
On the Number of Arrangements of PseudolinesStefan FelsnerFreie Universit�at Berlin,Fachbereich Mathematik und Informatik,Takustr. 9, 14195 Berlin, GermanyE-mail: felsner@inf.fu-berlin.deAbstract. Given a simple arrangement of n pseudolines in the Euclidean plane, associatewith line i the list �i of the lines crossing i in the order of the crossings on line i.�i = (�i1; �i2; ::; �in�1) is a permutation of f1; ::; ng � fig. The vector (�1; �2; : : : ; �n) isan encoding for the arrangement. De�ne � ij = 1 if �ij > i and � ij = 0, otherwise. Let�i = (� i1; � i2; ::; � in�1), we show that the vector (�1; �2; : : : ; �n) is already an encoding.We use this encoding to improve the upper bound on the number of arrangementsof n pseudolines to 20:6974�n2 . Moreover, we have enumerated arrangements with 10pseudolines. As a by-product we determine their exact number and we can show thatthe maximal number of halving lines of 10 point in the plane is 13.1 IntroductionArrangements of lines and pseudolines are recognized as important and appealing objectsfor research in geometry and combinatorics. A general theory of arrangements is givenin Gr�unbaum's monograph [8]. The oriented matroid point of view on arrangements istaken in Bj�orner et al. [2]. Enumeration questions for arrangements are discussed in ([2],Subsection 6.5) and in Knuth ([9], Section 9). In most texts arrangements of pseudolinesare de�ned with the real projective plane as ambient space. In contrast, we considerarrangements in the Euclidean plane.Let a pseudoline be an x-monotone curve in the Euclidean plane. An arrangement ofpseudolines is a family of pseudolines with the property that each pair of pseudolines hasa unique point of intersection where the two pseudolines cross. An arrangement is simpleif no three pseudolines have a common point of intersection. Throughout this manuscriptthe term arrangement if not speci�ed further will always denote a simple arrangementof pseudolines. The size of an arrangement is the number of its pseudolines. Given anarrangement A of size n we label the pseudolines so that they cross a vertical line left ofall intersections in increasing order from bottom to top.An arrangement partitions the plane into cells of dimensions 0, 1 or 2, the vertices,edges and faces of the arrangement. The cells of an arrangement carry a natural latticestructure. Adding a 0 and a 1 element we obtain the face lattice of the arrangement. Twoarrangements are considered to be isomorphic if their face lattices are isomorphic underthe correspondence induced by some labeling.Particularly nice pictures of arrangements of pseudolines are given by their wiringdiagrams introduced in Goodman [5], see Figure 1. LetW be a wiring diagram of a simple1



Counting Arrangements 2arrangement of size n. For each abscissa x where no crossing takes place the vertical order(upwards) of the pseudolines at x is a permutation �x of f1::ng. Assuming that no twocrossings of W have the same x position we obtain �n2�+1 di�erent permutations. Denoteby � the sequence of these permutations in left to right order. We note two properties ofsequence �.
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Figure 1. Wiring diagram.(1) The �rst element of � is the identity permutation (1; 2; : : : ; n) and the last elementof � is the reverse permutation (n; : : : ; 2; 1).(2) Two consecutive permutations in � di�er by the reversal of an adjacent pair.Following Goodman and Pollack [6, 7] we call a sequence � of �n2� + 1 permutations off1::ng satisfying the above properties a simple allowable sequence. In general allowablesequences it is allowed for consecutive permutations to di�er by the reversal of a largersubstring. A simple allowable sequence is easily transformed into a wiring diagram and,hence, an arrangement of pseudolines. Note, however, that many allowable sequencesmay correspond to the same arrangement. Consecutive pairs of crossings that have nopseudoline in common can be interchanged without changing the arrangement.
