain of size b having yas minimum to obtain a similar ontradition. �3. On-line hain partitionsThe material of this setion is in the ore of the problem. We start with Szemer�edi'slower bound and a new one improved by a fator of almost two. Theorem 3.3 is Kier-stead's lassi upper bound and Theorem 3.4 is a new sub-exponential upper bound,obtained by Bosek and Krawzyk in 2009. The main ideas for that result will be pre-sented at the end of the setion in Subsetion 3.1. We present the status of the problemfor width 2 and 3. After that we introdue the up-growing version of the problem. Inthis variant the value of the on-line hain partition game is preisely known. We inludea proof of the result.The lower bound �w+12 � 6 val(w) is often attributed to Szemer�edi (published in [Kie86℄)but in fat Szemer�edi is the author of the dual onstrution for the on-line antihainpartition game and Saks is the one who translated it for the hain partition game. Al-though we are going to prove the same bound in a muh more restrited setting (seeTheorem 6.2) we would like to share this nie and short onstrution with the reader.Szemer�edi's argument an be improved to obtain the result twie as good.Theorem 3.1 (Szemer�edi). The value of the on-line hain partition game is at least �w+12 �.Proof. We use indution on w and present a strategy S(w) for Spoiler foring Algorithmto use �w+12 � hains on an order of width w. For w = 1 it suÆes to introdue a singlepoint. Then, indeed, �1+12 � = 1 hain is fored.For w > 1 the strategy S(w) onsists of two steps. First, Spoiler onstruts a olorfulhain C of size w. Colors used by Algorithm on C will be bloked for further usage.The onstrution of C goes as follows. Put initially C = ;. As long jCj < w, Spoilerintrodues a new point x greater than all points in C and inomparable with the rest.If Algorithm uses a new olor on x then x is inorporated to C. Otherwise, C remainsunmodi�ed (see Fig. 2). Note that eah olor used by Algorithm on C may be usedat most one outside C. Therefore the proedure stops with an order onsisting of theolorful hain C with jCj = w and a rest R(w) of at most w � 1 additional points.
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Figure 2. Strategy S(5) for Spoiler.Now, Spoiler plays S(w � 1) in suh a way that every new point is inomparablewith all elements of C and lies below all elements of R(w). Algorithm is not allowed to



ON-LINE CHAIN PARTITIONS OF ORDERS: A SURVEY 5reuse the w olors used on C. Using the indution hypothesis for S(w � 1) it followsthat w + �w2� = �w+12 � olors are fored in total. As the largest antihain in the orderpresented by S(w� 1) is of size w� 1 and any suh antihain may be extended only byone point (from C), the width of the order is w. �Theorem 3.2. The value of the on-line hain partition game is at least (2�o(1))�w+12 �.Proof. The strategy of Spoiler starts by repeating the strategy from Theorem 3.1. Theresult is an order PH with an antihain x1; : : : ; xw of minimal elements. Eah xi is abottom of a hain Xi of size i with i di�erent olors used on it. Also, distint Xi'sare totally inomparable. Next, essentially the same strategy is played in an up-sidedown way below PH . The result is an order PL with an antihain y1; : : : ; yw of maximalelements suh that xi > yj for all i; j where eah yi is a top of an i-olorful hain Yi.We laim that there is an index i suh that jYwj+jXij > 2w�p2w (the sizes of Xi andYw are the same as the number of di�erent olors on them). Given this index i Spoilerontinues reursively with the strategy for width w � 1 suh that all the new pointsare below eah of x1; : : : ; xi�1; xi+1; : : : ; xw and their suessors, above y1; : : : ; yw�1 andtheir predeessors but inomparable with Xi and Yw. It follows that the olors used inXi [ Yw an not be used again. By indution we �nd that the number of hains foredby Spoiler is wXk=1(2k �p2k) > 2�w + 12 �� wp2w = (2� o(1))�w + 12 �:It remains to prove the laim. To minimize the maximum of jXi [ Ywj it is best to havejXi \ Ywj = k�(w� i) for all i > w�k. In this ase jXi [ Ywj = 2w�k for all i > w�k.Of ourse we have to respet the fat that jYwj = w and hene Pi>w�k(k� w+ i) 6 w.This implies �k+12 � 6 w, i.e., k2 + k 6 2w and �nally k < p2w. �Theorem 3.3 (Kierstead [Kie81℄). The value of the on-line hain partition game is atmost 5w�14 .A good outline of the beautiful proof of the theorem is given in Trotter's hapter [Tro95℄in the Handbook of Combinatoris. The strength of this result may be measured by thefat that no progress has been made for more than 25 years. Only in 2009, Bosek andKrawzyk managed to improve the upper bound. Their new sub-exponential bound is:Theorem 3.4 (Bosek and Krawzyk). The value of the on-line hain partition game isat most w16 lgw.We give a sketh of the quite involved proof further in Setion 3.1.Additionally, in the paper from 1981 Kierstead presented a general lower bound 4w�3 6 val(w). Today the preise value of val(w) is known only for w 6 2, where val(2) = 5(by Kierstead's lower bound and Felsner's upper bound given in [Fel97℄). In the nextase w = 3 there is still a gap. Reently, Bosek [Bos08℄ improved the upper bound andthe urrent state of the art is: 9 6 val(3) 6 16.The strategy for Spoiler enforing 5 olors on orders of width 2 an be plugged intoSzemer�edi's strategy and with a few ideas from the proof of Theorem 3.2 it an produea slightly better lower bound for val(w). The authors laim that val(w) > (54 � o(1))w2.Nevertheless, the latter seems to be pretty far from the best possible result.



