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Abstract. Given a simple arrangement of n pseudolines in the Euclidean plane, associate
with line ¢ the list o; of the lines crossing ¢ in the order of the crossings on line i.

o; = (oi,04,..,0l_,) is a permutation of {1,..,n} — {i}. The vector (o1,02,...,0,) is
an encoding for the arrangement. Define 7; = 1if 0} > i and 7} = 0, otherwise. Let
7 = (r},74,..,7. ), we show that the vector (71, 72,...,7,) is already an encoding.

We use this encoding to improve the upper bound on the number of arrangements
of n pseudolines to 20-6974"”  Moreover, we have enumerated arrangements with 10
pseudolines. As a by-product we determine their exact number and we can show that
the maximal number of halving lines of 10 point in the plane is 13.

1 Introduction

Arrangements of lines and pseudolines are recognized as important and appealing objects
for research in geometry and combinatorics. A general theory of arrangements is given
in Griinbaum’s monograph [8]. The oriented matroid point of view on arrangements is
taken in Bjorner et al. [2]. Enumeration questions for arrangements are discussed in ([2],
Subsection 6.5) and in Knuth ([9], Section 9). In most texts arrangements of pseudolines
are defined with the real projective plane as ambient space. In contrast, we consider
arrangements in the Euclidean plane.

Let a pseudoline be an z-monotone curve in the Euclidean plane. An arrangement of
pseudolines is a family of pseudolines with the property that each pair of pseudolines has
a unique point of intersection where the two pseudolines cross. An arrangement is simple
if no three pseudolines have a common point of intersection. Throughout this manuscript
the term arrangement if not specified further will always denote a simple arrangement
of pseudolines. The size of an arrangement is the number of its pseudolines. Given an
arrangement A of size n we label the pseudolines so that they cross a vertical line left of
all intersections in increasing order from bottom to top.

An arrangement partitions the plane into cells of dimensions 0, 1 or 2, the vertices,
edges and faces of the arrangement. The cells of an arrangement carry a natural lattice
structure. Adding a 0 and a 1 element we obtain the face lattice of the arrangement. Two
arrangements are considered to be isomorphic if their face lattices are isomorphic under
the correspondence induced by some labeling.

Particularly nice pictures of arrangements of pseudolines are given by their wiring
diagrams introduced in Goodman [5], see Figure 1. Let W be a wiring diagram of a simple
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arrangement of size n. For each abscissa z where no crossing takes place the vertical order
(upwards) of the pseudolines at z is a permutation 7, of {1..n}. Assuming that no two
crossings of W have the same z position we obtain (72’) + 1 different permutations. Denote
by ¥ the sequence of these permutations in left to right order. We note two properties of
sequence X..

5 1
4 2
3 3
2 4
1 5

Figure 1. Wiring diagram.

(1) The first element of ¥ is the identity permutation (1,2,...,n) and the last element
of ¥ is the reverse permutation (n,...,2,1).

(2) Two consecutive permutations in X differ by the reversal of an adjacent pair.

Following Goodman and Pollack [6, 7] we call a sequence ¥ of (3) 4+ 1 permutations of
{1..n} satisfying the above properties a simple allowable sequence. In general allowable
sequences it is allowed for consecutive permutations to differ by the reversal of a larger
substring. A simple allowable sequence is easily transformed into a wiring diagram and,
hence, an arrangement of pseudolines. Note, however, that many allowable sequences
may correspond to the same arrangement. Consecutive pairs of crossings that have no
pseudoline in common can be interchanged without changing the arrangement.

Figure 2. Wiring diagrams corresponding to one arrangement
but two allowable sequences.

Simple allowable sequences are basically the same as reflection networks, see Knuth [9].
Alternatively, they can also be seen as maximal chains in the weak Bruhat order of the
symmetric group. In this last context their number A, has been determined by Stan-
ley [10]. His remarkable formula is

(2)!

