
Balancing Pairs and theCross Product ConjectureG. R. BRIGHTWELLDepartment of Mathematics, London School of Economics, Houghton Street, London WC2A 2AE, U.K.E-mail address: grb10@phoenix.cambridge.ac.ukS. FELSNERFreie Universit�at Berlin, Fachbereich Mathematik, Institut f�ur Informatik, Takustr. 9, 14195 Berlin,GermanyE-mail address: felsner@inf.fu.-berlin.deW. T. TROTTERDepartment of Mathematics, Arizona State University, Tempe AZ 85287, U.S.A.E-mail address: trotter@erdos.la.asu.eduDate: May 30, 1995Abstract. In a �nite partially ordered set, Prob(x > y) denotes the proportion of linear extensions inwhich element x appears above element y. In 1969, S. S. Kislitsyn conjectured that in every �nite posetwhich is not a chain, there exists a pair (x; y) for which 1=3 � Prob(x > y) � 2=3. In 1984, J. Kahn andM. Saks showed that there exists a pair (x; y) with 3=11 < Prob(x > y) < 8=11, but the full 1=3|2=3conjecture remains open and has been listed among ORDER's featured unsolved problems for more than10 years.In this paper, we show that that there exists a pair (x; y) for which (5 � p5)=10 � Prob(x > y) �(5 + p5)=10. The proof depends on an application of the Ahlswede-Daykin inequality to prove a specialcase of a conjecturewhich we call the Cross Product Conjecture. Our proof also requires the full force of theKahn/Saks approach|in particular, it requires the Alexandrov/Fenchel inequalities for mixed volumes.We extend our result on balancing pairs to a class of countably in�nite partially ordered sets wherethe 1=3|2=3 conjecture is false, and our bound is best possible. Finally, we obtain improved bounds forthe time required to sort using comparisons in the presence of partial information.Mathematics Subject Classi�cation (1991). 06A07, 06A10.Key words. Partially ordered set, linear extension, balancing pairs, cross-product conjecture, Ahlswede-Daykin inequality, sorting.1. IntroductionGiven a �nite partially ordered set (poset) P , let �(P ) denote the set of linear extensionsof P , and let L(P ) = j�(P )j. For a pair x, y of distinct elements of P , let Prob(x > y)denote the number of linear extensions of P in which x > y, divided by L(P ). ThusProb(x > y) is the proportion of linear extensions in which x is above y. The probabilisticnotation is of course quite natural, corresponding to making �(P ) into a probability spacewith each linear extension equally likely. If x < y in P , then Prob(x > y) = 0, whileProb(x > y) = 1 if x > y in P . On the other hand, if x and y are incomparable in P , then0 < Prob(x > y) < 1. In 1969, S. S. Kislitsyn [15] made the following conjecture, whichremains one of the most intriguing problems in the combinatorial theory of posets.An extended abstract of an earlier version of this paper appears as [6]. The results here are much strongerthan in [6], and this paper has been written so as to overlap as little as possible with that version.1



2 BALANCING PAIRS AND THE CROSS PRODUCT CONJECTURECONJECTURE 1.1. If P is a �nite poset which is not a chain, then there exists anincomparable pair x; y 2 P so that1=3 � Prob(x > y) � 2=3:Conjecture 1.1 was also made independently by both M. Fredman and N. Linial, and manypapers on this subject attribute the conjecture to them. It is now known as the 1=3|2=3conjecture. If true, the conjecture would be best possible, as shown by the poset withthree elements and one comparable pair.The 1=3|2=3 conjecture has been proved for several special classes of posets. Linial [17]showed that the conjecture holds for width two posets, and P. Fishburn, W. G. Gehrleinand W. T. Trotter [8] showed that it holds for height two posets. G. Brightwell [3] showedthat it holds for semiorders, and Brightwell and C. D. Wright [5] veri�ed it for posets inwhich every element is incomparable with at most �ve others.Following Kahn and Saks, for a �nite partially ordered set P , we let �(P ) denote thelargest positive real number so that there exists a pair (x; y) of distinct points from P with�(P ) � Prob(x > y) � 1 � �(P ). We may then set �0 to be the in�num of �(P ), takenover all �nite P which are not chains. With this notation, the 1=3|2=3 conjecture is justthe assertion that �0 � 1=3. However, to the best of our knowledge, there is no entirelyelementary proof that �0 > 0.The �rst major breakthrough in this area came in 1984, when Kahn and Saks [13] usedthe Alexandrov/Fenchel inequalities for mixed volumes to prove the following result.THEOREM 1.2. If P is a �nite poset which is not a chain, then there exists an incompa-rable pair x; y 2 P so that 3=11 < Prob(x > y) < 8=11:Thus, �0 > 3=11 ' 0:2727. �Our main result is the following inequality which improves the bound in Theorem 1.2.THEOREM 1.3. If P is a �nite poset which is not a chain, then there exists an incompa-rable pair x; y 2 P so that(5�p5)=10 � Prob(x > y) � (5 +p5)=10:Thus, �0 � (5�p5)=10 ' 0:2764.The proof of Theorem 1.3 requires all the machinery developed by Kahn and Saks for theproof of Theorem 1.2. In particular, it requires the Alexandrov/Fenchel inequalities formixed volumes to prove that certain sequences are log-concave.Our proof also requires a new inequality|a special case of a conjecture which we callthe Cross Product Conjecture. Although we have not been able to settle the Cross ProductConjecture in full generality, the special case is enough for our purposes here. Even thiscase requires an application of the Ahlswede/Daykin inequality|a deep and powerfulcombinatorial tool which has already found a wide range of applications to posets.Numerically, Theorem 1.3 is only a modest improvement on the Kahn/Saks boundand leaves us far short of settling the 1=3|2=3 conjecture. But in a certain sense, ourTheorem 1.3 is best possible. To explain this remark, we extend our investigation toinclude countably in�nite posets, and for this class of posets, the 1=3|2=3 conjecture is