6 B. BOSEK, S. FELSNER, K. KLOCH, T. KRAWCZYK, G. MATECKI, AND P. MICEKNote that partitioning an order of width w into n hains is equivalent to oloring ao-omparability graph of lique size at most w using n olors. Consider, for a moment,an on-line oloring game in whih Spoiler introdues a graph and Algorithm maintains aproper oloring. Suh a game on oloring graphs is more hallenging for Algorithm thanthe previous on-line hain partition game as a o-omparability graph does not onveythe information about the diretion of the poset. In partiular, Kierstead's algorithmfrom Theorem 3.3 made expliit use of the orientation of the order relation. Theseonsiderations led Shmerl to ask whether there exists a strategy for Algorithm in theon-line oloring game on o-omparability graphs with liques of size at most w using aertain number of olors bounded in terms of w. Shmerl's question has been answeredby Kierstead, Penrie and Trotter in [KPT94℄. They show that for every tree T of radiustwo there exists a funtion fT : N ! N suh that there is a strategy for Algorithm inon-line oloring games on graphs of lique-size at most w and without T as an induedsubgraph whih uses at most fT (w) olors. In other words, if Spoiler is not allowed toprodue an indued opy of T then there is a reasonable strategy for Algorithm. Let S bethe subdivision ofK1;3. Clearly S is a radius two tree. As o-omparability graphs do notontain an indued S the question posed by Shmerl is answered aÆrmatively. A moredetailed aount to on-line oloring games on graphs an be found in the survey [Kie98℄by Kierstead whih inludes a proof that the lass of graphs that have no indued S ison-line �-bounded.Felsner [Fel97℄ introdued a variant of the hain partitioning game in whih Spoiler'spower is limited by the ondition that the new element has to be a maximal element ofthe order presented so far. In other words, a possible omparability of a new elementx to an old element y has to be of the form x > y. On-line posets with this propertyare alled up-growing. Felsner determined the preise value of the game for up-growingorders. In this paper, the lower bound is as a onsequene of Theorem 6.2. The followingstrikingly simple argument for the upper bound is taken from the paper of Agarwal andGarg [AG07℄.Theorem 3.5 (Felsner [Fel97℄). The value of the on-line hain partition game for up-growing orders of width w is �w+12 �.Proof of the upper bound. Algorithm maintains a family F1, . . . , Fw of sets of hainswhere Fi ontains at most i hains. Together, all the hains form a partition of thepresent order. Denote by Tops(Fi) the set of maximum elements (tops) of hains from Fi.The invariant maintained by Algorithm is the following:Tops(Fi) is an antihain, for every i.Now, suppose that Spoiler has just introdued a new maximal point x. Let j be theleast number suh that jFjj < j or there is a point in Tops(Fj) whih is dominated by x.Suh j does exist as otherwise Fw would have to be of size w and x would have to beinomparable with all w points from Tops(Fw), so that the set fxg [ Tops(Fw) wouldform an antihain of size w + 1.If j is determined and x is omparable with the top of some hain C 2 Fj, thenAlgorithm adds x to C. Otherwise, if x is inomparable to all elements in Tops(Fj) butjFjj < j then Algorithm de�nes a new hain C = fxg and introdues it into Fj.



ON-LINE CHAIN PARTITIONS OF ORDERS: A SURVEY 7Sine x may have been omparable to several elements in Tops(Fj) something has tobe done to restore the invariant. This an only happen if j > 1. In this ase Algorithmmodi�es the families Fj�1 and Fj as follows (new Fi's are marked with a plus sign):F+j�1 = Fj � fCg ; F+j = Fj�1 [ fCg :From the hoie of j it follows that the invariant is again true. The total number ofhains used by Algorithm is bounded by 1 + 2 + : : :+ w = �w+12 �. �3.1. The sub-exponential upper bound { sketh of the proof. We give a briefaount of the main ideas of the proof of Theorem 3.4, i.e., the sub-exponential upperbound val(w) 6 w16 lg(w).In the �rst part of the proof, the general hain partition problem is redued to a familyof instanes of a more strutured problem, alled a regular game. The seond part is adesription and analysis of the algorithm for the regular game.The regular game of width k is an on-line game with players Spoiler and Algorithm.The desription is based on the notion of a regular board. A regular board after t turns isa poset (Sti=1Ai;6) of width k. All the Ai's are antihains of size k. They are pairwisedisjoint and linearly ordered with respet to v, where X v Y if for all x 2 X there isy 2 Y with x < y. Eah antihain Ai is introdued by Spoiler during his round as oneatomi move. The index i represents the time when the antihain was introdued intothe board. The �rst two antihains A1; A2 are �xed to be the borders of the board, i.e.,a1 < a2 for all a1 2 A1; a2 2 A2 and all further antihains are to be presented in betweenA1 and A2 with respet to v. Let Ap(i) and As(i) denote the immediate predeessor andthe immediate suessor of Ai in the v-order at time i.{ Orders (Ap(i) [ Ai;6) and (Ai [ As(i);6) are strong orders; where (X [ Y;6) is astrong order if for every two omparable points x 2 X, y 2 Y there is a minimum-size hain partition of (X [ Y;6) with x; y in the same hain.The move of Spoiler on the board at round t > 3 begins with a hoie of two onseutiveantihains in the v-order, they will beome Ap(t) and As(t). Next Spoiler presents anew antihain At and strong orders (Ap(t) [ At;61) and (At [ As(t);62) suh that thetransitive losure of 61 [ 62 restrited to Ap(t)[As(t) is a subset of 6. The board after tturns is (Sti=1Ai;6+), where 6+ is the transitive losure of 6 [ 61 [ 62. In partiular,(St�1i=1 Ai;6) is the indued suborder of (Sti=1Ai;6+) exatly as one should expet in anon-line setting (see Fig. 3).
A1A2 A1A3A2

A1A3A4A2
Figure 3. The �rst two moves of Spoiler in a regular game of width 4.The reply of Algorithm is a oloring of the elements of At suh that all points in thegame with the same olor form a hain.



8 B. BOSEK, S. FELSNER, K. KLOCH, T. KRAWCZYK, G. MATECKI, AND P. MICEKThe redution from the general hain partition problem to the regular game is donein two steps. First the order P is split into a sequene P1; : : : ; Pw of suborders suh thatthe width of P1 [ : : : [ Pi is at most i. This is done on-line by assigning the new pointx to the �rst Pi where it does not violate the width onstraint. Eah Pi is then used toonstrut a regular game of width i suh that the oloring produed in this regular gameyields a hain partition of Pi. The essene of the redution is aptured in the followingproposition:Proposition 3.6. If Algorithm has a strategy whih uses at most reg(v) hains ona regular game of width v then there is a strategy for Algorithm whih uses at mostPv6w reg(v) 6 w � reg(w) hains in the general on-line hain partition game for ordersof width w.Now, we sketh the strategy of Algorithm for the regular game. During round t, justbefore oloring the points of an inoming antihain, Algorithm assigns a olor to eahomparability edge (x; y) of the inoming strong orders, i.e., x <1 y in (Ap(t) [ At;61)or x <2 y in (At [ As(t);62), in suh a way that(?) the set of all points inident to edges olored with  is a hain in 6.The next step is easy. To x 2 At, Algorithm assigns a olor of any edge inident to thevertex x. Condition (?) guarantees that all points with the same olor lie in one hain.Therefore, in the following we fous on oloring new edges of the inoming strong orders.Algorithm's edge-oloring strategy is based on the idea of a node. A node is a on-neted omponent (in the omparability graph of the order) of one of the strong orderspresented by Spoiler during the game. From the de�nition of strong order and beausewidth is at most k it simply follows that a node has the same number of minimal andmaximal points. Also, eah edge belongs to exatly one node. The essential property ofnodes is:{ The set of all nodes of strong orders in a regular game an be organized in a treeT , alled the tree of the game (see Fig. 4). The root of T is the node (A1; A2).
LH

H
LMFigure 4. A node in the strong order (L;H) and its four sons in strongorders (L;M) and (M;H).The harateristis of a node N = (L;H), where L is the lower and H is the higherlevel of N , onsists of its width(N) = jLj = jHj and its surplus s(N) whih is the largestk suh that for all non-empty X � L we have jsu(X)j > minfjXj + k; jHjg, wheresu(X) denotes the suessors in H of elements of X. For N being a omplete bipartitegraph the ondition is true for every k and we put s(N) =1. Note that by the de�nitionof strong order s(N) > 1 for every nodeN . A useful property of the harateristis is that