A, = .
P12 — 2k — 1)k

Edelman and Greene [3] prove this formula via a combinatorial bijection between different
types of tableaux.

Let B, be the number of non-isomorphic simple arrangements of size n. Besides the
numbers A, and B,, we will consider their logarithms a,, = log, A, and b, = logy B,,. From
the above remarks it follows that there are more allowable sequences than arrangements,
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i.e., by < a,. From Stanley’s formula an O(n? logn) upper bound for a,, follows. Knuth [9]
proves lower and upper bounds for the number of arrangements:

nZ 5 n+1

2% % < B, <3(")

S

This gives b, < 0.7924 (n? + n). Knuth reports on some computations supporting a
conjecture of b, < (). From the sharpest version of the zone theorem (Bern et al. [1]) a
bound of b, < 0.7194 n? is obtained. In the next section we propose a new encoding of
arrangements from which we easily obtain b, < 0.7213 n?. In Section 3 we work a little
harder to obtain an improved bound of b, < 0.6974n°.

2 An encoding for arrangements

Representing an arrangement by an allowable sequence can be seen as an encoding by an
ordered sequence of vertical cuts through the arrangement. A representation by a sequence
of horizontal cuts can be obtained by associating with line 7 the list o; of the lines crossing
i in the order of the crossings on line 4. To an arrangement A thus corresponds a vector
(01,...,0p) where o; is a permutation of {1,...,i — 1,4 + 1,..,n}. As will be shown in
this section it suffices to know which entries of o; are larger than ¢ in order to obtain an
encoding for A.

Definition 1 Let T, be the set of n-tuples (11,72,...,7,) with 7; = (4, th,...,t! |) a
binary vector and ;’:_11 ; =n —1 for all 1.

Define a mapping ® from arrangements of size n to 7,,. Given an arrangement A let 7;
report the crossings of pseudoline 7 with the other lines from left to right. More precisely
t;- = 1 if the j-th crossing on line 7 is a crossing with a line with index larger than . In the
wiring diagram this corresponds to a move of wire 7 up into the next track. Conversely
t;- = 0 if line ¢ is moving down at the j-th crossing, i.e., if the j-th crossing on line i is
a crossing with a line with index smaller than . Each of the n — 1 lines different from 4
contributes exactly one crossing on line 7 and n — i of these lines have a larger label than
i. This proves that (7, 79,...,7,) = ®(A) is in T,,. E.g., the element of 7; corresponding
to the arrangement represented by the wiring diagram of Figure 1 is

T=((1,1,1,1),(0,1,1,1),(0,1,1,0),(1,0,0,0),(0,0,0,0)).
Of course, not all elements of 7T, correspond to an arrangement, e.g., for n = 4 we

have 9 elements in 74 but only 8 arrangements. The element of 7; not in the image of ®
isT=((1,1,1),(1,0,1),(0,1,0),(0,0,0)).

Theorem 1 The mapping @ is injective.

Proof. Algorithmically the tool of choice for the construction of the face lattice of an
arrangement of pseudolines is a topological sweep (see Edelsbrunner and Guibas [4]).
Imagine a sweep of arrangement A as a move of a topological line continuously from left
to right across the plane. All incidences between cells of the arrangement are visited by
the line during this move. We discretize the line and replace it by a cut of edges of the
arrangement. This is a list (e1,eq,...,e,) of edges obeying the conditions:
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(1) Edge e; is on the boundary of the bottom face, i.e., on the face containing the vertical
ray to —oo and edge e, is on the boundary of the top face, i.e., the face containing
the vertical ray to +oc.

(2) For each 1 <7 < mn —1 there is a face F; of the arrangement with edges e; and e; 1
on its boundary.

To get from the bottom face to the top face every pseudoline has to be crossed. Since a cut
consists of n edges only it follows that the order of edges of a cut represents a permutation
of the lines of the arrangement. The sweep begins at the leftmost cut consisting of all left
unbounded edges. The permutation corresponding to this cut is the identity permutation.