BRIGHTWELL, FELSNER AND TROTTER 3false. Call a poset P thin if there is some natural number k such that every element of P isincomparable with at most k others. If a thin poset has a connected incomparability graph,then it is countable, and each interval [a; b] � fz : a � z � bg is �nite. Let ([an; bn]) be anested sequence of intervals whose union is the ground-set of P . If the elements x; y of P liein one of the intervals [am; bm], then for n � m we can consider Probn(x > y) � Prob(x >y) in the poset P j[an; bn]. Brightwell [2] showed that limn!1Probn(x > y) exists, and isindependent of the sequence of intervals chosen. We naturally de�ne Prob(x > y) in Pto be this limit. This de�nition can be extended in an obvious way to thin posets withdisconnected incomparability graph.For a thin poset P , we again de�ne �(P ) to be the largest positive number for whichthere exists a pair x; y 2 P with �(P ) � Prob(x > y) � 1 � �(P ). Now let �00 be thein�mum of �(P ) over all thin posets P other than chains.As was discovered independently by Brightwell [2] and Trotter, there is a thin poset Qwith �(Q) = (5�p5)=10. This example is constructed as follows. The poset Q has as itspoint set X = fxi : i 2Zgwith: xi < xj in Q if and only if j > i+1 inZ. If we de�ne the�nite poset Qn to be the subset of Q consisting of all points whose subscripts in absolutevalue are at most n, then it is an easy exercise to show thatlimn!1Prob(x0 > x1) = (5�p5)=10:Thus �00 � (5 � p5)=10. On the other hand, our proof of Theorem 1.3 works in thein�nite setting, so we obtain the following result, proving a conjecture of Brightwell [2]and Trotter.THEOREM 1.4.. �00 = (5�p5)=10 ' 0:2764.The exampleQ is striking on several counts. Observe that Q has width two, is a semiorder,and each of its elements is incomparable with just two others. As noted above, any �niteposet P satisfying any one of these three conditions would have �(P ) � 1=3.Prior to 1994, the Kahn/Saks bound given in Theorem 1.2 was the best known boundknown lower bound on �0 valid for all �nite posets. However, other proofs bounding�0 away from zero have been given. In [14], L. Khachiyan uses geometric techniquesto show �0 � 1=e2. Kahn and Linial [12] provide a short and elegant argument usingthe Brunn/Minkowski theorem to show that �0 � 1=2e. In [10], J. Friedman also appliesgeometric techniques to obtain even better constants when the poset satis�es certain addi-tional properties. In [6], Felsner and Trotter showed that there exists an absolute constant� > 0 so that �0 � 3=11 + �.Kahn and Saks conjectured that �(P ) approaches 1=2 as the width of P tends to in�nity.In [16], J. Koml�os provides support for this conjecture by showing that for every � > 0,there exists a function f�(n) = o(n) so that if jP j = n and P has at least f�(n) minimalpoints, then �(P ) > 1=2� �.The remainder of the paper is organized as follows. In Section 2, we outline the basic
ow of the proof of Theorem 1.3. In Section 3, we present the Cross-Product Conjecture,and the proof of the special case of the conjecture necessary for this paper. The mainbody of the proof is given in Sections 4, 5 and 6. In Section 7, we provide additionaldetails on the class of countably in�nite posets where our Theorem 1.3 holds and is bestpossible. Finally, in Section 8, we produce a new bound for sorting using comparisons|themotivating problem for the study of balancing pairs.



4 BALANCING PAIRS AND THE CROSS PRODUCT CONJECTURE2. The Basic ApproachFor the next three sections of this paper, we shall deal exclusively with �nite posets. Ouraim is to develop the machinery necessary to prove Theorem 1.3. Fundamentally, ourmethod is a both a re�nement and an extension of that used by Kahn and Saks in [13].Accordingly, we will use the notation and terminology of that paper as far as possible.Throughout, we consider the sample space of all linear extensions of a �nite poset P ,with all linear extensions being equally likely. For a linear extension � and a point x 2 P ,h�(x) denotes the height of x in �, i.e., if � orders the points in P as x1 < x2 < � � � < xnand x = xi, then h�(x) = i. We denote by h(x) the expected value of h�(x). When(x; y) 2 P�P is a �xed ordered pair of incomparable points, then for each positive integer i,we let ai denote the probability that h�(y)�h�(x) = i, and we let bi denote the probabilitythat h�(x) � h�(y) = i. We also set b = b1 and let B = Pi bi = Prob(x > y). Then weset � = b=B. De�ne the height of the pair (faig; fbig) of sequences to be Pi iai �Pi ibi;note that this is just h(y) � h(x), the expected height di�erence.We collect together various results from [13] in a lemma.LEMMA 2.1.a1 = b1 = b. (2.1)ai = 0) ai+1 = 0, for i > 1, and bi = 0) bi+1 = 0, for i > 1. (2.2)Pi�1 ai +Pi�1 bi = 1. (2.3)a2 + b2 � a1 + b1. (2.4)ai+1 � ai + ai+2, for i � 2 and bi+1 � bi + bi+2, for i � 2. (2.5)a2i+1 � aiai+2, for i � 2 and b2i+1 � bibi+2, for i � 2. (2.6)�Inequalities (2.1), (2.2) and (2.3) are trivial, but already (2.4) requires a clever littleargument, and (2.5) is more substantial. A simpler proof of (2.5), based on a generalisationof (2.4), was provided by Felsner and Trotter [6]. The proof of (2.6) uses the Alexandrov-Fenchel inequalities for mixed volumes; a highly non-elementary piece of theory.The basic approach of [13] may now be summarized as follows. Since P is not a chain,it follows that we may choose an ordered pair (x; y) with 0 � h(y)� h(x) < 1; necessarilyx and y are incomparable. Kahn and Saks prove that, if the sequences ai and bi satisfy(2.1)-(2.6), and the condition that the height of the pair of sequences be at most 1, thenB = Pi�1 bi � 3=11. (If we have h(y) � h(x) < 1, then we obtain the strict inequalityB > 3=11.) Together with Lemma 2.1, this technical result implies Theorem 1.2.We go a little deeper into the Kahn-Saks method here, for later use.Say that a (two-way) sequence (faigi�1; fbigi�1) of non-negative real numbers is packed,with parameters B; �; k (0 � B � 1=3, 0 < � � 1, k 2 N), if it is of the form:(1) bi = B�(1� �)i�1 for all i � 1,(2) ai = B�(1 + �)i�1 for 1 � i � k,(3) ak+1 + ak+2 = 1�Pi�1 bi �Pki=1 ai, ai = 0 for i � k + 2, and either:Case (i) k � 2, ak+2 = 0, with �=(1 + �) � ak+1=ak � 1, orCase (ii) ak+1 = ak + ak+2, with 1 � ak+1=ak � 1 + �.Note that packed sequences satisfy inequalities (2.1) through (2.6), and haveP bi = B.Note also that, for each pair (B; �) there is exactly one packed sequence with parametersB, � and k, for some k. The easiest way to see this is to set about constructing such apair of sequence: B and � determine the values of the bi, and also that of a1 = b1. Thenone must set aj+1 = (1 + �)aj, until such time as there is not enough probability left to