ON-LINE CHAIN PARTITIONS OF ORDERS: A SURVEY 9if N 0 is a desendant of N in the tree T then width(N 0) 6 width(N) and width(N 0) =width(N) implies s(N 0) 6 s(N), i.e., the pairs (width, surplus) of harateristis areweakly dereasing with respet to the lexiographi order along paths in the tree.A ross of a node N = (L;H) is a set fx1; x2; y1; y2g with x1; x2 2 L, y1; y2 2 H, withthe four relations xi < yj, suh that there is an extension of hains fx1; y1g, fx2; y2g toa minimum-size hain partition of N . A node is vital if it ontains a ross. For eahvital node N a representative ross X(N) is �xed.A vital node N with harateristis (u; s) is alled ative if it has no anestor in thetree with the same harateristis. On the set of ative nodes with harateristis (u; s)de�ne an order P (u; s) by the rule that N <(u;s) N 0 i� there is a maximum y 2 X(N)and a minimum x0 2 X(N 0) with y 6 x0. The key property of P (u; s) is:{ The width of P (u; s) is at most w=2.Algorithm reursively generates an on-line hain partition of P (u; s).For a hain C in P (u; s) onsider the set E(C) of all edges of nodes in C, i.e, E(C) =f(x; y) : x 2 L, y 2 H, x < y and (L;H) 2 Cg. On the set of these edges de�ne theorder relation <E where (x; y) <E (x0; y0) if and only if y 6 x0. The key properties of(E(C); <E) are:{ (E(C); <E) is (2w � 1) + (2w� 1)-free and its width is at most w3.Hene, First-Fit an partition this order on-line using at most 3(2w�1)(w3)2 hains(f. Setion 7).There are only w2 possible harateristis (u; s). Suppose that Algorithm an partitionon-line orders of width v < w into alg(v) hains. Then we an summarize the result ofthis part as:Proposition 3.7. There is a strategy for Algorithm to olor the edges of all ative nodeswith at most �(w) = 3(2w�1)(w3)2 �w2 �alg(w2 ) olors in suh a way that (?) is preserved.It remains to take are of non-ative nodes, or more preisely, of edges lying in non-ative nodes of strong orders presented by Spoiler in the regular game. With an ativenode N we assoiate a set D(N) of dependent nodes. It is the set of nodes N 0 suh thatN is the �rst ative node on the path from N 0 to the root of T . Sine (A1; A2), the rootof T , is ative, the set fD(N) : N is ativeg forms a partition of all nodes in T .The basi idea is to replae eah of the �(w) olors used for the edges of ative nodes(Proposition 3.7) by a bundle of � olors. Then the olors in the bundles assoiatedwith the edges of an ative node N are used to olor the edges of all nodes N 0 2 D(N).An easy but important property of non-vital nodes is:{ All desendants of a non-vital node are also non-vital and therefore if N 0 is a non-vital node in D(N) then all desendants of N 0 are also in D(N).Although a non-vital N 0 2 D(N) may have a lot of desendants, the fat that it doesnot ontain a ross results in:{ There is a greedy strategy that extends an edge oloring of a non-vital node N 0 toan edge oloring with property (?) of all edges of desendants of N 0. This extensiondoes not require additional olors.Now, in order to olor all the edges in D(N) it remains to deal with the edges of vitalnodes and of �rst non-vital hildren of N in the tree of the game (we briey all them�rst-non-vital nodes). Unless N represents a omplete bipartite graph we have:



10 B. BOSEK, S. FELSNER, K. KLOCH, T. KRAWCZYK, G. MATECKI, AND P. MICEK{ All vital nodes in D(N) have the same harateristis as N and they form a pathin the tree T (see Fig. 5).
N = V1

V2F1 V3F1F2 F3 V4F1F2 F3F4 F5
F1V2 F3F2V3 F5V4F4

N = V1
{ ative { vital { non-vitalD(N)

Figure 5. The tree-struture and the path of vital nodes in D(N).Note that onseutive vital nodes on a path inD(N) split �rst-non-vital nodes inD(N)into two regions. Let V be the last vital node on this path and let A(N) respetivelyB(N) be the edges of �rst-non-vital nodes above respetively below V in the sense of<E. De�ne the order relation <E (the same as previously) on the edges of A(N) andB(N). Now, onsider the orders (A(N); <E), (B(N); <E) as on-line orders:{ The orders (A(N); <E) and (B(N); <E) are down-growing and up-growing ordersof width at most w3, respetively. Hene, eah of these orders an be partitionedon-line into at most �w3+12 � hains (f. Theorem 3.5).To an edge z < u in A(N) [B(N) we want to assign a olor that is used on some edgex < y of N suh that property (?) is preserved. That is we need x 6 z < u 6 y. Suh aolor assignment is ertainly possible if only every edge x < y of N has 2 �w3+12 � olorsin its bundle.It remains to olor edges of vital nodes and possibly �rst-non-vital nodes that appearas sons of the last vital node in D(N). To take are of all these edges it is suÆient tohave two additional olors in the bundle of every edge x < y in N .The ase where N represents a omplete bipartite graph an be handled with similarideas.Proposition 3.8. If eah edge of an ative node N is olored with a bundle of 2�w3+12 �+2olors then Algorithm an olor the edges of nodes in D(N) using only olors from thebundles on edges of N .The ombination of the previous three propositions yields the following:alg(w) 6 w � (2�w3 + 12 �+ 2) � 3(2w � 1)(w3)2 � w2 � alg(w2 )6 poly(w) � w16 lgw:For more details we send the reader to [BK℄.