An advance move corresponds to shifting the topological line cross a point of the
arrangement. The admissible points for advance moves are those with both left edges in
the current cut (Figure 3).

X

Figure 3. Advancing the cut across a vertex.

To make the algorithm deterministic our sweep always has to pick the lowest admis-
sible point for the advance move. Formally, let ¢ be the least index such that the right
endpoints of edges e; and e;11 coincide in the current cut (ey,...,e,). The next cut is
(€1, .. €i—1,€},€; 1, €iy2,..,e,) Where e} is the edge right of e;;1 on the same pseudoline
and eg_l_l is the edge right of e; on the same pseudoline. In general, if two cuts differ by
an advance move the corresponding permutations differ by an adjacent transposition. As
long as some edges in the cut have right endpoints an advance move is possible. The
algorithm terminates when the current cut has become the rightmost cut consisting of all
right unbounded edges and the vertical order of the lines is reversed. The sequence of
permutations of the cuts visited by the algorithm is a cannonical allowable sequence for
the arrangement.

The next algorithm works with input ®(A) and produces a sequence of permutations.
The first permutation 7 = (7, .., 7,) is the identity. We initialize an edge counter s(i) = 1

for each line ¢ and let v; = t;r(im). The bit-state of the algorithm is the vector v =
(v1,v2,...,vy,). It will be important to keep in mind that v depends on 7 and s. Initially

v; is simply the first bit of 7; where ®(A) = (71,..., 7).

In each step the algorithm takes the least index ¢ with v; = 1 and v;+; = 0. Edge coun-
ters s(m;) and s(m;41) are increased by one and 7 is changed by an adjacent transposition
at position 4, i.e., m becomes (71, .., Tj—1, Tit1, iy Tit2s -y T ).

The claim is that sweeping A and ®(A) produces the same sequence of indices i for
advance moves and consequently the same, i.e, the cannonical allowable sequence. We
compare the two sweeps by making simultaneous advance steps in both algorithms. Let
e = (e1,...,ey) be the current cut and v = (v1,...,v,) be the current bit state. The
following invariant suffices to prove the claim by induction.
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(x) The current permutation of both algorithms agree. Moreover, the least 7 such that
the right endpoints of e; and e; 1 coincide equals the least ¢ with v; = 1 and v;11 = 0.

This is trivially verified at the beginning. Now suppose that (x) is true after some fixed
number of moves of both algorithms.

Both algorithms make their next advance at the same index ¢ and the two lines involved
in the crossing are determined by the permutation, hence, they are the same. It follows
that the new permutations agree. Let m be the new permutation, e be the new cut and v
be the new bit state. Consider any index j with v; = 1 and v;41 = 0. This means that at
its next crossing line 7; is moving up while line 7;; is moving down at its next crossing.
Since line 7; is below line 7;; 1 and they border a common face in A they cross each other,
i.e., edges e; and e;;; have a common right endpoint. Conversely, if edges e; and ej;
have a common right endpoint then line 7; is moving up while line m;; is moving down
at the next crossing, hence, v; = 1 and v;4; = 0. This proves the invariant.

By (%) the sweep algorithms for A and ®(A) produce the same allowable sequence.
The sequence characterizes arrangement A. This proves the injectivity of mapping ®. 5

We have seen that @ is an injective mapping from arrangements of size n to elements

of T,. Counting elements of T, is a trivial task, [7,| = (") ("7") ("3") ... (*7})-

Fact 1. b, < Y77 kloge = 0.7213 (n? — n).

Proof. Let f(n) = (nal) . (Zj), hence f(n) = %f(n— 1). The formula of Stirling
gives log f(n) = (n — 1) loge + log f(n — 1). The claim follows by induction. A
Compared to the best known bound b, < 0.7194 n? this was surprisingly easy to obtain.