BRIGHTWELL, FELSNER AND TROTTER 5satisfy aj+2 � �aj; at this point, one sets aj+1 as large as possible. Either this will giveaj+1 � aj and aj+2 = 0 (case (i)), or aj+1 � aj and aj+2 = aj+1� aj (case (ii)). For each�xed B � 1=3, decreasing � from 1 to 0 leads us through the cases in order: Case (ii),k = 1; Case (i), k = 2; Case (ii), k = 2; Case (i), k = 3; etc. The sequences are continuousfunctions of � throughout this process.Kahn and Saks calculated that, if we are in case (i) for some k, then1 + 2�+ 2�21 + � � (1 + �)1�kB � 1 + 2�; (2:7)while if we are in case (ii) for some k, then1 + 2� � (1 + �)1�kB � 1 + 2�+ 2�2: (2:8)The main interest in packed sequences stems from the following lemma, also taken fromKahn and Saks [13].LEMMA 2.2. Suppose that (faig; fbig) is any two-way sequence satisfying inequalities(2.1) through (2.6), with P bi = B, and b1=B = �. Then there is a packed sequence withthe same values of B and �, and height no greater than that of (faig; fbig). �Now we de�ne H(B; �) to be the height of the unique packed sequence with parametersB and �, for 0 � B � 1=3 and 0 < � � 1. Note that, for each �xed B, this is a continuousfunction of �. Kahn and Saks proved that H(3=11; �) � H(3=11; 1) = 1 for every �, which,combined with Lemma 2.2, gives their result.The following are expressions for H(B; �) in the various ranges, essentially taken fromKahn and Saks. Case (i) : H(B; �) = k + 1� B� (1 + �)k+1: (2:9)Case (ii): H(B; �) = k + 32 � B2�(1 + �)k�1(4�2 + 5�+ 2): (2:10)LEMMA 2.3. For each �xed B with 0 � B � 1=3, the function H(B; �) is decreasing in�, except in case (ii), with k = 1, when � � 1=p2.Note that the exceptional range only occurs when B � 1 � 1=p2 ' :293. The range isat its largest when B = 1=3, when it is [0:618 : : : ; 0:707 : : : ]. Note also that, in case (ii),k = 1, we have H(B; �) = H(B; 1=2�), so, since � � 1=2 is never a possibility, we have thatH(B; �) � H(B; 1) for every �, for any B � 1=3.Proof. Again, much of this is contained in Kahn and Saks [13]. Because of the conti-nuity, we need only prove that the function is decreasing in each range.Case (i) is relatively straightforward. First we claculate that@H(B; �)@� = B(1 + �)k�2 (1� �k): (2:11)Now if � < 1=k, then3 � 1B < (1 + �)k�1(1 + 2�) < �1 + 1k�k�1�1 + 2k� ; (2:12)



6 BALANCING PAIRS AND THE CROSS PRODUCT CONJECTUREwhich is easily seen to be false for all integers k � 2. Therefore the derivative is negativefor every range where case (i) applies.Case (ii) is a little more delicate. Here we have:@H(B; �)@� = B(1 + �)k�22�2 �(1 + �)(2� 4�2)� �(4�2 + 5�+ 2)(k � 1)� : (2:13)For k = 1, this is positive just when �2 < 1=2, as claimed.For k = 2, one needs to verify directly that the condition(1 + �)k�1 � 1B(1 + 2�+ 2�2) � 31 + 2�+ 2�2 (2:14)implies that � > 0:4044, and that this in turn implies that the derivative is negative.For k � 3, the bound in (2.14) implies that � > 3=(3k+1:1), which in turn implies thatthe derivative is negative. �Lemma 2.2 tells us that, if our aim is to maximise h(y)�h(x) subject to constraints onB and possibly also �, then we may restrict attention to packed sequences. Lemma 2.3,and the remarks after the statement, say that we should take � = 1 wherever possible.Thus, in the case B = 3=11, the extremal sequence is given by: b1 = a1 = 3=11, a2 = 4=11and a3 = 1=11, the packed sequence with � = 1, satisfying case (ii) with k = 1.The Kahn-Saks proof actually gives the stronger result that, for any pair x; y of incom-parable elements of P such that 0 � h(y) � h(x) � 1, we have Prob(x > y) � 3=11. Thisstronger result is best possible, as there is a six point poset (see Trotter [20], for example)containing an incomparable pair x; y with h(y) � h(x) = 1 and Prob(x > y) = 3=11.As Kahn and Saks point out in [13], one way to improve the constant in Theorem 1.2would be to show that there exists a positive absolute constant 
 so that if P is not achain, then it is always possible to �nd an ordered pair (x; y) with 0 � h(y)�h(x) � 1�
.However, nobody has yet been able to settle whether such a 
 exists. If it does, then asshown by Saks in [18], it must satisfy 
 � :133. Even this value would not be enough toprove �(P ) � 1=3. Our methods show that it would imply �(P ) � (3 + 2
)=11 ' 0:297.In fact, as noted by Felsner and Trotter in [6], if one is going to argue solely on thebasis of packed sequences, only when 0 � h(y) � h(x) � 2=3 can we safely conclude that1=3 � Prob(x > y) � 2=3. So we need a new idea.Our approach towards improving Theorem 1.3 is to look at the relative heights of threeelements rather than two. We prove the following result. Here and throughout, akb meansthat a and b are incomparable.THEOREM 2.4. Let x; y; z be distinct points in a �nite poset P , not forming a chainx < y < z. Suppose that h(x) � h(y) � h(z) � h(x) + 2.(i) If x < y in P , then Prob(y > z) � 1=3.(ii) If y < z in P , then Prob(x > y) � 1=3.(iii) If xky and ykz in P , then eitherProb(x > y) � 1=3, or Prob(y > z) � 1=3, orProb(x > y) + Prob(y > z) � (5�p5)=5.We also have the following simple result.LEMMA 2.5. For any �nite poset P , not a chain, with at least three elements, there arethree distinct elements x; y; z, not forming a chain x < y < z, such that h(x) � h(y) �h(z) � h(x) + 2.