ON-LINE CHAIN PARTITIONS OF ORDERS: A SURVEY 114. Interval ordersAn order P = (X;6) is an interval order if there is a funtion I whih assigns to eahx 2 X a losed interval I(x) = [lx; rx℄ on the real line R so that x < y in P if and onlyif I(x) < I(y), i.e., rx < ly. The funtion I is alled a representation of P; see Fig. 6for an example. Fishburn [Fis70℄ haraterized interval orders as the orders withoutindued (2 + 2), i.e., without four elements a; b; ; d suh that a < b and  < d are theonly omparabilities. a dfb e ga b d e fgFigure 6. Interval order P = (fa; b; ; d; e; f; gg ;6) with its representation.We start o� with a result for antihain partitioning. Gy�arf�as and Lehel [GL88℄ provedthat any hordal graph G an be overed on-line with 2�(G)� 1 liques (where �(G)is the maximum size of an independent set in G). This immediately implies that thevalue of the on-line antihain partition game for interval orders of height h is at most2h� 1, and this bound is tight (see [KQ95℄).The value of the on-line hain partition game for interval orders was settled in theearly 80's by Kierstead and Trotter. Like all other results at that time it was expressedin the language of reursive ombinatoris. Several years later Chrobak and �Slusarekproved the same result, this time using the terminology of on-line algorithms.Theorem 4.1 (Kierstead, Trotter [KT81℄; Chrobak, �Slusarek [C�S88℄). The value of theon-line hain partition game for interval orders of width w is 3w � 2.There is one subtle issue distinguishing the two results. In the on-line games onsideredso far Spoiler always presented an on-line order as a set of points. Interval orders anbe presented in a new way: not as points, but as intervals. In this new variant ofthe game Spoiler adds some extra information to the order. The task for Algorithmremains the same, i.e., assign olors to intervals in suh a way that two intersetingintervals have always a di�erent olor. The orresponding notion for the width of theposet is the lique-size { the maximum size of the set of mutually interseting intervals.This new variant of the game is alled a variant with representation. Kierstead andTrotter analyzed the variant without representation. Chrobak and �Slusarek analyzedthe variant with representation. Below we reall Spoiler's strategy for intervals andAlgorithm's strategy for the ase without representation.The same argument works also for a game in whih Spoiler presents ars on a irle andAlgorithm olors them avoiding monohromati intersetions. �Slusarek [�Slu95℄ showedthat the value of this game remains 3w � 2, here w denotes the maximum size of a setof ars sharing a point on the irle. The proof does not work when Spoiler presentsa irular ar graph without underlying ar representation. The problem is that notall liques in a irular ar graph admit a representation with a non-empty ommonintersetion and the argument relies on suh liques.



12 B. BOSEK, S. FELSNER, K. KLOCH, T. KRAWCZYK, G. MATECKI, AND P. MICEKProof of Theorem 4.1. First, for the lower bound, we provide a strategy S(w) for Spoilerforing Algorithm to use at least 3w � 2 olors on a olletion of intervals of lique-sizeat most w. The strategy S(1) is trivial, it suÆes to present a single interval. Forstrategy S(k + 1) Spoiler plays many strategies S(k) on disjoint areas of the real line.On eah opy of S(k) Algorithm has to use at least 3k � 2 olors (by indution). If3k + 1 or more olors are used in total, we are done. Otherwise, Algorithm only has� 3k3k�2� possible seletions of olors for a single opy of S(k). When the number of S(k)'sis large enough, Spoiler fores four of them, say C1, C2, C3, C4 (read from left to right)to use the same set of 3k � 2 olors. Now, Spoiler introdues two intervals: the �rstovers all intervals from C1 and is disjoint with the rest, the other overs C4, againbeing disjoint from the rest (see Fig. 7). On both of these intervals (and also on all theC1 : : :: : : : : :: : : C3 C4C2 : : :Figure 7. S(k + 1): Two intervals interseting C1 and C4.following ones) Algorithm has to use olors that have not been used on the Ci's. If thesame olor is used for both new intervals then Spoiler introdues the next two as in theleft part of Fig. 8. Otherwise, if Algorithm uses two di�erent olors, then the third oloris fored by presenting an interval as shown in the right part of Fig. 8.C1 : : :: : : : : :: : : C3 C4C2 : : :321 1 C1 : : :: : : : : :: : : C3 C4C2 : : :31 2
Figure 8. S(k + 1): Algorithm has to use three di�erent olors.If all intersetions between the new intervals are restrited to the gaps between on-seutive S(k)'s, then the lique size of the resulting olletion of intervals is at mostk + 1. Sine Spoiler fored at least (3k � 2) + 3 olors we are done.In order to prove the upper bound we present a strategy for Algorithm using at most3w � 2 hains on any interval order of width at most w. We use indution and assumethat strategies A(k) that handle interval orders of width k < w with 3k� 2 olors exist.Strategy A(1) has to olor an order of width one with one olor.Strategy A(w) maintains a partition of the order into two sets G and R suh that thewidth of G is bounded by w � 1. A new point x is put into G if it does not violatethe width ondition for G [ fxg. Otherwise, x is put into R. To deal with points in Galgorithm A(w) reursively alls A(w� 1). By indution at most 3w� 5 olors are usedon G. It suÆes to show that points in R may be olored on-line using 3 hains.To visualize the argument we �x an interval representation and identify points withtheir intervals. Eah interval r 2 R belongs to lique of size w together with w � 1elements g1; : : : ; gw�1 from G. Let (r) be any point on the real axis in the intersetiong1 \ : : : \ gw�1 \ r of intervals. For r0 2 R � frg we note that (r) 2 r0 would provethe existene of an antihain of size w + 1 (see Fig. 9). Hene, no two intervals from R



ON-LINE CHAIN PARTITIONS OF ORDERS: A SURVEY 13
: : :R rG g1 \ : : : \ gk \ rFigure 9. (r) 62 r0 for all r0 2 R� frg.ontain eah other. In partiular, every r0 2 R interseting r must ontain an endpointof r. Moreover, no interval from R is ontained in the union of all other intervals fromR. This implies that there is no point on the real axis that is ontained in three or moreintervals from R.From these onsiderations it follows that the o-omparability graph of the orderindued on R is a subgraph of a path. A greedy strategy an olor suh graphs on-linewith three olors. A oloring orresponds to a partition of R into three hains. �The up-growing variant of the game for interval orders has also been explored. WhenSpoiler presents points (not intervals) then the value is 2w�1, proved in [BBM07℄. Belowwe present an argument for an upper-bound whih is muh shorter than the original one.The observation is that the on-line algorithm from Theorem 4.1 is also optimal in theup-growing setting.Theorem 4.2 (Baier, Bosek, Miek [BBM07℄). The value of the on-line hain partitiongame for up-growing interval orders of width w is 2w � 1.Proof of the upper bound. The strategy A(w) for Algorithm is the same as in the proofof Theorem 4.1. We are going to indut that A(w) uses at most 2w � 1 hains on anyup-growing interval order of width at most w. Assume that this is true for all naturalsup to k < w and onsider A(w).The set G is reursively overed by A(w�1) using 2w�3 hains and all we have to dois to show a way to over points in R with only 2 hains. Suppose that x is a maximalpoint just introdued by Spoiler and it is put in R.For visualization purposes we again �x an interval representation and identify pointswith their intervals.Following the proof of Theorem 4.1 all intervals r 2 R interseting x must ontain oneof x's endpoints. In fat, due to the up-growing restrition, more is true:{ every r 2 R interseting x has to ontain the left endpoint of x.To see this reall that by the de�nition of (r) 2 r the intervals ontaining (r) forman antihain of size w. If r would ontain the right endpoint of x, then (r) would alsobe to the right of x. Sine there is no antihain of size w + 1 this implies that one ofthe intervals ontaining (r) is ompletely to the right of x. This is impossible sine thenew element x has to be a maximal element.From the proof of Theorem 4.1 we know that there is at most one interval in Rthat ontains the left endpoint of x, i.e., x is inomparable to at most one element ofR. It follows that Algorithm an use the obvious greedy strategy to over R with twohains. �



14 B. BOSEK, S. FELSNER, K. KLOCH, T. KRAWCZYK, G. MATECKI, AND P. MICEKThe up-growing ase with representation does not pose a big hallenge for Algorithm.In this setting there is enough information to make even the Nearest-Fit algorithm usethe optimal (off-line) number of olors.Theorem 4.3 (Broniek [Bro05℄). The value of the on-line hain partition game forup-growing interval orders of width w presented with representation is w.Proof. The strategy for Algorithm: from all legal olors (i.e., olors not used for intervalsinterseting the new interval) hoose the losest one used rightmost (in other words,hoose a legal olor used on an interval with the right endpoint nearest to the newinterval). We prove that this strategy (alled the Nearest-Fit algorithm) uses no moreolors than the lique-size of the presented olletion of intervals.Let top() denote the top element of the -hain, this is the rightmost interval oloredwith . Let x = [lx; rx℄ = top(�) be the interval with the leftmost right endpoint fromall top elements.We laim that rx is ontained in an interval of eah olor used by Algorithm. Considerany olor � used during the game. The right endpoint of top(�) is to the right of rx. Iftop(�) ontains rx then it is the interval we are looking for. Otherwise, � 6= � and top(�)is ompletely to the right of rx. Now, let y be the leftmost interval among those oloredwith � and ompletely to the right of rx (see Fig. 10). By the up-growing property, xmust have been presented prior to y. The Nearest-Fit algorithm olored y with � 6= �while � was also legal for y. This means that there is an interval z of olor � to the leftof y but with rz > rx. Our hoie of y implies that z ontains rx.Hene, for all the �'s we have found an interval olored with � and ontaining rx.Therefore, the number of intervals ontaining rx is at least the number of olors used byAlgorithm. As these intervals form an antihain, the proof is �nished. �
x = top(�) rxz top(�)y : : :

Figure 10. Eah olor is used on an interval ontaining rx.5. Semi-ordersAn order P = (X;6) is a semi-order if there is a funtion I assigning to eah pointx 2 X a losed, unit-length interval I(x) = [lx; lx + 1℄ of the real line R so that forall x; y 2 X we have x < y in P iff lx + 1 < ly. In other words, an interval order isa semi-order if it has a representation formed by unit-length intervals. An intervalrepresentation is proper if there is no inlusion between intervals. Proper interval ordersare the interval orders admitting a proper representation. It is a well known theoremof Roberts [Rob69℄, that the lasses of proper interval orders and semi-orders oinide.A representation-free haraterization of semi-orders is due to Sott-Suppes [SS58℄: an



ON-LINE CHAIN PARTITIONS OF ORDERS: A SURVEY 15orders is a semi-order exatly if it has no indued (2 + 2) and no indued (3+ 1), thisis a four element order on a; b; ; d suh that b <  < d are the only omparabilities.The on-line hain partition game for semi-orders in its most general form is relativelyeasy to analyze.Proposition 5.1. The value of the on-line hain partition game for semi-orders of widthw is 2w � 1.Proof. The strategy for Spoiler foring 2w � 1 hains on a semi-order of width w is asfollows:Phase 1. Present two antihains A and B, both onsisting of w points in suh a way thatA < B, i.e., all points from A are below all points from B. If Algorithm uses 2w � 1 ormore hains, the onstrution is �nished. Otherwise, suppose that k hains (2 6 k 6 w)are used twie, one in A on a1; : : : ; ak and one in B, on b1; : : : ; bk respetively so thatai and bi have the same olor.Phase 2. Present k � 1 inomparable points x1; : : : ; xk�1 suh that the only ompara-bilities are a1; : : : ; ai < xi < bi+1; : : : ; bk. Their interval representation may look as inFig. 11. The width of the resulting order is w. It is easy to verify that Algorithm isfored to use 2w � 1 hains as eah xi has to go into a new hain.
a1a2a3 . . .. . .ak b1b2b3. . . bk. . .. . .x1x2 xk�1Figure 11. Strategy for Spoiler foring Algorithm to use 2w � 1 hainson a semi-order of width w.To prove the upper bound we show that a greedy strategy for Algorithm never needsmore than 2w�1 hains. This fat will beome quite obvious with a little help of geom-etry. Fix a proper representation of the order and identify points with their intervals.Let x be the new point and let In(x) denote the set of points inomparable with x. Theonly hains forbidden for x are those used in In(x). If y 2 In(x) then intervals x andy interset. Moreover, sine y annot lie in the interior of x, it must ontain one of theendpoints of x. The number of intervals sharing a ommon point does not exeed thewidth of the order w. This implies that j In(x)j 6 2(w � 1) = 2w � 2, proving that atleast one out of a set of 2w � 1 hains is legal for x. �The analysis of the up-growing ase turned out to be muh more involved. The resultis shown in the next theorem. The proof an be found in an independent paper [FKMM℄.Theorem 5.2 (Felsner, Kloh, Mateki, Miek [FKMM℄). The value of the on-line hainpartition game for up-growing semi-orders of width w is b1+p52 w.We now turn to the variants where the semi-order is presented together with a repre-sentation. There are two variants:(i) P is presented with unit intervals.



16 B. BOSEK, S. FELSNER, K. KLOCH, T. KRAWCZYK, G. MATECKI, AND P. MICEK(ii) P is presented with a proper representation.In both ases the value of the game is still unknown. Rather unsatisfatory bounds aregiven in Proposition 5.3.Proposition 5.3. The value of the on-line hain partition game for semi-orders ofwidth w presented with representation (unit-length or proper) is at least b32w and atmost 2w � 1.Proof. The upper bound is valid for any greedy algorithm (see Proposition 5.1). For thelower bound we present a strategy for Spoiler whih fores 3k olors on a olletion ofunit-length intervals of lique-size 2k. The strategy is as follows:Phase 1. Present a lique A of k idential, unit-length intervals. Let 1; : : : ; k be theolors used by Algorithm.Phase 2. Present a lique B of 2k unit-length intervals in suh a way that:(i) their left endpoints lie within a unit distane from the right border of A,(ii) Algorithm is fored to use new olors on the k leftmost intervals from B.We now explain how to build B satisfying (i) and (ii). Present the �rst interval so thatthe distane between its left endpoint and the right border of A is 12 . For the rest of theonstrution maintain a partition of B into two (possibly empty) sets B0 [ B1, whereB0 (B1, respetively) ontains intervals with a new (old) olor, and additionally all leftends of intervals from B0 lie to the left of all left ends of intervals from B1 (see Fig. 12).Introdue any further interval into the gap between B0 and B1, i.e., put it slightly tothe right of all left ends of B0 and slightly to the left of all left ends of B1. Dependingon the olor used by Algorithm, the new interval extends either B0 or B1. Sine B has2k intervals and there are at most k old olors used on B, we indeed get jB0j > k, whihis exatly ondition (ii).: : :A : : : : : : B0 { new olorsB1 { old olorsnew interval B
Figure 12. Constrution of B = B0 [B1.Phase 3. Present k idential unit-length intervals interseting A and the k leftmostintervals in B.The k intervals presented in Phase 3 need new olors. Therefore 3k olors have to beused in total but the largest antihain only has size 2k. �The upper bound 2w � 1 is tight for greedy strategies of Algorithm, i.e., strategiesusing a new olor only when they have to (noted in [C�S88℄). To fore 2w � 1 olorsSpoiler presents two liques of intervals: a1; : : : ; aw and b1; : : : ; bw, where la1 < : : : <law < ra1 < : : : < raw < lb1 < : : : < lbw < rb1 < : : : < rbw . The order of presentation is:a1; b1; : : : ; aw; bw. Clearly, a greedy Algorithm assigns i-th olor to ai and bi. Now,Spoiler presents x1; : : : ; xw�1 (exatly as in the proof of Proposition 5.1) suh that the