Figure 2. Wiring diagrams corresponding to one arrangementbut two allowable sequences.Simple allowable sequences are basically the same as re
ection networks, see Knuth [9].Alternatively, they can also be seen as maximal chains in the weak Bruhat order of thesymmetric group. In this last context their number An has been determined by Stan-ley [10]. His remarkable formula isAn = �n2�!Qn�1k=1(2n� 2k � 1)k :Edelman and Greene [3] prove this formula via a combinatorial bijection between di�erenttypes of tableaux.Let Bn be the number of non-isomorphic simple arrangements of size n. Besides thenumbersAn and Bn we will consider their logarithms an = log2An and bn = log2Bn. Fromthe above remarks it follows that there are more allowable sequences than arrangements,



Counting Arrangements 3i.e., bn < an. From Stanley's formula an O(n2 logn) upper bound for an follows. Knuth [9]proves lower and upper bounds for the number of arrangements:2n26 � 5n2 � Bn � 3(n+12 )This gives bn � 0:7924 (n2 + n). Knuth reports on some computations supporting aconjecture of bn � �n2�. From the sharpest version of the zone theorem (Bern et al. [1]) abound of bn � 0:7194 n2 is obtained. In the next section we propose a new encoding ofarrangements from which we easily obtain bn � 0:7213 n2. In Section 3 we work a littleharder to obtain an improved bound of bn � 0:6974n2.2 An encoding for arrangementsRepresenting an arrangement by an allowable sequence can be seen as an encoding by anordered sequence of vertical cuts through the arrangement. A representation by a sequenceof horizontal cuts can be obtained by associating with line i the list �i of the lines crossingi in the order of the crossings on line i. To an arrangement A thus corresponds a vector(�1; : : : ; �n) where �i is a permutation of f1; ::; i � 1; i + 1; ::; ng. As will be shown inthis section it su�ces to know which entries of �i are larger than i in order to obtain anencoding for A.De�nition 1 Let Tn be the set of n-tuples (�1; �2; : : : ; �n) with �i = (ti1; ti2; : : : ; tin�1) abinary vector and Pn�1j=1 tij = n� i for all i.De�ne a mapping � from arrangements of size n to Tn. Given an arrangement A let �ireport the crossings of pseudoline i with the other lines from left to right. More preciselytij = 1 if the j-th crossing on line i is a crossing with a line with index larger than i. In thewiring diagram this corresponds to a move of wire i up into the next track. Converselytij = 0 if line i is moving down at the j-th crossing, i.e., if the j-th crossing on line i isa crossing with a line with index smaller than i. Each of the n� 1 lines di�erent from icontributes exactly one crossing on line i and n� i of these lines have a larger label thani. This proves that (�1; �2; : : : ; �n) = �(A) is in Tn. E.g., the element of T4 correspondingto the arrangement represented by the wiring diagram of Figure 1 isT = ((1; 1; 1; 1); (0; 1; 1; 1); (0; 1; 1; 0); (1; 0; 0; 0); (0; 0; 0; 0)).Of course, not all elements of Tn correspond to an arrangement, e.g., for n = 4 wehave 9 elements in T4 but only 8 arrangements. The element of T4 not in the image of �is T = ((1; 1; 1); (1; 0; 1); (0; 1; 0); (0; 0; 0)).Theorem 1 The mapping � is injective.Proof. Algorithmically the tool of choice for the construction of the face lattice of anarrangement of pseudolines is a topological sweep (see Edelsbrunner and Guibas [4]).Imagine a sweep of arrangement A as a move of a topological line continuously from leftto right across the plane. All incidences between cells of the arrangement are visited bythe line during this move. We discretize the line and replace it by a cut of edges of thearrangement. This is a list (e1; e2; : : : ; en) of edges obeying the conditions:



Counting Arrangements 4(1) Edge e1 is on the boundary of the bottom face, i.e., on the face containing the verticalray to �1 and edge en is on the boundary of the top face, i.e., the face containingthe vertical ray to +1.(2) For each 1 � i � n� 1 there is a face Fi of the arrangement with edges ei and ei+1on its boundary.To get from the bottom face to the top face every pseudoline has to be crossed. Since a cutconsists of n edges only it follows that the order of edges of a cut represents a permutationof the lines of the arrangement. The sweep begins at the leftmost cut consisting of all leftunbounded edges. The permutation corresponding to this cut is the identity permutation.An advance move corresponds to shifting the topological line cross a point of thearrangement. The admissible points for advance moves are those with both left edges inthe current cut (Figure 3).