BRIGHTWELL, FELSNER AND TROTTER 7Proof. Clearly we may assume that P contains no element comparable to all others.This implies that, if x < y in P , then h(y) � h(x) > 1. Therefore if x; y; z satisfyh(x) � h(y) � h(z) � h(x) + 2, we cannot have x < y < z in P .Write the elements of P in non-decreasing order of average height, as x1; : : : ; xn. Notethat h(x1) + h(x2) � 3, and h(xn) + h(xn�1) � 2n � 1. If n is odd, we deduce that[h(xn)�h(x1)]+ [h(xn�1)�h(x2)] � 2n�4, so either h(xn)�h(x1) � n�1, or h(xn�1)�h(x2) � n � 3. In either case, we can write the di�erence as a sum of terms of the formh(xk+2) � h(xk), and so �nd a k such that h(xk+2) � h(xk) � 2, as required. The prooffor the case n even is similar. �Theorem 2.4 and Lemma 2.5 clearly imply Theorem 1.3. Our primary task is thus toprove Theorem 2.4. In the next section, we develop a new inequality, similar in theme toinequality (2.6). Then we use this, together with other inequalities, to derive Theorem 2.4.3. The Cross Product ConjectureLet P be a �nite poset, and let x; y; z be distinct elements of P . For i; j � 1, set L(i; j)equal to the number of linear extensions � of P in which h�(y) � h�(x) = i and h�(z) �h�(y) = j. Also set p(i; j) = L(i; j)=L(P ), the probability that h�(y) � h�(x) = i andh�(z) � h�(y) = j.We make the following conjecture.CONJECTURE 3.1. (The Cross Product Conjecture) For any �nite poset P and any in-tegers i; j � 1, L(i; j)L(i + 1; j + 1) � L(i; j + 1)L(i + 1; j): �We have not been able to settle the Cross Product Conjecture, but we have been able toprove the following special case|and this is enough for the results of this paper.THEOREM 3.2. For any �nite poset P ,L(1; 1)L(2; 2) � L(1; 2)L(2; 1);and therefore p(1; 1)p(2; 2) � p(1; 2)p(2; 1):Before proceeding with the proof of Theorem 3.2, we comment that this is the only newnon-linear inequality we need for the proof of Theorem 1.3. Thus Theorem 3.2 plays thesame role for us as the log-concavity statement (2.6) does for Kahn and Saks in [13].Just as for (2.6), the proof of Theorem 3.2 is based on a powerful combinatorial tool thathas been found useful in various similar contexts|the Ahlswede-Daykin Four FunctionsTheorem [1]. This result can be stated (not quite in full generality) as follows.THEOREM 3.3. Let L be a �nite distributive lattice, and let �; �; 
; � be four functionsfrom L to the positive reals satisfying:�(A)�(B) � 
(A _B)�(A ^B)for any A;B 2 L. ThenXA2L�(A)XA2L �(A) � XA2L 
(A) XA2L �(A): �



8 BALANCING PAIRS AND THE CROSS PRODUCT CONJECTUREThroughout this section, we will be dealing with restrictions of the poset P to subsetsof its ground-set. We shall abuse terminology slightly by referring to the restriction to asubset X as simply X, so in particular we write L(X) for the number of linear extensionsof the poset induced by P on a subset X of the ground set. Also, we refer to L(X) as thenumber of linear extensions of X.We shall also make use of the following consequence of the Four Functions Theorem.This result was �rst proved by Fishburn [7], and a simpler proof, based on an inequalityof Shepp [19], was supplied by Brightwell [2]. See also [4] for further applications.THEOREM 3.4. Let P be a �nite poset, and suppose that V and W are two up-sets in P .Then L(V )L(W )L(V [W )L(V \W ) � jV j! jW j!jV [W j! jV \W j! � 1: �In this note, we do not need the full strength of Fishburn's Inequality, Theorem 3.4: weuse only that, with V and W as above, L(V )L(W ) � L(V [W )L(V \W ). We note nextone fairly straightforward consequence. For a �nite poset P , a minimal element x of P ,and an integer i � 1, set Si(P ;x) equal to the number of linear extensions � of P in whichh�(x) = i.LEMMA 3.5. Suppose x is a minimal element in a poset Y , and Z is an up-set of Ycontaining x. Then S2(Z;x)=S1(Z;x) � S2(Y ;x)=S1(Y ;x):Proof. Note that S1(Z;x) is just the number of linear extensions of Znfxg, and S2(Z;x)is the number of such linear extensions in which the bottom element is incomparable withx. Hence S2(Z;x)=S1(Z;x) is the probability that a randomly chosen linear extension ofZ n fxg has its bottom element incomparable to x.Let V (Z) be the set of elements v of Z such that x is the only element below v in Z.Then we haveS2(Z;x)S1(Z;x) = 1� Xv2V (Z)Prob(v is the bottom element in a linear extension of Z n fxg)= 1� Xv2V (Z) L(Z n fv; xg)L(Z n fxg) :The same is true with Y in place of Z, so it is su�cient to prove thatXv2V (Z) L(Z n fv; xg)L(Z n fxg) � Xv2V (Y ) L(Y n fv; xg)L(Y n fxg) :Now V (Y ) � V (Z), so it is su�cient to prove that, for any v 2 V (Y ),L(Z n fv; xg)L(Z n fxg) � L(Y n fv; xg)L(Y n fxg) :This last inequality follows from Fishburn's Inequality, Theorem 3.4, with V = Z n fxgand W = Y n fv; xg. �Proof of Theorem 3.2. First note that we may as well suppose that x < y < z in P ,since we are counting only linear extensions where these relations are satis�ed. Also, wemay assume that y is the only element between x and z, since otherwise L(1; 1) = 0.



BRIGHTWELL, FELSNER AND TROTTER 9Now set D equal to the set of elements of P below y, U equal to the set of elementsabove y, and I equal to the set of elements incomparable to y. So (D;U; I) is a partitionof P n fyg. Set U equal to the set of up-sets of I, and note that U is a distributive latticeunder set-inclusion. For A 2 U , let Ac be the complement I nA.Observe that L(i; j) is equal to the sum, over all elements A of U , of the number oflinear extensions � of P in which: (i) h�(y) � h�(x) = i and h�(z) � h�(y) = j, and (ii)Ac < y < A. This number is just the product of (i) the number fj(A) of linear extensions� of U [A in which h�(z) = j, and (ii) the number gi(Ac) of linear extensions � of D[Acin which h�(x) = jD[Acj � i+1, i.e., exactly i� 1 elements come above x. Thus we haveL(i; j) = XA2U fj(A)gi(Ac):Our aim is to apply the Four Functions Inequality, Theorem 3.2, to the lattice U with:�(A) = f1(A)g1(Ac);�(A) = f2(A)g2(Ac);
(A) = f2(A)g1(Ac);�(A) = f1(A)g2(Ac):This will imply our result, provided we can prove that the condition of the Four FunctionsTheorem is satis�ed.Thus it su�ces to show that, for any A;B 2 U ,f1(A)g1(Ac)f2(B)g2(Bc) � f2(A [B)g1(Ac \Bc)f1(A \B)g2(Ac [Bc): (�)In fact we shall prove that f1(A)f2(B) � f2(A [B)f1(A \B); (��)the analogous inequality for the gj follows by symmetry, and (�) then follows.Inequality (��) is trivial if either f1(A) or f2(B) is equal to 0, which is the case whenevereither (i) A contains any element below z, or (ii) B contains more than one such element.We break the argument into two cases, depending on whether B does or does not containan element v < z.First we suppose that B does contain such a v. Now observe that f1(A), the numberof linear extensions of U [ A with bottom element z, is simply equal to L(U [ A n fzg).Similarly f2(B) = L(U [B n fz; vg), and similarly for the other expressions in (��). Thus(��) follows in this case on applying Fishburn's Inequality with V = U [ A n fzg andW = U [B n fz; vg.Now we move on to the other case, where z is minimal among the elements of U [A[B.In this case, Lemma 3.5 is applicable, and we observe that fi(C) = Si(U [C; z), for anyi, and any set C � I such that z is minimal in U [C. Thus in particular we havef2(B)=f1(B) � f2(A [B)=f1(A [B):Also, Fishburn's Inequality tells us thatf1(A)f1(B) � f1(A [B)f1(A \B):



