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A finite set of points is generic if no two points are on the same vertical or
horizontal line. The set is orthogonally convex if every point has an empty quadrant.
We study the smallest integer No(n) such that every generic set of No(n) points
contains a orthogonally convex subset of size n. For even n we know the exact value,
and in the odd case we get close upper and lower bounds. Generic sets correspond to
permutations in a canonical way. A permutation is convex if it is order isomorphic
to a finite generic set of points in convex position. The value of No(n) is also the
smallest N such that every permutation of N contains a convex subpermutation of
size n.

1 Introduction

In 1935, Erdős and Szekeres [2] proved that for each n there there exists a smallest positive
integer N(n) such that every set of at least N(n) points in the plane in general position contains
a subset of n points in convex position. They proved the upper bound of N(n) ≤

(
2n−4
n−2

)
+ 1

and conjectured that N(n) = 2n−2 + 1. In 2017, Suk [10] almost settled the Erdős-Szekeres
conjecture by showing that N(n) ≤ 2n+o(n).

A finite set X of points in the plane is in orthogonally convex position if every point x ∈ X
has a quadrant Qx such that the intersection of Qx with X is just x. We precisely determine
the smallest positive integer No(n) such that every set of at least No(n) points in the plane in
generic position, i.e., no two points on a common horizontal or vertical line, contains a subset
of n points in convex position. In contrast to the situation in the classical Erdős and Szekeres
problem, the growth of No(n) is only quadratic.
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Theorem 1.1. For each n ≥ 4 there exists a smallest positive integer No(n) such that each
finite set of No(n) points in generic position contains an orthogonally convex subset of size n.
When n is even, the value of No(n) is given by

No(n) =

(
s+ 1

2

)
+ 1 =

1

8
(n2 + 2n+ 8), for n = 2s.

In the odd case with n = 2s− 1, we have the upper bound No(n) ≤
(
s+1
2

)
− 1 = 1

8(n
2 + 4n− 5)

and two lower bounds: if n = 4t− 1, then No(n) ≥ 2t2 +1 = 1
8(n

2 +2n+9), and if n = 4t− 3,
then No(n) ≥ 2t2 − 2t+ 2 = 1

8(n
2 + 2n+ 13).

The proof of the theorem in Section 3 depends on the Ferrers shape associated with an order.
According to a theory of Greene and Kleitman this shape depends on the maximum sizes of
families of chains and antichains.

The bridge from partial orders to orthogonal convexity is via permutations which can be
interpreted as 2-dimensional partial orders or as point sets. In Section 2 we describe these
connections. There we also introduce terminology and concepts from orthogonal convexity.
Albert et al. [1] define convex permutations as permutations which are order isomorphic to a
finite generic convex set, i.e., the points of the plot of the convex permutation can be displaced
such that they are the corners of a convex polygon without changing their horizontal and
vertical order. They consider the least Nc(n) such that every permutation of length Nc(n)
contains a convex subpermutation of length n. Albert et al. prove that n2/8 < Nc(n) < n2/4.
Since the Erdős and Szekeres problems for orthogonal convexity and permutation convexity are
the same (Proposition 2.2) we also establish that Nc(n) is slightly above n2/8 + n/4.

2 Orthogonal convexity and related concepts

A finite set X ⊆ R2 in general position is in convex position if X is the set of corners of its
convex hull which is a convex polygon.

The definition of orthogonal convexity is as follows: A set A ⊆ R2 is orthogonally convex
(o-convex ) if and only if A ∩ L is connected whenever L is a horizontal or a vertical straight
line in R2. In particular, A ∩ L is empty, a single point, a line segment, a half-line or all of L.
Note that orthogonally convex sets need not be connected. Various definitions of an orthogonal
convex hull have been proposed in the literature, see Ottman et al. [9], and the more recent book
about the more general concept of restricted-orientation convexity [4]. Some of the definitions
of the orthogonal convex hull lead to a convex hull which is not unique and in all definitions
the convex hull of a set of points may be disconnected.

We base our investigations on the notion of an extremal point of a set. This allows us to
speak about point sets in orthogonally convex position without deciding on a definition of the
orthogonal convex hull.