ON-LINE CHAIN PARTITIONS OF ORDERS: A SURVEY 17only omparabilities are a1; : : : ; ai < xi < bi+1; : : : ; bw and Algorithm must use w�1 newolors. The presented olletion is of lique-size w and an be realized by unit-lengthintervals. 6. d-dimensional ordersAn extension of an order P = (X;P ) is an order Q = (X;Q) suh that x 6 y inP implies x 6 y in Q. If an extension Q of P is a linear order, it is alled a linearextension. A set of linear extensions of P interseting to P is alled a realizer of P. Thedimension of P, denoted by dim(P), is the least number n suh that there is a realizerof P onsisting of n linear extensions. This de�nition is due to Dushnik and Miller in[DM41℄. Clearly, an order is of dimension 1 if and only if it is a hain. The dimension ofan antihain A with jAj > 1 is exatly 2. Indeed, for any linear extension L of A the setR = fL; L�g is a realizer, here L� denotes the reverse of L. For a omprehensive aounton the topi and an extensive bibliography we refer the reader to Trotter's monograph[Tro92℄.A geometri interpretation of the dimension (and justi�ation of the term) is thefollowing. Denote by Rd the standard Cartesian produt of real numbers, partiallyordered by inequality on eah oordinate: (x1; : : : ; xd) 6 (y1; : : : ; yd) if and only if xi 6 yifor eah 1 6 i 6 d. LetR = fL1; : : : ; Ldg be a realizer of a �nite poset P = (X;6). Withevery element x 2 X we assoiate the point (x1; : : : ; xd) so that xi is the position of xin the linear extension Li. Suh a mapping of X into Rd de�nes an embedding of theposet P into Rd . Conversely, projetions of suh an embedding onto d oordinates give dlinear extensions yielding a realizer of P. An example of suh an embedding of a posetinto a 2-dimensional grid is shown in Fig. 13.
a

g e fdb bdfae
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a b  d e f gFigure 13. Poset embedded into a 2-dimensional grid.The analysis of the on-line hain partition game restrited to d-dimensional ordersappears to be as hard as the general problem (even for d = 2). No better bound, spei�for this lass, is known. On the other hand there is a nie result of Kierstead, MNultyand Trotter for the game in whih Spoiler introdues a d-dimensional order via itsembedding into Rd or equivalently, by providing on-line a realizer of size d.Theorem 6.1 (Kierstead, MNulty, Trotter [KMT84℄). The value of the on-line hainpartition game for d-dimensional orders of width w presented with representation is atmost �w+12 �d�1.



18 B. BOSEK, S. FELSNER, K. KLOCH, T. KRAWCZYK, G. MATECKI, AND P. MICEKProof. The workhorse of the proof is the following fat: Y is a hain in a 2-dimensionalorder P with realizer fL1; L2g if and only if Y is an antihain in P� de�ned by a realizerfL1; L�2g. In partiular, an antihain partition of P� (obtained e.g. by Theorem 2.1) isa hain partition of P.We desribe the strategy of Algorithm witnessing the upper bound using indution ond. For d = 1 Spoiler presents a hain and Algorithm overs it optimally using 1 = �1+12 �0hain.Fix d > 1. Let P be the presented order and fL1; : : : ; Ldg be its realizer given bySpoiler. Consider P� = L1 \ : : :\Ld�1 \L�d. Note that every hain in P� is an antihainin P and so height(P�) 6 width(P) 6 w. On the other hand if Y is an antihain in P�then the order indued by Y in P is just (L1 \ : : :\Ld�1)jY and therefore Y a subposetof P with dimension at most d� 1.During the game, Algorithm uses Shmerl's algorithm (see Theorem 2.1) to generatean on-line antihain partition of P� of size at most �h(P�)+12 � 6 �w+12 �. Eah antihain Ain the partition of P� is a suborder of P. Its width is at most w and L1jA; : : : ; Ld�1jAis a (d � 1) realizer. Therefore, it an reursively be partitioned into �w+12 �d�2 hains.Altogether the Algorithm uses at most �w+12 �d�2+1 hains. �The next theorem deals with up-growing orders presented with a 2-realizer. Themotivation to onsider suh a restrited setting omes from the results of Szemer�edi andFelsner (see Theorems 3.1 and 3.5). The poset onstruted in the proof of Theorem 3.1is 2-dimensional but not up-growing. On the other hand, the up-growing order as usedin the original proof of Theorem 3.5 was not 2-dimensional. The following result showsthat the value �w+12 � remains a lower bound even if we onsider on-line orders whih areboth: up-growing and 2-dimensional.Theorem 6.2. The value of the on-line hain partition game for 2-dimensional up-growing orders of width w presented with representation is at least �w+12 �.Proof. The argument is inspired by the proof of the lower bound from Theorem 3.5from [Fel97℄. However, we have to take are that all onstrution steps preserve thedimension. This is ahieved by restriting the operations used by the Spoiler's strategyto only very elementary ones. For the desription of the operations we need an easy fatabout 2-dimensional orders.Claim 6.3. IfP is a 2-dimensional order with a realizer L1, L2 and the maximal elementsof P are ordered as in L1, i.e., max(P) = fx1; : : : ; xwg and x1 <L1 : : : <L1 xw, then theirorder is reversed in L2, i.e., xw <L2 : : : <L2 x1. We all (x1; : : : ; xw) the sorted antihainof maximal elements of P.Given the sorted antihain (x1; : : : ; xw) of maxima and two indies 1 6 i 6 j 6 w weintrodue the following operations extending the order in an up-growing way:abovei;j Add a new element y with relations xi < y, xi+1 < y; : : : ; xj < y and all relationsimplied by transitivity but no others.lefti;j Always preeded by abovei;j. Add a set yi+1; yi+2; : : : ; yj of twin elements suh thateah ys from this set has relations xi+1 < ys; : : : ; xj < ys and all relations implied bytransitivity but no others. The index of the element y introdued by the preedingmove abovei;j is i, i.e., yi = y.