10 BALANCING PAIRS AND THE CROSS PRODUCT CONJECTURECombining these two inequalities gives us inequality (��) in this case as well, which com-pletes the proof. �Perhaps the methods of this section can be extended to prove that, for any for any�nite poset P and any positive integers i; j,L(1; 1)L(i; j) � L(1; j)L(i; 1);but something more powerful seems to be needed to prove the general form of the CrossProduct Conjecture.4. Theorem 2.4 { Two easy casesSuppose we have three points x, y and z of our poset P , not forming a 3-element chain,with h(x) � h(y) � h(z) � 2 + h(x). We break the proof of Theorem 2.4 into cases,depending on the subposet of P formed by fx; y; zg. Taking advantage of duality, weobserve that we need only consider the following four situations.Case A: x < z and y < z in P .Case B: y < z, xky and xkz in P .Case C: fx; y; zg is a 3{element antichain.Case D: x < z, xky and ykz in P .Theorem 2.4 then says that, if Cases A or B hold, then Prob(x > y) � 1=3, and ifCases C or D hold, then either Prob(x > y) � 1=3, or Prob(y > z) � 1=3, or Prob(x >y) + Prob(y > z) � (5�p5)=5.In arguments to follow, we will continue to use the previous de�nitions for b, B, ai,bi and �; the pair of elements they are de�ned for (usually (x; y)) will be clear from thecontext. Later, we will we need to consider sequences for two pairs simultaneously { thenwe will clarify this in the notation.In the remainder of this section, we deal with Cases A and B. We begin with Case A.THEOREM 4.1. If Case A holds, thenProb(x < y) � 2=3:Proof. In this case, note that h�(z) � h�(x) � 1 for every linear extension �, thatProb(h�(z) � h�(x)) = 1 � Prob(x > y) = B, and that Prob(h�(z) � h�(x) � 2) �Prob(x > y) + Prob(h�(y) � h�(x) = 1) = B + b. Thus we have2 � h(z) � h(x) � B + 2b+ 3(1� B � b):This implies that 1 � 2B + b � 3B so that B � 1=3. �Incidentally, Theorem 4.1 is best possible, as shown by a poset on 4 elements x; y; z; w,with x < z and w < y < z.THEOREM 4.2. If Case B holds, thenProb(x < y) � 2=3:Proof. Obviously, h(z)�h(y) = 1+Pi;j(j�1)p(i; j) � 1+p(�1; 2)+2Pi�3 p(�1; i)+Pi�2 p(1; i). UsingPi�1 p(1; i) =Pi�2 p(�1; j) = b1 and p(�1; 2) = p(1; 1) = p(�2; 1) �b2 we obtain h(z) � h(y) � 1 + b2 + 2(b1 � b2) + (b1 � b2) = 1 + 3b1 � 2b2.



BRIGHTWELL, FELSNER AND TROTTER 11This leads to a correlation between the height of x and y and their probability of beingreversed and close to each other:h(y) � h(x) � 2� (h(z) � h(y)) � 1� 3b1 + 2b2:Now suppose that there are sequences faigi�1 and fbigi�1 satisfying the conditionsof (2.1)-(2.6), with Pi�1 i(ai � bi) � 1 � 3b1 + 2b2 and Pi�1 bi � B. Then the packedsequences ai = b(1 + �)i and bi = b(1 � �)i also satisfy all these conditions. Thereforewe can analyze the situation with the techniques of [13]. It turns out that the worst caseoccurs in Case (ii) with k = 3. For this value of k, it may be veri�ed that B � 0:335,which is a little more than what is claimed in the statement of the theorem. �5. Theorem 2.4 { Case DIn this section, we assume that we are in Case D, i.e., that x; y; z are three elements of P ,with h(x) � h(y) � h(z) � h(x) + 2, x < z, xky and ykz in P . Set B = Prob(x > y), asbefore, and B0 = Prob(y > z). Our aim is to prove that B + B0 � (5 � p5)=5. We givereasonably full details of the computation in this case, since it is critical to our analysis.We start by noting that, for any j � 2, p(�1; j) = p(1; j � 1), since swapping x andy gives a bijection between the two sets of linear extensions being counted, and similarlyp(j;�1) = p(j � 1; 1). Note also that, since x < z in P , p(i; j) = 0 whenever i+ j � 0.To simplify the computational e�orts, we let X = B + B0, x1 = p(1; 1), x2 = p(1; 2) +p(2; 1), x3 = p(2; 2), x4 = p(1; 3)+ p(3; 1), x5 = p(2; 3)+ p(3; 2) and x6 = p(1; 4)+ p(4; 1).Our method is to produce various inequalities relating X and the xi, and then to provethat, subject to the various inequalities, the minimum value of X is (5 � p5)=5. Theinequalities we derive and use may seem to be somewhat arbitrary; undoubtedly there areother inequalities, perhaps stronger and/or more natural, that can be derived. Motivationfor the particular inequalities chosen came from two sources: (a) we know that, in thein�nite poset Q de�ned in Section 7, we have X = (5�p5)=5, x1 = (3p5� 5)=10, x2 =(10�4p5)=5, x3 = (7p5�15)=10, and x4 = x5 = x6 = 0, so the inequalities we use shouldbe tight for this assignment of values, (b) we carried out extensive numerical experimentsusing various computer algebra packages, and these suggested which inequalities would beuseful. In particular, the Cross Product Conjecture was discovered with these experiments.We now begin the derivation of the required inequlaties. First we use the inequalityh(z)� h(x) � 2 to obtain:2 �Xi;j (i+ j)p(i; j)� 2p(1; 1) + 3p(1; 2) + 3p(2; 1) + 4p(1; 3) + 4p(3; 1) + 4p(2; 2) + 5p(1; 4) + 5p(4; 1)++ 5p(2; 3) + 5p(3; 2) + 6�1�B � B0 � p(1; 1)� p(1; 2)� p(2; 1)� p(1; 3)�� p(3; 1)� p(2; 2)� p(1; 4)� p(4; 1)� p(2; 3)� p(3; 2)�++ 2p(�1; 3) + 2p(3;�1) + 3p(�1; 4) + 3p(4;�1) + 4p(�1; 5) + 4p(5;�1)++ �B +B0 � p(�1; 3)� p(3;�1)� p(�1; 4)� p(4;�1)� p(�1; 5)� p(5;�1)�= 2x1 + 3x2 + 4x4 + 4x3 + 5x6 + 5x5 + 6(1�X � x1 � x2 � x4 � x3 � x6 � x5)++ 2x2 + 3x4 + 4x6 + (X � x2 � x4 � x6):Rearranging, and noting that x6 � 0, we obtain that:4 � 5X + 4x1 + 2x2 + 2x3 + x5: (5:1)