A finite set X ⊆ R2 in general position is in convex position if every point x ∈ X is extremal
in X, i.e., there is a halfplane Hx such that Hx∩X = {x}. In the orthogonal setting we replace
the halfplane by a quadrant. A finite set X ⊆ R2 in generic position is in o-convex position if
to every point x ∈ X there is a quadrant Qx such that Qx ∩X = {x}, i.e., every point of X is
o-extremal.

Let X be a generic set of n points in the plane. With X we associate a permutation π(X)
as follows: The points of X are labeled from 1 to n by increasing y-coordinates. Then to
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obtain π(X) we list the labels by increasing x-coordinate. Two generic point sets with identical
permutations are called order isomorphic. With a permutation π : [n] → [n] we associate the
point set Xπ = {(i, π(i)) : i ∈ [n]}. This representation is the plot of the permutation. The
plot is a canonical representative of the order isomorphism class of π.

A convex permutation is a permutation whose order isomorphism class contains a point
set in convex position. Convex permutations were introduced by Albert et al. [1]. They
study enumeration questions and the Erdős-Szekeres problem for convex subpermutations of
permutations. With the following proposition they make convex permutations accessible for
their study. The entry τ(j) is a left-to-right maximum of the permutation τ if τ(i) < τ(j) for
all i < j. We denote the set of left-to-right maxima of τ as LRmax(τ). The sets LRmin(τ)
(left-to-right minima), RLmin(τ) (right-to-left minima), and RLmax(τ) (right-to-left maxima)
are defined alike. An entry is extremal if it belongs to the union of the four sets.

Proposition 2.1 (Albert et al. [1]). A permutation is convex if and only if all its entries are
extremal.

Let X be a point set in the order isomorphism class of τ and let p be the point of X
corresponding to the entry τ(j) of τ . Then p is o-extremal in X if and only if τ(j) is extremal
in τ . Indeed, the o-extremality of p is witnessed by the 1st quadrant if and only if τ(j) is a
right-to-left maximum. Similarly points with a witnessing 2nd quadrant correspond to left-to-
right maxima, while points with a witnessing 3rd quadrant correspond to left-to-right minima,
and those with a witnessing 4th quadrant to right-to-left minima. With these observations we
obtain the following consequence of Proposition 2.1.

Proposition 2.2. A permutation is convex if and only if the point sets in its order isomorphism
class are o-convex.

Permutations and their plots, or equivalently generic point sets, can be interpreted as 2-
dimensional orders with a given realizer. This remark allows us to shift between notation and
concepts from order theory and from the world of permutations. Most important to us is
the equivalence of chains/antichains in point sets and increasing/decreasing subsequences in
permutations. In the following we will think of X as a point set, an order, and a permutation
interchangeably.

3 The Ferrers shape of a point set

A partition is a weakly decreasing sequence λ = (λ1, λ2, . . . , λk) of positive integers. With a
partition λ, one associates its Ferrers diagram (also called Ferrers shape), which is a down-
set of squares in the first quadrant with λi squares in the i-th row. The Robinson-Schensted
correspondence is a bijection between permutations and pairs (P,Q) of Young tableaux of the
same shape. We denote the Ferrers shape of the tableaux associated with π as F (π).

A k-chain of an order P = (X,<P ) is defined as a family of k pairwise disjoint chains, and a
ℓ-antichain is a family of ℓ pairwise disjoint antichains. Interest in k-chains and ℓ-antichains of
orders goes back to Greene and Kleitman [8, 7] who discovered a rich duality between maximum
k-chains and maximum ℓ-antichains. The following theorem is part of the theory.

Theorem 3.1. With an ordered set P with n elements there is an associated integer partition
λ of n with Ferrers shape F (P ), such that the number of squares in the k longest columns of
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F (P ) equals the maximal number of elements covered by a k-chain of P , and the number of
squares in the ℓ longest rows of F (P ) equals the maximal number of elements covered by an
ℓ-antichain of P .

It is known that if X is a generic point set in the order isomorphism class of π and P = (X,<)
is the dominance order on X, then F (π) = F (P ). This follows from work of Greene [6] and
from Viennot’s [11] planarized version of the Robinson-Schensted correspondence, see also [3].