ON-LINE CHAIN PARTITIONS OF ORDERS: A SURVEY 19righti;j Always preeded by abovei;j. Add a set yi; yi+1; : : : ; yj�1 of twin elements suhthat eah ys from this set has relations xi < ys; : : : ; xj�1 < ys and all relations impliedby transitivity but no others. The index of the element y introdued by the preedingmove abovei;j is j, i.e., yj = y.The ombination of a move abovei;j followed by a move lefti;j is illustrated in Fig. 14.Throughout the strategy Spoiler repeatedly makes a move of type abovei;j and dependingon the olor given to the new element y, Spoiler ompletes the operation with a moveof type either lefti;j or righti;j.Claim 6.4. If L1, L2 is a realizer of P and P+ is obtained by a move abovei;j followed bylefti;j then L1, L2 an be extended to a 2-realizer L+1 ; L+2 ofP+. The same holds if abovei;jis followed by righti;j. In other words: the operations preserve the 2-dimensionality ofthe order.
yi+1xi�1 yixi+1 ...

...
...

... yj
L1

L2
xj

xi
xj+1Figure 14. Combination of abovei;j followed by lefti;j.Reall that top(�) is the top element of the �-hain. If x is a maximal element ofan order partitioned into hains then private(x) is the set of hains � with top(�) 6 xand top(�) 66 y for all maximal elements y 6= x. The general idea is to keep trak ofthe number of private hains for the onseutive maxima and make Algorithm produea large number of them. The workhorse for the proof of the theorem is the followingproposition.Proposition 6.5. Fix a number Z 2 N. Let P be a 2-dimensional order of width wwith sorted antihain (x1; : : : ; xw) of maximal elements and let a hain partition of P begiven. There is a strategy S(i; j), for all i 6 j, whih extends P in an up-growing way byusing only the three operations desribed above suh that the width remains w and everyon-line hain partitioning algorithm has to tolerate one of the following two results forthe sorted antihain of maximal elements (z1; : : : ; zw) of the resulting order:(i) jprivate(zr)j > r � i+ 1 for all r = i; : : : ; j, or(ii) the algorithm has used more than Z olors.Moreover for all s 62 fi; i+1; : : : ; jg we have zs = xs and private(xs) was not a�eted bythe play of S(i; j).



20 B. BOSEK, S. FELSNER, K. KLOCH, T. KRAWCZYK, G. MATECKI, AND P. MICEKProof. The proof is by indution on j � i. For j = i we are in ase (i) without doinganything, just observe that the olor of the hain to whih xi has been assigned is anelement of private(xi), hene j private(xi)j > 1.For the indution step we begin with strategy S(i + 1; j) whih may result in ase(ii) so that we an stop. In the interesting ase S(i+ 1; j) ends with a sorted antihainof maximal elements (y1; : : : ; yw) suh that j private(yr)j > r � (i + 1) + 1 = r � i forr = i + 1; : : : ; j. The next step is a move of type abovei;j. Let the new element y beassigned to hain . We distinguish two ases:(a) If  62 private(yj) then a move righti;j follows. This results in a new sorted antihain(y1; : : : ; yw) of maximal elements with j private(yj)j > j � i+ 1. Playing S(i; j � 1)results in one of the two outomes laimed for S(i; j).(b) If  2 private(yj) then ontinue with a move lefti;j. This results in a sorted antihain(y1; : : : ; yw) of maximal elements with one more hain  in the set private(yi) thanbefore. Continue with another iteration of strategy S(i + 1; j). This or one of thefollowing iterations of S(i+1; j) may result in ase (a). If ase (a) is avoided, thenafter Z iterations we have j private(yi)j > Z and, hene, state (ii) of the proposition.�To prove the theorem we �x Z > �w+12 �. Starting with an initial antihain (x1; : : : ; xw)apply strategy S(1; w). After ompletion of S(1; w) we either have reahed Z olors, or,the �nal sorted antihain (z1; : : : ; zw) of maximal elements has the property that theprivate olors of the elements obey j private(zi)j > i for eah 1 6 i 6 w. Hene, the totalnumber of hains used is at least 1 + 2 + : : :+ w = �w+12 �. �7. First-FitProbably, the simplest strategy for Algorithm in the on-line hain partition gameis First-Fit, a strategy assigning the new point to a hain with the smallest possiblenumber. Spoiler an make First-Fit use arbitrarily many hains already on orders ofwidth 2. An example of Kierstead [Kie86℄, see Fig. 15, shows how to fore 3; 4; 5; : : :hains.
3 x21 12x1x4 x3 31 121 4231 12x6x51 42 x7 35 12x11 x10x9x8

Figure 15. First-Fit fored to use 5 hains on an order of width 2.Reently, Bosek, Krawzyk and Szzypka [BKS℄ proved that First-Fit uses at most3kw2 hains on (k+ k)-free orders of width w, i.e., orders with no two inomparablehains of size k. It is likely that indeed First-Fit uses only O(w) hains on (k+ k)-freeorders (see Problem 3). Note that the ase k = 2 deals with interval orders.Several papers investigate the performane of First-Fit for interval orders. This provedto be an exiting and a hallenging problem. The upper bound for the number of hains



ON-LINE CHAIN PARTITIONS OF ORDERS: A SURVEY 21used by FF on interval orders has a long history: O(w2) by Woodall, 40w [Kie88℄, 26w[KQ95℄, 10w [PR05℄, and 8w [BKT℄, [NSB08℄. The paper of Pemmaraju and Raman[PR05℄ introdued a ompletely new and elegant tehnique alled the olumn onstru-tion method. The authors ahieved an upper bound of 10w, overlooking one detailleading later to 8w. From the other side, Chrobak and �Slusarek [C�S88℄ showed that FFan be fored to use 4:4w �  hains on a olletion of intervals with lique-size w, forsome onstant . Kierstead and Trotter [KT℄ have reently improved this to 4:99w � .8. On-line adaptive hain partitionsOn-line adaptive hain partitioning is a variant of the game where Algorithm isstronger than in the standard game. In the adaptive variant Algorithm may assigna non-empty set of olors to the new point. The hoie of the set is restrited by theondition that the set of all points ontaining  in their set must form a hain. Beforeoloring an inoming point, Algorithm may remove olors from the sets of some olderpoints. Of ourse at least one olor has to remain for eah point. Figure 16 shows anexample of an adaptive game.
f1g f2g f3g f1g f2g f3g f1g f2g f3gf1; 2g f3gx yf1; 2; 3g

Figure 16. Spoiler fores 4 olors on the order of width 3. If Algorithmstiks to three olors, either x or y has only one olor upon the arrival ofy. In both ases Spoiler may present a point foring the fourth olor.The value adapt(w) of the on-line adaptive hain partition game is the least integers suh that Algorithm has a strategy using at most s olors on any on-line order ofwidth at most w. This variant of the game was introdued in [Fel97℄ in the up-growingvariant. The motivation was that the value of this game equals the on-line dimension ofup-growing orders.Very little is known about adapt(w). In partiular, no strategy using substantiallyless olors than in the original hain partition game is known for Algorithm. Theorem8.1 gives the best-known lower bound for adapt(w). We expet that this bound is farfrom the best possible. Theorem 8.2 is a reent preise result for up-growing orders ofheight 2.Theorem 8.1 (Bosek, Miek [BM℄). The value of the on-line adaptive hain partitiongame for up-growing orders of width w is at least (2� o(1))w.Theorem 8.2 (Kozik, Mateki [KM℄). The value of the on-line adaptive hain partitiongame for up-growing orders of height at most 2 and width w is (1 + �= osh(p32 �) �o(1))w � 1:41w. 9. Open problemsDespite the reent progress, the big hallenge in the �eld of on-line hain partitionsremains to lower the gap between upper and lower bound in the unrestrited setting.