For a better understanding of the encoding ® it would be interesting to have some tools
to discriminate between members from 7, that are in the image of ® and those that are
not. At this time we have little more than the second algorithm from the above proof. We
can take arbitrary elements T' € 7T, as input to this algorithm. The two possible outcomes
are.

(1) The algorithm gets stuck before (;) moves have been made, i.e., in the current vector
V there is no index ¢ with v; =1 and v;41 = 0.

(2) T indeed corresponds to an arrangement.

Other cases can be ruled out as follows. Suppose that T" can be swept and consider the
sequence of permutations generated. Since line ¢ moved up n — ¢ times and down ¢ — 1
line 7 ends up on wire n — i+ 1. This proves that we end up with the reverse permutation.
Hence, the sequence is allowable and corresponds to an arrangement.

3 A better bound for b,

Recall the element T' = ((1,1,1),(1,0,1),(0,1,0),(0,0,0)) of 74 not in the image of ®.
Trying to sweep T we get stuck after three moves. At the second move we already note
that something goes wrong since the lines involved in the crossing of the first move cross
back. Call an immediate back-cross a situation where two lines cross twice in a row.
Geometrically this corresponds to two edges with the same left and right endpoints. When
sweeping T € T, we recognize an immediate back-cross when the pair (v;, v;11) = (1,0) of
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the move is replaced by (v}, v;,;) = (1,0), ie., the vectors v and v' before and after the
move are identical.
Note that the sweep corresponding to T € T, is completely determined by the initial

vector v and a sequence of replace pairs wi,wo, ... yW(ny- If the jth move of the sweep
2
interchanges m; and m; 41 we replace (v;,v;41) = (1,0) by the pair w; = (w]l,w?) A

sequence of replace pairs leads to an immediate back-cross exactly if one of the pairs
wj is (1,0). The number of back-cross free elements of 7, and, hence, the number of
arrangements can thus be estimated from above by the number of initial vectors v and
the number of (1,0) free sequences of replace pairs. For v there are < 2" choices and for
each pair w; there remain 3 choices, therefore:

Fact 2. B, < 2"305) e, b, <0.7924 0 + O(n).

The proof of Fact 1 made use only of the number of 0 and 1 in each 7;. The proof of
Fact 2 is based on forbidding immediate back-crossings. With the replace matrix we next
define a representation that helps to take care of both aspects. Estimating the number of
replace matrices will enable us to slightly improve the upper bound for b, in Theorem 2.

Definition 2 A replace matrix is a binary n X n matriz M with properties

n
(1) Zmij =n—1fori=1,..,n,
j=1

(2) my; > my; for alli < j.

Lemma 1 There is an injective mapping ¥V from arrangements of size n to n X n replace
matrices.

Proof. Consider ®(A) and let m;; = t}, that is, we record the initial v of the sweep of
®(A) along the diagonal of M. If in the kth move of the sweep of ®(A) lines 7 and j cross
we define m;; = 1 if the next crossing (after the crossing with line j) of line ¢ goes up and
m;j = 0 if the next crossing of line ¢ goes down, respectivly m;; = ti(i)+1' If ¢+ < j then at
their crossing line 4 is going up and line j is going down. Since the lines don’t back-cross
we have (m;;,mj;) # (0,1) or equivalently m;; > mj;. After the complete sweep of ®(A)
we remain with a single undefined entry in each row of M. Let this entry be 0. Suppose
i < j and m;; was the last undefined entry of its row. It follows that after crossing j from
below line ¢ was not involved in further crossings. If line j had a further crossing then it
had to move down there since the position above j was occupied by 4, hence, m;; = 0.
Otherwise line j had no further crossings and again m;; = 0.