Figure 1 shows an example. In this case the Ferrers diagram F of the point set corresponds
to the partition (5, 3, 3, 2, 2, 1). Several proofs of Theorem 3.1 are known. The approach taken
by András Frank [5] is particularly elegant and provides additional insight into the interplay
of maximum chain and antichain families. Following Frank we call a chain family C and an
antichain family A of an order P = (X,<) an orthogonal pair if the following two conditions
hold:

(1) X =
( ⋃
A∈A

A
)

∪
( ⋃
C∈C

C
)
, and (2) |A ∩ C| = 1 for all A ∈ A, C ∈ C.

Frank proved the existence of a sequence of orthogonal chain and antichain families. The
sequence consists of an orthogonal pair for every point from the boundary of F (P ). With the
point (k, ℓ) from the boundary of F (P ) we get an orthogonal pair (C,A) such that C is a
k-chain and A is an ℓ-antichain. (See Figure 1.)

F

X

9
2
14
4
12

6
1

10
16
3
5
7
8
11
15
13

1 2 3 4 5 6 7 8 910111213141516

π

Figure 1: A point set X where the blue segments are the edges of the diagram of P = (X,<),
the Ferrers shape F = F (P ) and two orthogonal pairs of X. The orthogonal pairs,
with chains outlined in blue and antichains in pink, correspond to the boundary points
(3, 3) and (2, 5) of F , . The elements of the corresponding rectangles are emphasized.

If (C,A) is an orthogonal (k, ℓ)-pair in X, then there are exactly k · ℓ points in X which
belong to a chain of C and an antichain of A. We call such a set R a (k, ℓ)-rectangle of X,
formally R = {C ∩A : C ∈ C and A ∈ A}.

A rectangle R is a point set in its own right. It can be seen as an order and it comes with a
permutation.

Lemma 3.2. If R is a (k, ℓ)-rectangle, then width(R) = k and height(R) = ℓ.

Proof. Let (C,A) be the orthogonal (k, ℓ)-pair defining R. Since R can be covered by k chains
width(R) ≤ k. Further, every antichain A in A has a nonempty intersection with each of the
k disjoint chains of C, hence, |A| ≥ k. With width(R) = max(|A| : A antichain in R) we
get width(R) = k. The argument for height(R) is dual, by exchanging the role of chains and
antichains and the letters k and ℓ.
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The canonical antichain partition of a poset P = (X,<) is constructed by recursively re-
moving all minimal elements from P and making them one of the antichains of the partition.
More explicitely A1 = Min(X) and Aj = Min

(
X \

⋃
{Ai : 1 ≤ i < j}

)
for j > 1. Note that by

definition for each element y ∈ Aj with j > 1 there is some x ∈ Aj−1 with x < y. Due to this
property there is a chain of h elements in P if the canonical antichain partition consists of h
non-empty antichains. This in essence is the dual of Dilworth’s theorem, i.e., the statement:
the maximal size of a chain equals the minimal number of antichains partitioning the elements
of P .

The transpose of a point set X is the set X⊤ = {(y, x); (x, y) ∈ X}. Mapping the canonical
antichain partition of X⊤ back to X yields the canonical chain partition of X. The following
lemma will be useful:

Lemma 3.3. The canonical antichain partition and the canonical chain partition of a (k, ℓ)-
rectangle R are an orthogonal pair of R.

Proof. Let A1, . . . , Ah be the canonical antichain partition. Since height(R) = ℓ and the canon-
ical antichain partition is a minimum antichain partition we have h = ℓ. From

⋃h
1 Ai = R, and

R = k · ℓ, and width(R) = k, we deduce that |Ai| = k for all i ∈ {1, .., ℓ}. The dual argument
yields |Cj | = ℓ for every chain Cj from the canonical chain partition. This also implies that Cj

must have a nonempty intersection with each Ai.

Proposition 3.4. Let R be a (k, ℓ)-rectangle with canonical chain and antichain partitions
C1, . . . , Ck and A1, . . . , Aℓ. All the points in A1, Aℓ, C1, and Ck are o-extremal, moreover, if
k > 1 and ℓ > 1, then |A1 ∪Aℓ ∪ C1 ∪ Ck| = 2(k + ℓ)− 4.