22 B. BOSEK, S. FELSNER, K. KLOCH, T. KRAWCZYK, G. MATECKI, AND P. MICEKHopefully we have onvined the reader that onsidering variants and restrited ver-sions of this problem an also lead to interesting strutures and beautiful mathematis.We feel that together with the restritions to speial lasses of orders, two types ofrestrition whih redue the power of Spoiler are interesting:(i) the up-growing ase,(ii) the ase where Spoiler has to present the order with a geometri representationwhih erti�es the membership of the order in a given lass.Below is a table of related results and open problems. Columns U and R of the tableindiate whether Spoiler has to play up-growing and with a geometri representation,respetively. In partiular it would be very interesting to answer the following questions:Problem 1. What is the value of the on-line oloring game in whih Spoiler presentsunit-length/proper intervals? It is likely that the values of these two variants of thehain partition game for semi-orders with representation are di�erent. The best knownlower and upper bound is 32w and 2w � 1, respetively. Moreover, any greedy on-linealgorithm may be fored to use 2w � 1 hains.Problem 2. What is the value of the on-line hain partitioning game for 3-dimensionalorders with geometrial representation? In this ase the lower and upper bound are�w+12 � and �w+12 �2, respetively.Problem 3. Does the First-Fit algorithm use O(w) hains on (k+ k)-free orders?Problem 4. What is the strit bound for the number of olors (hains) used by theFirst-Fit algorithm on a olletion of intervals with lique-size at most w? The urrentlower bound is 4:99w and upper bound is 8w. Trotter onjetures it to be 5w.Problem 5. Is adapt(w) bounded from above by a polynomial of w? The linear lowerbound (2� o(1))w is rather weak. Referenes[AG07℄ Anurag Agarwal and Vijay K. Garg. EÆient dependeny traking for relevant events inonurrent systems. Distrib. Comput., 19(3):163{183, 2007.[BBM07℄ Patrik Baier, Bart lomiej Bosek, and Piotr Miek. On-line hain partitioning of up-growinginterval orders. Order, 24(1):1{13, 2007.[BK℄ Bart lomiej Bosek and Tomasz Krawzyk. Subexponential upper bound for an on-line hainpartitioning problem. in preparation.[BKS℄ Bart lomiej Bosek, Tomasz Krawzyk, and Edward Szzypka. First-�t algorithm for on-linehain partitioning problem. submitted.[BKT℄ Graham Brightwell, Henry A. Kierstead, and William T. Trotter. unpublished result.[BM℄ Bart lomiej Bosek and Piotr Miek. On-line dimension of up-growing orders. unpublished.[Bos08℄ Bart lomiej Bosek. On-line hain partitioning approah to sheduling. PhD thesis, JagiellonianUniversity, 2008.[Bro05℄ Przemys law Broniek. On-line hain partitioning as a model for real-time sheduling. In Pro-eedings of the Seond Workshop on Computational Logi and Appliations (CLA 2004),volume 140 of Eletron. Notes Theor. Comput. Si., pages 15{29 (eletroni), Amsterdam,2005. Elsevier.[C�S88℄ Marek Chrobak and Maiej �Slusarek. On some paking problem related to dynami storagealloation. RAIRO Inform. Th�eor. Appl., 22(4):487{499, 1988.[DM41℄ Ben Dushnik and E. W. Miller. Partially ordered sets. Amer. J. Math., 63:600{610, 1941.



ON-LINE CHAIN PARTITIONS OF ORDERS: A SURVEY 23lass U R value remarks1 all orders ? (2� o(1))�w+12 � 6 ? 6 w16 lg(w);Theorem 3.2 and [BK℄2 all orders + �w+12 � [Fel97℄3 interval orders 3w � 2 [KT81℄4 interval orders + 3w � 2 [KT81℄, [C�S88℄5 interval orders + 2w � 1 [BBM07℄6 interval orders + + w [Bro05℄7 semi-orders 2w � 1 Proposition 5.18 semi-orders + ? 32w 6 ? 6 2w � 1;Proposition 5.39 semi-orders + b1+p52 w [FKMM℄10 semi-orders + + w from line 611 2-dimensional ? �w+12 � 6 ? 6 w16 lg(w);from lines 1 and 1412 2-dimensional + �w+12 � [KMT84℄13 2-dimensional + �w+12 � from lines 2 and 1414 2-dimensional + + �w+12 � from line 2 and Theorem 6.215 d-dimensional + ? �w+12 � 6 ? 6 �w+12 �d�1; [KMT84℄Table 1. On-line hain partitions of orders: known results and open problems.[Fel97℄ Stefan Felsner. On-line hain partitions of orders. Theoret. Comput. Si., 175(2):283{292,1997.[Fis70℄ Peter C. Fishburn. Intransitive indi�erene with unequal indi�erene intervals. J. Mathemat-ial Psyhology, 7:144{149, 1970.[FKMM℄ Stefan Felsner, Kamil Kloh, Grzegorz Mateki, and Piotr Miek. On-line hain partitions ofup-growing semi-orders. submitted.[GL88℄ Andr�as Gy�arf�as and Jen�o Lehel. On-line and �rst �t olorings of graphs. J. Graph Theory,12(2):217{227, 1988.[Kie81℄ Henry A. Kierstead. An e�etive version of Dilworth's theorem. Trans. Amer. Math. So.,268(1):63{77, 1981.[Kie86℄ Henry A. Kierstead. Reursive ordered sets. In Combinatoris and ordered sets, volume 57 ofContemp. Math., pages 75{102. Amer. Math. So., Providene, RI, 1986.[Kie88℄ Henry A. Kierstead. The linearity of �rst-�t oloring of interval graphs. SIAM J. DisreteMath., 1(4):526{530, 1988.[Kie98℄ Henry A. Kierstead. Coloring graphs on-line. In Online algorithms, volume 1442 of LetureNotes in Comput. Si., pages 281{305. Springer, Berlin, 1998.[KM℄ Jakub Kozik and Grzegorz Mateki. in preparation.[KMT84℄ Henry A. Kierstead, George F. MNulty, and William T. Trotter. A theory of reursivedimension for ordered sets. Order, 1(1):67{82, 1984.
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