Property (1) of replace matrices is easily seen to hold for M as defined above. The
entries in row ¢ of M are the entries of 7; in ®(.A) and an additional 0 in some permutation.
Hence, M = U(A) is a well defined replace matrix. To show that this mapping is injective
we sweep M = W(A) and reconstruct ®(.A). The details very similar to the arguments in
the proof of Theorem 1 are left to the reader. O

We illustrate this encoding of arrangements by replace matrices by giving the replace
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matrix corresponding to the arrangement of Figure 1. In that case

11 1 01
10 0 11
M=|1 0 0 0 1
00 0 10
0 00 0O

To obtain an estimate for the number of replace matrices we use probabilistic arguments.
Consider the probability space € of all binary n x n matrices with Z?Zl m;j = n — 14 for
1 = 1,..,n and let M be an uniformly distributed random variable in €. Let p; be the
probability that a fixed entry in row ¢ of M is 0, ie., p; = %, and ¢; = 1 — p; be the
probability that this entry is 1, i.e., ¢; = *-.

For i < j let E;; be the event m;; > mj;. Since m;; 2 mj; is equivalent to (m;;, mj;) =
(0,1) the probability of event E;; is Prob[E;;] = (1 — p;q;). For the number R,, of replace
matrices we have R, = |Q|Prob[A,_; Ei;].

Carelessly assuming independence of the events E;; we obtain as estimate for R, the
product []7_, (3) [T, (1= Z(T;—;])) The logarithm of this function behaves like 0.66n2. Of
course due to the fixed row sums of matrices in 2 the E;; are not independent. There
are positively and negatively correlated pairs E;;, E;j, therefore is not obvious in which
direction the error made by ignoring dependencies goes. In the remaining part of this
section we derive a valid estimate for R,,.

Lemma 2 If I is a subset of {(i,5):1 < i < j < n— 1} such that Prob[E,| Age s Eg] <
Prob[E,] for all a« € I and J C I — o then R, < |Q|[],cr Prob[E,].

Proof. For every enumeration oz, .., of I we have Prob[A,_; Eij| < Prob[A,c; Ea] =

I1,", Prob[Eu,| Aj<; Ea,]. The assumption on I implies Prob[Ea,| A;<; Ea;] < Prob[Eq,]
for all 3. O

Lemma 3 The set I = {(i,7):1 <i < [5]| <j < n} obeys the condition of Lemma 2.

Proof. Let Q(i,5) be the set of matrices that can be obtained from matrices of Q by
removing rows i and j. Think of Q(7,j) as the set of (n — 2) x n matrices with rows
indexed 1,...i —1,i+1,..,j — 1,7+ 1,...n and >}_; mg = n — k for index k. Given
M' € Q(i,j) let #(M') be the number of matrices M in Q that reduce to M’ by removing
rows i and j, equivalently #(M’) counts the number of pairs (r;,7;) of rows that extend
M’ to a matrix in Q. Generalizing this notation let #(M' : E) be the number of pairs of
rows that extend M’ to a matrix M in Q so that E holds for M. Let a = (i,7) € I and
J C I — a. The following inequalities are equivalent.

Prob[E,] > ProblE,| \ Eg]
BeJ
Prob[-E,] < Prob[-E,| \ Ejg]
BeJ
Prob[~E,] - Prob[ /\ Ejg] Prob[-~E, A /\ Ejg]
BeJ ped

IN
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IN

> #(M"=E,) > #(M': \ Ep) S #M) S #(M':=E. N )\ Ep)

M'eQ(i,5) M'eQ(i,5) pedJ M'eQ(i,5) M'eQ(i,5) pedJ

S #(M':-E)#(N': N\ Ep) Y #(M#N"=Eq A )\ Ep)

M'N'e€Q(i,5) geJ M'N'€Q(4,7) ged

IN

We claim that the last of these inequalities holds component-wise.