Proof. Let ρ be the permutation corresponding to R. Since A1 = Min(R), elements of A1 have
an empty 3-rd quadrant, so they are the elements of LRmin(ρ). Similarly Aℓ = Max(R) =
RLmax(ρ) and the elements of C1 and Ck correspond to LRmax(ρ) and RLmin(ρ). Hence, they
are all o-extremal. By construction the two chains and the two antichains are disjoint. A
chain and an antichain can share at most one point and they do, hence, |A1 ∪Aℓ ∪C1 ∪Ck| =
2(k + ℓ)− 4.

We now know that a large rectangle in X contributes a large o-convex set in X. To obtain a
sharp bound, however, we need a second type of o-convex set. A subset T of X is called 2-thin
if either width(T ) ≤ 2 or height(T ) ≤ 2.

Proposition 3.5. A 2-thin subset T of a point set X is o-convex.

Proof. If height(T ) ≤ 2, then T = Min(T ) ∪ Max(T ). Hence, every element of T has at least
one empty quadrant. The case of width(T ) ≤ 2 is dual.

Now let X be a point set and suppose that X contains no o-convex set of size m. Let F be
the Ferrers shape of X. The boundary of F is strictly below the line x+y = m+4

2 , otherwise X
would contain a (k, ℓ)-rectangle with 2(k+ℓ)−4 ≥ m. This contradicts the assumption. Hence
x+ y ≤ m+4

2 − 1
2 = m+3

2 .
The largest Ferrers shape F below this line belongs to the partition (m+1

2 , m−1
2 , . . . , 3, 2, 1).

This triangular shape has 1
8(m

2 +4m+3) cells. However, if X has the shape of this partition,
then it contains a 2-chain and a 2-antichain, each of size m+1

2 + m−1
2 = m, which are 2-thin

o-convex sets. It follows that we have to take off the extremal cells in the first row and the first
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column. The remaining shape is shown in Figure 2 is has 1
8(m

2 + 4m+ 3)− 2 cells. Adding a
cell to this shape makes an o-convex subset of size m unavoidable.

Note that we tacitly used that m+1 is even, i.e., m is odd. This yields the first upper bound
on No(m): if m = 2s− 1 and X has at least 1

8(m
2 +4m+3)− 1 =

(
s+1
2

)
− 1 elements, then X

contains an o-convex subset of size m.

Figure 2: The triangular shape with
(
s+1
2

)
cells is extremal for n = 2s. The extremal shape for

odd n = 2s− 1 is the truncated triangular shape with
(
s+1
2

)
− 2 cells. The depicted

shapes have s = 7.

For m = 2s the triangular partition (s, s− 1, . . . , 2, 1) is extremal. Rectangles in this shape
yield o-convex sets of size 2s−2 and the maximum 2-thin subsets have size 2s−1. The addition
of a single cell to this shape, however, yields a rectangle which contributes an o-convex set of
size 2s. This gives the upper bound on No(m) in the even case: if m = 2s and X has at least(
s+1
2

)
+ 1 = 1

8(m
2 + 2m+ 8) elements, then X contains an o-convex subset of size m.

Lower bound examples

From the analysis leading to the upper bound we know that matching lower bound examples
have to be point sets whose Ferrers shapes are the triangular and truncated triangular shapes
shown in Figure 2. Our examples will be weak orders, i.e., they are obtained by substituting
the elements of a chain by antichains. Albert et. al [1] used similar examples for their lower
bound and they called them layered permutations. We write X = W [a1, . . . , as] if X is obtained
from a chain C of size s by substituting the i-th element of C with an antichain Ai of size ai.
Figure 3 shows W [1, 3, 5, 7, 5, 3, 1] and W [1, 3, 5, 7, 6, 4, 2] and W [2, 4, 6, 8, 6, 4, 2].

Lemma 3.6. Let β1 = (a, a+2, . . . , a+2(j1−1), a+2j1) and β2 = (b+2j2, b+2(j2−1), . . . , b+
2, b) be an increasing and a decreasing sequence and let α = β1β2 be their concatenation. The
largest o-convex subset of W [α] is of size a+ b+ 2(j1 + j2).