12 BALANCING PAIRS AND THE CROSS PRODUCT CONJECTURENext we have thatB +B0 � p(�1; 2) + p(�1; 3) + p(2;�1) + p(3;�1);so 2x1 + x2 � X: (5:2)Our next inequality requires an easy lemma.LEMMA 5.1. p(2; 3) � p(1; 3) + p(1; 4):Proof. We give an injection from the set A of linear extensions counted by L(2; 3) to theunion of the sets A1 and A2 of linear extensions counted by L(1; 3) and L(1; 4) respectively.For a linear extension � in A, there is exactly one element w with x < w < y in �. Ifxkw in P , then swap x and w to obtain a linear extension in A1. If not, then wky in P ,so we may swap w and y to obtain a linear extension in A2. The map described is clearlyan injection. �Similarly we have p(3; 2) � p(3; 1) + p(4; 1), and adding the two inequalities, we have:x5 � x4 + x6: (5:3)Since the sum of all probability is one, we haveX + x1 + x2 + x3 + x4 + x5 + x6 � 1: (5:4)The �nal inequality we need comes from Theorem 3.2. Observe that p(1; 2)p(2; 1) �(p(1; 2) + p(2; 1))2 =4, so that x1x3 � x22=4: (5:5)We claim that, subject to the inequalities (5.1)-(5.5), and the requirement that all thevariables are non-negative, the minimum value of X is (5�p5)=5.First, adding (5.3) and (5.4) gives:X + x1 + x2 + x3 + 2x5 � 1: (5:6)Now we derive two simpler inequalities from (5.1) and (5.6); �rst we take 2�(5.1)+(5.6)and get 7 � 9X + 7x1 + 3x2 + 3x3; (5:7)then we take 4�(5.6)+(5.1) and note that x5 � 0, to obtain2x2 + 2x3 � X: (5:8)Now we set y1 = x1=X, y2 = x2=X, y3 = x3=X in (5.5), (5.2), (5.8) and (5.7), and �ndthat y1y3 � y22=4; (5:9)2y1 + y2 � 1; (5:10)2y2 + 2y3 � 1; (5:11)7 � X(9 + 7y1 + 3y2 + 3y3): (5:12)



BRIGHTWELL, FELSNER AND TROTTER 13To minimiseX subject to (5.9)-(5.12) is equivalent to maximising 7y1+ 3y2+3y3 subjectto (5.9)-(5.11). (Again, it is understood that all variables are non-negative.)It is easy to see that, at the optimum, we have equality in (5.9). Indeed, if we do not,then it is possible to increase y1 by some � > 0, and decrease y2 by 2�, remaining feasibleand increasing the objective. Also, we must have equality in (5.10), since otherwise wecan increase y2 by some � > 0, and decrease y3 by �, keeping the objective �xed, remainingfeasible, and breaking the equality in (5.9). Thus we may substitute y2 = 1� 2y1 andy3 = (1� 2y1)24y1 = 14y1 � 1 + y1to reduce the problem to that of maximising 4y1 + 3=(4y1) subject to �2y1 + 1=(2y1) � 1and y1 � 1=2. The �rst constraint works out to y1 � (p5� 1)=4. The objective functionis concave, so the maximum is obtained at one of the two endpoints of the range: it turnsout to be larger at the lower end, where it takes the value (7p5� 1)=4. Substituting backinto (5.12) gives 7 � X 35 + 7p54 ; i.e., X � 5�p55 ;as claimed.6. Theorem 2.4 { Case CThe �nal case we have left to consider is Case C, where x; y; z form a three-element chainin P , with h(x) � h(y) � h(z) � h(x)+ 2. For this case, we use the methods of Kahn andSaks [13], as set out in Section 2.LEMMA 6.1. If x and z are incomparable elements of a poset P , with h(z) � h(x) + 2,then Prob(x > z) � 3=22.Proof. This follows from Lemmas 2.2 and 2.3. Indeed, any sequence satisfying (2.1){(2.6) with B = 3=22 has height at least that of the packed sequence with parametersB = 3=22 and � = 1. This sequence is given by b1 = a1 = 3=22, a2 = 6=22, a3 = 8=22,a4 = 2=22, with a height of 2. �LEMMA 6.2. If x; y; z are as given, thenProb (h�(x)� h�(y) � 2) + Prob (h�(y) � h�(z) � 2) � 111 :Proof. Note that the number of linear extensions of P in which z; y; x occur consec-utively in that increasing order is equal to the number with y; z; x consecutively in thatorder, and also equal to the number with z; x; y consecutively in that order. Thus the prob-ability that z; y; x occur consecutively in that order is at most one third of the probabilitythat x > z.Now observe that, if a linear extension � of P has z < x, but does not feature z; y; xconsecutively in that order, then either h�(x)� h�(y) � 2 or h�(y)�h�(z) � 2 (or both).So we have Prob (h�(x)� h�(y) � 2) + Prob (h�(y) � h�(z) � 2)� Prob (h�(x)� h�(y) � 2 or h�(y) � h�(z) � 2)� 23 Prob(x > z) � 111 ;