Figure 3. Advancing the cut across a vertex.To make the algorithm deterministic our sweep always has to pick the lowest admis-sible point for the advance move. Formally, let i be the least index such that the rightendpoints of edges ei and ei+1 coincide in the current cut (e1; : : : ; en). The next cut is(e1; ::; ei�1; e0i; e0i+1; ei+2; ::; en) where e0i is the edge right of ei+1 on the same pseudolineand e0i+1 is the edge right of ei on the same pseudoline. In general, if two cuts di�er byan advance move the corresponding permutations di�er by an adjacent transposition. Aslong as some edges in the cut have right endpoints an advance move is possible. Thealgorithm terminates when the current cut has become the rightmost cut consisting of allright unbounded edges and the vertical order of the lines is reversed. The sequence ofpermutations of the cuts visited by the algorithm is a cannonical allowable sequence forthe arrangement.The next algorithm works with input �(A) and produces a sequence of permutations.The �rst permutation � = (�1; ::; �n) is the identity. We initialize an edge counter s(i) = 1for each line i and let vi = t�is(�i). The bit-state of the algorithm is the vector v =(v1; v2; : : : ; vn). It will be important to keep in mind that v depends on � and s. Initiallyvi is simply the �rst bit of �i where �(A) = (�1; : : : ; �n).In each step the algorithm takes the least index i with vi = 1 and vi+1 = 0. Edge coun-ters s(�i) and s(�i+1) are increased by one and � is changed by an adjacent transpositionat position i, i.e., � becomes (�1; ::; �i�1; �i+1; �i; �i+2; ::; �n).The claim is that sweeping A and �(A) produces the same sequence of indices i foradvance moves and consequently the same, i.e, the cannonical allowable sequence. Wecompare the two sweeps by making simultaneous advance steps in both algorithms. Lete = (e1; : : : ; en) be the current cut and v = (v1; : : : ; vn) be the current bit state. Thefollowing invariant su�ces to prove the claim by induction.



Counting Arrangements 5(?) The current permutation of both algorithms agree. Moreover, the least i such thatthe right endpoints of ei and ei+1 coincide equals the least i with vi = 1 and vi+1 = 0.This is trivially veri�ed at the beginning. Now suppose that (?) is true after some �xednumber of moves of both algorithms.Both algorithms make their next advance at the same index i and the two lines involvedin the crossing are determined by the permutation, hence, they are the same. It followsthat the new permutations agree. Let � be the new permutation, e be the new cut and vbe the new bit state. Consider any index j with vj = 1 and vj+1 = 0. This means that atits next crossing line �j is moving up while line �j+1 is moving down at its next crossing.Since line �j is below line �j+1 and they border a common face in A they cross each other,i.e., edges ej and ej+1 have a common right endpoint. Conversely, if edges ej and ej+1have a common right endpoint then line �j is moving up while line �j+1 is moving downat the next crossing, hence, vj = 1 and vj+1 = 0. This proves the invariant.By (?) the sweep algorithms for A and �(A) produce the same allowable sequence.The sequence characterizes arrangement A. This proves the injectivity of mapping �.We have seen that � is an injective mapping from arrangements of size n to elementsof Tn. Counting elements of Tn is a trivial task, jTnj = �n�10 ��n�11 ��n�12 � : : : �n�1n�1�.Fact 1. bn <Pn�1k=1 k log e = 0:7213 (n2 � n).Proof. Let f(n) = �n�10 � : : : �n�1n�1�, hence f(n) = (n�1)n�1(n�1)! f(n�1). The formula of Stirlinggives log f(n) = (n� 1) log e+ log f(n� 1). The claim follows by induction. 4Compared to the best known bound bn � 0:7194 n2 this was surprisingly easy to obtain.For a better understanding of the encoding � it would be interesting to have some toolsto discriminate between members from Tn that are in the image of � and those that arenot. At this time we have little more than the second algorithm from the above proof. Wecan take arbitrary elements T 2 Tn as input to this algorithm. The two possible outcomesare.(1) The algorithm gets stuck before �n2� moves have been made, i.e., in the current vectorV there is no index i with vi = 1 and vi+1 = 0.