Proof. Let K be an o-convex subset of W [a1, . . . , as] and suppose that i is the least index with
K ∩ Ai ̸= ∅ and j is the largest index with K ∩ Aj ̸= ∅. Then |K| ≤ ai + aj + 2(j − i − 1)
because Min(K) ⊆ Ai, Max(K) ⊆ Aj , and every antichain between Ai and Aj can contribute
at most two elements to K.

In β1 and β2 the step size is 2. Suppose Min(K) is an antichain Ai from β1. If K ′ is obtained
from K by removing Ai from K and adding Ai+1, then the size of K and K ′ is upper bounded
by the same value. This value is equal to the sum of the cardinalities of the largest antichain
coming from β1 and the largest of β2, i.e., K ≤ a+ b+ 2(j1 + j2).

Applying the bound of the lemma to appropriate point sets W [α] we obtain the lower bounds
on No(n) stated in Theorem 1.1.
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• The set W [1, 3, 5, . . . , 2t− 1, 2t, 2t− 2, . . . , 4, 2] contains no o-convex set of size 4t. Since
the size of the set is

(
2t+1
2

)
this shows that if n = 2s = 4t, then No(n) ≥

(
s+1
2

)
+ 1 =

1
8(n

2 + 2n+ 8).

• The set W [1, 3, 5, . . . , 2t + 1, 2t, 2t − 2, . . . , 4, 2] contains no o-convex set of size 4t + 2.
Since the size of the set is

(
2t+2
2

)
, this shows that if n = 2s = 4t + 2, then No(n) ≥(

s+1
2

)
+ 1 = 1

8(n
2 + 2n+ 8).

• The set W [1, 3, . . . , 2t− 3, 2t− 1, 2t− 3, . . . , 3, 1] contains no o-convex set of size 4t− 3.
Since the size of the set is t2 + (t − 1)2 this shows that if n = 4t − 3, then No(n) ≥
2t2 − 2t+ 2 = 1

8(n
2 + 2n+ 13).

• The set W [2, 4, . . . , 2t−2, 2t, 2t−2, . . . , 4, 2] contains no o-convex set of size 4t−1. Since
the size of the set is 2t2 this shows that if n = 4t−1, then No(n) ≥ 2t2+1 = 1

8(n
2+2n+9).

Figure 3: W [1, 3, 5, 7, 5, 3, 1] and W [1, 3, 5, 7, 6, 4, 2] and W [2, 4, 6, 8, 6, 4, 2], they are conjec-
tured to be maximum point sets without o-convex subset of size 13, 14, and 15
respectively. Hence No(13) ≥ 26, No(14) ≥ 29, No(15) ≥ 33. We also know
No(13) ≤ 27, No(14) ≤ 29, No(15) ≤ 35.

4 Open Problems and Future Directions

For odd values of n we have not yet been able to precisely determine the value of No(n). We
believe that the lower bound is tight. Since our lower bound examples are weak orders they
have the property that they admit a chain partition C and an antichain partition A such that
for all (k, ℓ) the k longest chains of C together with the ℓ largest antichains of A form an
orthogonal pair. (In the terminology of West [12] these partitions are completely saturated). It
is easy to show that restricted to point sets with the above property the lower bound is tight.
The crucial property is that in this case we find an o-convex subset of size 2(k+ℓ)−1 whenever
(k, ℓ) is a concave corner on the boundary of the Ferrers shape, i.e., (k+1, ℓ) and (k, ℓ+1) are
points of the boundary as well.

To close the gap between upper and lower bound in the odd case we either need lower
bound examples with a more complex structure or additional techniques for constructing large
o-convex subsets.
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Another interesting problem, in addition to studying subsets in o-convex position, is the
study of o-convex holes, namely, finding o-convex subsets whose interior is empty. Let Ho(n)
be the least integer such that every generic point set of size at least Ho(n) contains an o-convex
hole of size n. Clearly Ho(n) ≥ No(n) >

1
8n

2. Since every chain and antichain is an o-convex
hole the lemma of Erdős-Szekeres yields the upper bound Ho(n) ≤ (n− 1)2 + 1.
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