14 BALANCING PAIRS AND THE CROSS PRODUCT CONJECTUREwith the �nal inequality following from Lemma 6.1. �>From now on, we consider the two pairs (x; y) and (y; z). We will continue to usethe notation ai to denote Prob(h�(y) � h�(x) = i), and similarly for bi; we introduce thenotation a0i = Prob(h�(z) � h�(y) = i), and b0i = Prob(h�(y) � h�(y) = z). We set, asbefore, B =P bi and � = b1=B; we de�ne also B0 =P b0i and �0 = b01=B0. Lemma 6.2 tellsus that B(1� �) + B0(1� �0) � 111 : (6:1)Suppose that B + B0 = Prob(x > y) + Prob(y > z) = (5�p5)=5.Our plan is to incorporate the extra constraint (6.1) into the Kahn-Saks analysis forthe sequences corresponding to the two pairs, and deduce that the heights of (faig; fbig)and (fa0ig; fb0ig) sum to more than 2. To this end, Lemma 2.2 tells us that we may assumethe sequences are packed. The following lemma thus implies the result for Case C.LEMMA 6.3. If 0 < B � B0 � 1=3, B+B0 = (5�p5)=5, and B(1��)+B0(1��0) � 1=11,then H(B; �) +H(B0; �0) > 2.Proof. We break the analysis into three cases.(a) First, let us assume that B � 3=10, and that 1 + 2� + 2�2 � 10=3, which impliesthat � < 0:7 < 1=p2. By Lemma 2.3, we have H(B; �) +H(B0; �0) � H(B; �0) +H(B0; 1),where 1=B = 1 + 2�0 + 2�20. Note that 0:618 ' (p5� 1)=2 � �0 � 0:7.For (B; �) satisfying case (ii), k = 1, we haveH(B; �) = 52 � B2� (4�2 + 5�+ 2)= 5� 11B2 +B(1 � �) �B (1� �)2� :Thus we obtainH(B; �0) +H(B0; 1) = 5� 112 (B +B0) + B (1� �0)(2�0 � 1)�0= 5� 112 5�p55 + (1� �0)(2�0 � 1)�0(1 + 2�0 + 2�20) :This function is minimised in the range [0:618::; 0:7] at the lower endpoint, when it is equalto (10 + 9p5)=15 ' 2:0083.(b) Our second case is where B is any value in the feasible range [0:219::; 1=3], and(1+2�)(1+�) � 1=B, i.e., � is at or below the lower boundary of case (i) with k = 2. Then,by Lemma 2.3, H(B; �)+H(B0; �0) � H(B; �1) +H(B0; 1), where (1+ 2�1)(1 + �1) = 1=B,so certainly �1 � 1=2.Now H(B; �1)�H(B; 1) = 12 � B� (1 + �1)3�1 � 112 �= 12 � 2� 5�1 + 6�21 + 2�312�1(1 + �1)(1 + 2�1) ;and this expression is at least 1=12 in the range 1=2 � �1 � 1. Since H(B; 1)+H(B0; 1) =5� 11(5�p5)=5 ' 1:960, we are done here.



BRIGHTWELL, FELSNER AND TROTTER 15(c) The remaining case is when neither the (B; �) sequence nor the (B0; �0) sequence fallinto one of the above two cases. Note that both sequences must then satisfy either case (ii)with k = 1 or case (i) with k = 2.Our aim is to show that the quantityM (B; �) = H(B; �) �H(B; 1)B(1� �)is at least 1=2. This will then imply thatH(B; �) +H(B0; �0) � H(B; 1) +H(B0; 1) + 12 (B(1 � �) + B0(1� �0))� 5� 11 5�p55 !+ 122 ' 2:0051;which will complete the proof.Suppose �rst that the (B; �) sequence comes under case (ii), k = 1. If � � 0:69, thenB � 1=(1+2�+2�2) > 0:3, and the (B; �) sequence was covered by case (a). Thus � � 0:69.Then, from an earlier calculation, we have thatH(B; �) = H(B; 1) +B(1 � �)�B (1� �)2� ;so M (B; �) = 2� 1=� � 2� 1=0:69 > 1=2, as desired.Now suppose that the (B; �) sequence comes under case (i), k = 2. If B � 3=10, thenthe sequence again comes under (a) above, so we may assume that B � 3=10. NowM (B; �) = 3�B(1 + �)3=�� (5 � 11B)=2B(1 � �)= 12B(1� �) � (1 + �)3=�� 11=21� � :Thus, for each �xed �, M (B; �) is decreasing in B. So, to prove that M (B; �) is at least1=2, we may assume that B is as large as possible. Increasing B, remaining inside thecase, we arrive at a point where either (i) B = 1=(1 + 2�+ 2�2), and � � 0:69, which is onthe boundary between the two cases, so we know that M (B; �) > 1=2, or (ii) B = 3=10,and � � 0:7, when one may verify directly that M (3=10; �) > 1=2.This completes the proof. �We have now completed the proof of Theorem 2.4, and hence of Theorem 1.3. Thecalculation in this Case is not designed to give the best possible bounds, and it seems tobe just a matter of luck that the extra bound (6.1) gives enough improvement. We suspectthat, if x; y; z are as given, then one of Prob(x > y) and Prob(y > z) will be signi�cantlylarger than (5 � p5)=10 ' 0:2764. An in�nite example in [2] shows that they may bothbe as small as (13 +p17)=68 ' 0:3106.7. Extension to the in�nite caseIn this section, we discuss in greater detail a class of partially ordered sets for which thereis a natural way to extend the de�nition of Prob(x; y) when the ground set is in�nite. For