(2) T indeed corresponds to an arrangement.Other cases can be ruled out as follows. Suppose that T can be swept and consider thesequence of permutations generated. Since line i moved up n � i times and down i � 1line i ends up on wire n� i+1. This proves that we end up with the reverse permutation.Hence, the sequence is allowable and corresponds to an arrangement.3 A better bound for bnRecall the element T = ((1; 1; 1); (1; 0; 1); (0; 1; 0); (0; 0; 0)) of T4 not in the image of �.Trying to sweep T we get stuck after three moves. At the second move we already notethat something goes wrong since the lines involved in the crossing of the �rst move crossback. Call an immediate back-cross a situation where two lines cross twice in a row.Geometrically this corresponds to two edges with the same left and right endpoints. Whensweeping T 2 Tn we recognize an immediate back-cross when the pair (vi; vi+1) = (1; 0) of



Counting Arrangements 6the move is replaced by (v0i; v0i+1) = (1; 0), i.e., the vectors v and v0 before and after themove are identical.Note that the sweep corresponding to T 2 Tn is completely determined by the initialvector v and a sequence of replace pairs w1; w2; : : : ; w(n2). If the jth move of the sweepinterchanges �i and �i+1 we replace (vi; vi+1) = (1; 0) by the pair wj = (w1j ; w2j ). Asequence of replace pairs leads to an immediate back-cross exactly if one of the pairswj is (1; 0). The number of back-cross free elements of Tn and, hence, the number ofarrangements can thus be estimated from above by the number of initial vectors v andthe number of (1; 0) free sequences of replace pairs. For v there are � 2n choices and foreach pair wj there remain 3 choices, therefore:Fact 2. Bn � 2n3(n2), i.e, bn � 0:7924 n2 +O(n).The proof of Fact 1 made use only of the number of 0 and 1 in each �j. The proof ofFact 2 is based on forbidding immediate back-crossings. With the replace matrix we nextde�ne a representation that helps to take care of both aspects. Estimating the number ofreplace matrices will enable us to slightly improve the upper bound for bn in Theorem 2.De�nition 2 A replace matrix is a binary n� n matrix M with properties(1) nXj=1mij = n� i for i = 1; ::; n,(2) mij � mji for all i < j.Lemma 1 There is an injective mapping 	 from arrangements of size n to n�n replacematrices.Proof. Consider �(A) and let mii = ti1, that is, we record the initial v of the sweep of�(A) along the diagonal of M . If in the kth move of the sweep of �(A) lines i and j crosswe de�ne mij = 1 if the next crossing (after the crossing with line j) of line i goes up andmij = 0 if the next crossing of line i goes down, respectivly mij = tis(i)+1. If i < j then attheir crossing line i is going up and line j is going down. Since the lines don't back-crosswe have (mij;mji) 6= (0; 1) or equivalently mij � mji. After the complete sweep of �(A)we remain with a single unde�ned entry in each row of M . Let this entry be 0. Supposei < j and mij was the last unde�ned entry of its row. It follows that after crossing j frombelow line i was not involved in further crossings. If line j had a further crossing then ithad to move down there since the position above j was occupied by i, hence, mji = 0.Otherwise line j had no further crossings and again mji = 0.Property (1) of replace matrices is easily seen to hold for M as de�ned above. Theentries in row i ofM are the entries of �i in �(A) and an additional 0 in some permutation.Hence, M = 	(A) is a well de�ned replace matrix. To show that this mapping is injectivewe sweep M = 	(A) and reconstruct �(A). The details very similar to the arguments inthe proof of Theorem 1 are left to the reader.We illustrate this encoding of arrangements by replace matrices by giving the replace



Counting Arrangements 7matrix corresponding to the arrangement of Figure 1. In that caseM = 0BBBBB@ 1 1 1 0 11 0 0 1 11 0 0 0 10 0 0 1 00 0 0 0 0
1CCCCCATo obtain an estimate for the number of replace matrices we use probabilistic arguments.Consider the probability space 
 of all binary n� n matrices with Pnj=1mij = n � i fori = 1; ::; n and let M be an uniformly distributed random variable in 