Claim. for any pair M', N of matrices in Q(i,7):

#(M':=Eo)#(N': |\ Eg) < #(M")#(N':=E, A )\ Ep)
ped geJ

#(M') counts the number of pairs (r;,7;) of row vectors that extend M' € Q(i, j) to
M € Q. The condition on r; is Y /- 7 = n —i, there are (" ) choices for r;. The number
of choices for r; is (nf])

Now consider the pairs (r;,7;) counted by #(M': =E,). To match condition —E, the
values rj; = 0 and rj = 1 are required. There remain (2:1) choices for r; and (nf;il)
choices for r;.

The number #(N": Agc; Eg) really depends on N’ respectively on the column vectors
s; and s; of N'. First consider the choices for r;. To match the conditions Eg for g € J
certain relations between entries of r; and s; must hold. Note that due to the choice of I
we have i < n/2 and all pairs containing ¢ in J are of the form (i, k), i.e., n/2 < k and
all relations forced between s; and r; are of the form r;, > si;. Relevant for r; are only
those positions with sg; = 1. Let A; be the number of pairs (i, k) € J with sg; = 1, hence,
conditions Eg for § € J force exactly A; positions r;; = 1. There remain (nril\}\l) choices
for ;. For r; note that all pairs containing j in J are of the form (k,j), ie., k <n/2 <j
and all relations forced between s; and r; are of the form ry; < sj;. Define Ag as the

n—)\p)

number of pairs (k,j) € J with s;;, = 0. There remain (" _"?) choices for r;.

Finally, consider #(N':=Ey A Agey Eg). Compared to the previous case we have
n—A1—1

noor )\1) choices for r; and

additionally fixed values r;; = 0 in r; and r;; = 1 in r;. Hence, (
(nf/\ofl

nej—1 ) choices for r;. The claim is thus boiled down to the verification of

(oD GIL G 02 < (2D (G2 G2 ().
Both of the following inequalities hold separately. Use (};) = ﬁ(n;l) and (7) =
%(Zj) for their proofs.

"=HGmM) < G o)

() C) < G2 )

IN

Theorem 2 The number By, of arrangements of n pseudolines is at most
! in ) i(n—j)
H k . H ‘ ( 2 )
k=0 1<i<3<ji<n

and hence b, < 0.6974 n?.
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Proof. The above lemmas allows to bound the number R, of n x n replace matrices by
QT jyer (1 — 252). Plugging in || = [1724 (3) and the definition of I bounds Ry, by
the above formula. By Lemma 1 the bound holds true for the number of arrangements.
Taking logarithms we obtain 7, < log,(e)(("$') — > (ig)er log(1— Z(T;—;]))) The inner sum
i8 325 j<n/210g(1 — (i/n)(j/n)) and can (e.g. by Maple) be estimated as

2 (12 160(1 — gy)dz dy = —0.01658.

altogether r, < logy(e)(1/2 — 0.0165)n? = 0.6974 n?. 0

Enumeration

Byy = 18,410, 581,880. This is an additional value for the table of Knuth ([9], page 35).
This number was obtained by a recursive program. Given an arrangement A of n pseudo-
lines the program generated all cuts from the top to the bottom face. The cuts correspond
to all possible ways to thread a (n+ 1)st line into the arrangement. For n < 9 this resulted
in the number B, given by Knuth.

As a byproduct of the counting algorithm we also found that the maximum number
hio of halving-lines a set of 10 points in the plane can have is 13 (Figure 4). This adds
a new value to the list hy = 3, hg = 6 and hg = 9. Via the duality between non-vertical
lines and points (y = ax + b) <> (a,b) a halving line of point-set P corresponds to a cell
¢ in the arrangement dual to P such that a vertical line through c crosses half of the
lines above and the other half below c¢. We call the set of these cells the middle-level of
the arrangement. Note that the leftmost and the rightmost cell of the middle-level of an
arrangement correspond to the same halving line in the dual. For more on the size of
middle-levels and the more general k-set problem see [11], [7] and the references therein.
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Figure 4. Ten lines with 14 cells in the middle-level.