16 BALANCING PAIRS AND THE CROSS PRODUCT CONJECTUREthis class, the 1=3|2=3 conjecture fails. But our Theorem 1.3 remains valid and is bestpossible.Recall that a poset P is thin if there is some �xed k such that every element is incom-parable with at most k others. It is also convenient to impose the condition that P belocally �nite, i.e., that each set fz : x < z < yg, for x; y 2 P , is �nite. These conditionsimply that P is countable, and that, for any pair x; y of elements, the number of elementsbetween x and y in a linear extension of P is bounded.Let P be an in�nite, thin, locally �nite poset on a ground-set X, containing elementsx; y; z, and let (Xn)1n=1 be a sequence of �nite subsets of X satisfying: (1) if u; v 2 Xnand u < w < v in P , then w 2 Xn, (2) Xi � Xj for i � j, (3) [1n=1Xn = X. For n 2 N,let Pn be the partial order obtained by restricting P to Xn. It is proved by Brightwell [2]that, for any event A depending only on �nitely many basic events of the form a < b, theprobability of A in Pn converges to a limit, which is by de�nition the probability of A inP .We �x an in�nite, thin, locally �nite poset P , and a sequence of subposets Pn withground-sets Xn, as above. We clearly cannot de�ne the average height of an element, butwe can de�ne the average height di�erence h(x; y) of two elements x and y to be the limitof h(y) � h(x) in Pn, as n !1. It was proved in [2] that there necessarily exists a pairx; y with 0 � h(x; y) � 1, and a similar proof establishes that there is a triple x; y; z withh(x; y) � 0, h(y; z) � 0, and h(x; z) � 2.Fix such a triple x; y; z in P and, for n su�ciently large that Xn contains x, y and z, letpn(i; j) be the probability that h�(y)�h�(x) = i and h�(z)�h�(y) = j in a random linearextension � of Pn. Then each pn(i; j) tends to a limit p(i; j), which is the correspondingprobability in P . Furthermore, if we have an inequality relating various of the p(i; j), andperhaps also some average height di�erences, that is valid for all �nite posets, then theinequality will carry over to the limit. In particular, Theorem 3.1 is valid, and so are allthe other inequalities used in Sections 4-6 to derive the bounds on B + B0.Thus all our proofs carry over into the in�nite case, and Theorem 2.4, suitably restatedin terms of average height di�erences, is valid for in�nite, thin, locally �nite posets. Thus�(P ) � (5�p5)=10 for every locally �nite thin poset P .Finally, we can remove the condition of local �niteness, and obtain Theorem 1.4, readilyenough, as follows. Every thin poset P has the structure of a family (Pi)i2I of locally �nitethin posets, indexed by a totally ordered set I, such that if i < j in I, then every elementof Pi is below every element of Pj in P . Then Prob(x < y) in P , for xky, is de�ned asProb(x < y) in the Pi containing x and y. If P is not a chain, then one of the Pi is not achain, and we may �nd a balancing pair in that poset.8. Application to sortingThe original motivation for studying balancing pairs in posets was the connection withsorting. Suppose we are to �nd an unknown linear extension of a �nite partially orderedset P by making comparisons of pairs of elements of P . Thus, at each stage, we maychoose some pair of elements x and y, and ask whether x < y in the unknown linearextension. Let S(P ) denote the number of rounds required to �nd the linear extension, inthe worst case. Thus S(P ) is the number of comparisons required to sort the elements,starting from the knowledge of the relations given by P . The fundamental problem was toanswer whether S(P ) = O(logL(P )), i.e., is it always possible to determine an unknownlinear extension of P with O(logL(P )) rounds (questions). Theorem 1.2 implies a positiveanswer to this question (as does any result that shows �0 > 0.)



BRIGHTWELL, FELSNER AND TROTTER 17Indeed, at each step one can choose a pair (x; y) such that 3=11 � Prob(x > y) �8=11, and ask whether x is above y. Whatever the answer, the number of possible linearextensions is reduced by a factor of at most 8=11 in this round. Therefore the numberof rounds required to identify the linear extension is at most � logL(P )= log 8=11. ThuslogL(P )= log(11=8) ' 3:140 logL(P ) rounds su�ce, and Theorem 1.3 improves this tologL(P )= log((5 �p5)=2) ' 3:091 logL(P ). Later in this section, we will strengthen thisa bit more.None of the arguments in [12], [13], [14] or this paper yields an e�cient algorithm for theoriginal sorting problem, since they do not provide an e�cient method for determing how tolocate the balancing pair. In [11], Kahn and J. Kim have taken a totally di�erent approachto the sorting problem. Using a concept of entropy for posets, they show the existenceof a polynomial time algorithm for sorting in O(logL(P )) rounds. Their algorithm showshow to e�ciently locate pairs to use in queries so that, regardless of the responses, thedetermination of the unknown linear extension is made in O(logL(P )) rounds. However,at individual rounds, the pairs need not be balanced in the sense that for a given pair(x; y) used in the algorithm, Prob(x > y) may be arbitrarily close to zero. We havealready seen that S(P ) � � logL(P )= log(1 � �0) for every poset P , and elementaryinformation theory gives us that S(P ) � logL(P )= log 2 for every P . We de�ne �0 to bethe supremum, over all �nite posets P , of S(P )= logL(P ). >From our previous remarks,we know �0 � 1= log((5 � p5)=2) ' 3:091. So the remainder of this section is aimed atimproving this further, and also to give a lower bound for �0.A better upper bound follows in a straightforward manner from a slightly closer lookat Theorem 2.4 and Lemma 2.5. But �rst we point out that Fredman [9] has proved thatS(P ) � logL(P )= log 2+2jP j, so we are really concerned here with posets that are \almostsorted", i.e., that have rather few linear extensions compared with jP j !.THEOREM 8.1. �0 � 4= log 5 ' 2:485.Proof. We have to prove that S(P ) � 4 logL(P )= log 5 for every �nite poset P . SupposeP is a counterexample minimising (say) jP j+ jL(P )j. We note that P contains no elementcomparable with all others, since otherwise P breaks up into smaller posets that can besorted separately. The result is also true for the 2-element antichain, so we have that P isnot a chain, and has at least three elements. So we may apply Lemma 2.5, and �nd threeelements x; y; z, not forming a chain in P , such that h(x) � h(y) � h(z) � h(x) + 2.Note that, since h(x) � h(y), we certainly have Prob(x > y) � 2=3. If also Prob(x >y) � 1=3, then we compare x and y. Whatever the result of the comparison, we obtaina new poset P 0 with L(P 0) � 23L(P ) � 5�1=4L(P ). By de�nition of P , we have thatS(P 0) � 4 logL(P 0)= log 5 � 4 logL(P )= log 5 � 1, and so S(P ) � 4 logL(P )= log 5, acontradiction.Thus Prob(x > y) < 1=3, and similarly Prob(y > z) < 1=3. From Theorem 2.4, wededuce that xky and ykz in P , and that Prob(x > y) + Prob(y > z) � (5 � p5)=5, soProb(x < y < z) � 1=p5. We now make the two comparisons x : y and y : z. We �ndone of: x > y, y > z, or x < y < z, each of which has probability at most 1=p5. Thus,after two comparisons, we obtain a new poset P 0 with at most L(P )=p5 linear extensions.This leads to a contradiction as before. �The reason we gain in the last part of the proof above is, loosely, that although the �rstcomparison (say x : y) we make may not be \good enough", if we get the \bad" answer,then we know that the comparison y : z will split the set of linear extensions very evenly.It seems almost certain that Theorem 8.1 can be improved by considering more and more
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