. Let pi be theprobability that a �xed entry in row i of M is 0, i.e., pi = in , and qi = 1 � pi be theprobability that this entry is 1, i.e., qi = n�in .For i < j let Eij be the event mij � mji. Since mij 6� mji is equivalent to (mij;mji) =(0; 1) the probability of event Eij is Prob[Eij ] = (1� piqj). For the number Rn of replacematrices we have Rn = j
jProb[Vi<j Eij ].Carelessly assuming independence of the events Eij we obtain as estimate for Rn theproduct Qn�1k=0 �nk�Qi<j(1� i(n�j)n2 ). The logarithm of this function behaves like 0:66n2. Ofcourse due to the �xed row sums of matrices in 
 the Eij are not independent. Thereare positively and negatively correlated pairs Eij; Eij0 , therefore is not obvious in whichdirection the error made by ignoring dependencies goes. In the remaining part of thissection we derive a valid estimate for Rn.Lemma 2 If I is a subset of f(i; j): 1 � i < j � n � 1g such that Prob[E�jV�2J E�] �Prob[E�] for all � 2 I and J � I � � then Rn � j
jQ�2I Prob[E�].Proof. For every enumeration �1; ::; �jIj of I we have Prob[Vi<j Eij ] � Prob[V�2I E�] =QjIji=1 Prob[E�i jVj<iE�j ]. The assumption on I implies Prob[E�i jVj<iE�j ] � Prob[E�i ]for all i.Lemma 3 The set I = f(i; j): 1 � i � bn2 c < j � ng obeys the condition of Lemma 2.Proof. Let 
(i; j) be the set of matrices that can be obtained from matrices of 
 byremoving rows i and j. Think of 
(i; j) as the set of (n � 2) � n matrices with rowsindexed 1; ::; i � 1; i + 1; ::; j � 1; j + 1; ::; n and Pnl=1mkl = n � k for index k. GivenM 0 2 
(i; j) let #(M 0) be the number of matrices M in 
 that reduce to M 0 by removingrows i and j, equivalently #(M 0) counts the number of pairs (ri; rj) of rows that extendM 0 to a matrix in 
. Generalizing this notation let #(M 0 : E) be the number of pairs ofrows that extend M 0 to a matrix M in 
 so that E holds for M . Let � = (i; j) 2 I andJ � I � �. The following inequalities are equivalent.Prob[E�] � Prob[E�j �̂2J E�]Prob[:E�] � Prob[:E�j �̂2J E� ]Prob[:E�] � Prob[�̂2J E�] � Prob[:E� ^ �̂2J E�]



Counting Arrangements 8XM 02
(i;j)#(M 0::E�) XM 02
(i;j)#(M 0: �̂2J E�) � XM 02
(i;j)#(M 0) XM 02
(i;j)#(M 0::E� ^ �̂2J E�)XM 0N 02
(i;j)#(M 0::E�)#(N 0: �̂2J E�) � XM 0N 02
(i;j)#(M 0)#(N 0::E� ^ �̂2J E�)We claim that the last of these inequalities holds component-wise.Claim. for any pair M 0; N 0 of matrices in 
(i; j):#(M 0::E�)#(N 0: �̂2J E�) � #(M 0)#(N 0::E� ^ �̂2J E�)#(M 0) counts the number of pairs (ri; rj) of row vectors that extend M 0 2 
(i; j) toM 2 
. The condition on ri isPnl=1 ril = n� i, there are � nn�i� choices for ri. The numberof choices for rj is � nn�j�.Now consider the pairs (ri; rj) counted by #(M 0::E�). To match condition :E� thevalues rij = 0 and rji = 1 are required. There remain �n�1n�i� choices for ri and � n�1n�j�1�choices for rj .The number #(N 0:V�2J E�) really depends on N 0 respectively on the column vectorssi and sj of N 0. First consider the choices for ri. To match the conditions E� for � 2 Jcertain relations between entries of ri and si must hold. Note that due to the choice of Iwe have i � n=2 and all pairs containing i in J are of the form (i; k), i.e., n=2 < k andall relations forced between si and ri are of the form rik � ski. Relevant for ri are onlythose positions with ski = 1. Let �1 be the number of pairs (i; k) 2 J with ski = 1, hence,conditions E� for � 2 J force exactly �1 positions rik = 1. There remain � n��1n�i��1� choicesfor ri. For rj note that all pairs containing j in J are of the form (k; j), i.e., k � n=2 < jand all relations forced between sj and rj are of the form rkj � sjk. De�ne �0 as thenumber of pairs (k; j) 2 J with sjk = 0. There remain �n��0n�j � choices for rj.Finally, consider #(N 0::E� ^ V�2J E�). Compared to the previous case we haveadditionally �xed values rij = 0 in ri and rji = 1 in rj . Hence, �n��1�1n�i��1� choices for ri and�n��0�1n�j�1 � choices for rj . The claim is thus boiled down to the veri�cation of�n�1n�i�� n�1n�j�1�� n��1n�i��1��n��0n�j � � � nn�i�� nn�j��n��1�1n�i��1��n��0�1n�j�1 �.Both of the following inequalities hold separately. Use �nk� = nn�k �n�1k � and �nk� =nk �n�1k�1� for their proofs. �n�1n�i�� n��1n�i��1� � � nn�i��n��1�1n�i��1�� n�1n�j�1��n��0n�j � � � nn�j��n��0�1n�j�1 �Theorem 2 The number Bn of arrangements of n pseudolines is at mostn�1Yk=0 nk! Y1�i�n2<j�n�1� i(n� j)n2 �and hence bn � 0:6974 n2.



Counting Arrangements 9Proof. The above lemmas allows to bound the number Rn of n� n replace matrices byj
jQ(i;j)2I(1� i(n�j)n2 ). Plugging in j
j = Qn�1k=0 �nk� and the de�nition of I bounds Rn bythe above formula. By Lemma 1 the bound holds true for the number of arrangements.Taking logarithms we obtain rn � log2(e)(�n+12 ��P(i;j)2I log(1� i(n�j)n2 )). The inner sumis Pi;j�n=2 log(1� (i=n)(j=n)) and can (e.g. by Maple) be estimated asR 1=20 R 1=20 log(1� xy)dx dy = �0:01658.altogether rn � log2(e)(1=2 � 0:0165)n2 = 0:6974 n2.EnumerationB10 = 18; 410; 581; 880. This is an additional value for the table of Knuth ([9], page 35).This number was obtained by a recursive program. Given an arrangement A of n pseudo-lines the program generated all cuts from the top to the bottom face. The cuts correspondto all possible ways to thread a (n+1)st line into the arrangement. For n � 9 this resultedin the number Bn given by Knuth.As a byproduct of the counting algorithm we also found that the maximum numberh10 of halving-lines a set of 10 points in the plane can have is 13 (Figure 4). This addsa new value to the list h4 = 3, h6 = 6 and h8 = 9. Via the duality between non-verticallines and points (y = ax + b) $ (a; b) a halving line of point-set P corresponds to a cellc in the arrangement dual to P such that a vertical line through c crosses half of thelines above and the other half below c. We call the set of these cells the middle-level ofthe arrangement. Note that the leftmost and the rightmost cell of the middle-level of anarrangement correspond to the same halving line in the dual. For more on the size ofmiddle-levels and the more general k-set problem see [11], [7] and the references therein.Acknowledgement.Thanks to Emo Welzl for support and encouragement.References[1] M. Bern, D. Eppstein, P. Plassman, and F. Yao. Horizon theorems for lines and poly-gons. In J. Goodman, R. Pollack, and W. Steiger, editors, Discrete and ComputationalGeometry, pages 45{66. Amer. Math. Soc., 1991.[2] A. Bj�orner, M. Las Vergnas, B. Sturmfels, N. White, and G. Ziegler. Oriented Matroids.Cambridge University Press, Cambridge, 1993.[3] P. Edelman and C. Greene. Balanced tableaux. Advances in Math., 63:42{99, 1987.[4] H. Edelsbrunner and L. J. Guibas. Topologically sweeping an arrangement. J. Comput.Syst. Sci., 38:165{194, 1989. Corrigendum in 42 (1991), 249{251.[5] J. E. Goodman. Proof of a conjecture of Burr, Gr�unbaum and Sloane. Discrete Math.,32:27{35, 1980.[6] J. E. Goodman and R. Pollack. Semispaces of con�gurations, cell complexes of ar-rangements. J. Combin. Theory Ser. A, 37:257{293, 1984.



Counting Arrangements 10[7] J. E. Goodman and R. Pollack. Allowable sequences and order types in discrete andcomputational geometry. In J. Pach, editor, New Trends in Discrete and Computa-tional Geometry, volume 10 of Algorithms and Combinatorics, pages 103{134. Springer-Verlag, 1993.[8] B. Gr�unbaum. Arrangements and spreads. Regional Conf. Ser. Math., Amer. Math.Soc., number 10, Providence, RI, 1972.[9] D. E. Knuth. Axioms and Hulls, volume 606 of Lecture Notes in Computer Science.Springer-Verlag, Heidelberg, Germany, 1992.[10] R. Stanley. On the number of reduced decompositions of elements of Coxeter groups.Europ. J. Combinatorics, 5:359{372, 1984.[11] E. Welzl. More on k-Sets of Finite Sets in the Plane. Discrete Comput. Geom.,1:95{100, 1986.
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Figure 4. Ten lines with 14 cells in the middle-level.


