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Abstrat

A graph G is a max point-tolerane (MPT) graph if eah vertex v of G an be mapped to a

pointed-interval (Iv, pv) where Iv is an interval of R and pv ∈ Iv suh that uv is an edge of G
i� Iu ∩ Iv ⊇ {pu, pv}. MPT graphs model relationships among DNA fragments in genome-wide

assoiation studies as well as basi transmission problems in teleommuniations. We formally

introdue this graph lass, haraterize it, study ombinatorial optimization problems on it, and

relate it to several well known graph lasses. We haraterize MPT graphs as a speial ase of

several 2D geometri intersetion graphs; namely, triangle, retangle, L-shape, and line segment

intersetion graphs. We further haraterize MPT as having ertain linear orders on their vertex

set. Our last haraterization is that MPT graphs are preisely obtained by interseting speial

pairs of interval graphs. We also show that, on MPT graphs, the maximum weight independent

set problem an be solved in polynomial time, the oloring problem is NP-omplete, and the

lique over problem has a 2-approximation. Finally, we demonstrate several onnetions to known

graph lasses; e.g., MPT graphs stritly ontain interval graphs and outerplanar graphs, but are

inomparable to permutation, hordal, and planar graphs.

1 Introdution

Interval graphs (namely, the intersetion graphs of intervals on a line) are well-studied in omputer

siene and disrete mathematis (see e.g.,[15, 18℄). Many ombinatorial problems whih are NP-hard

∗
Part of this work was previously presented at the 4th biennial Canadian Disrete and Algorithmi Mathematis

Conferene (CanaDAM) in St. John's, NL, Canada June 10-13, 2013. The abstrat and slides are available at: http:

//anadam.math.a/2013/program/abs/grg2.html\#s.
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in general an be solved e�iently when restrited to interval graphs. For example, the maximum

lique problem [18℄, the maximum weight independent set problem [17℄, and the oloring problem [22℄

an all be solved in linear time on interval graphs. The reognition problem is also solvable in linear

time [2℄.

Due to their theoretial and pratial signi�ane many generalizations of interval graphs have been

studied (see e.g.,[1, 8, 21, 23℄). Partiularly relevant to this work are tolerane graphs, �rst introdued

in [23℄. A graph is a tolerane graph (also known as a min tolerane graph) when every vertex v of

G an be assoiated with an interval Iv (of the real number line: R) and a tolerane value tv ∈ R

suh that uv is an edge of G i� |Iu ∩ Iv| ≥ min{tu, tv}. Similarly, a graph is a max tolerane graph

when eah vertex v of G an be assoiated with an interval Iv and tolerane tv suh that uv ∈ E(G)
i� |Iu ∩ Iv| ≥ max{tu, tv}. For a detailed study of tolerane graphs see [24℄.

In this paper we introdue the lass of max point-tolerane (MPT) graphs

1

. A graph G is an MPT

graph when eah vertex v of G an be represented by an interval Iv of R together with a point pv ∈ Iv
suh that two verties u, v are adjaent i� both pu and pv belong to Iu ∩ Iv; i.e., eah pair of intervals

an �tolerate� a non-empty intersetion (without forming an edge) as long as at least one distinguished

point is not ontained in this intersetion. We all suh a olletion {(Iv, pv)}v∈V (G) of pointed intervals

an MPT representation of G. Moreover, we also denote eah (Iv, pv) by a triplet (sv, pv, ev) where sv
and ev denote the start and end of Iv respetively.

MPT graphs have a number of pratial appliations. They an be used to detet loss of heterozy-

gosity events in the human genome; see e.g., [25, 52℄. In suh appliations an interval I represents the

maximal boundary on a hromosome region from an individual that may arry a deletion and the point

p represents a site in the onsidered region that shows evidene for a deletion. MPT graphs ould also

be used to model teleommuniation networks; e.g., ommuniation where devies reeive message on

a wide hannel (interval) and send messages on a narrow on a sub-band (point) of that hannel. Suh

an asymmetri �big� downlink / �small� uplink model is quite ommon in teleommuniation networks

(see, e.g., [49, 29℄). In this situation the edges of the MPT graph orrespond to devies with diret

two-way ommuniation.

Some lassial optimization problems on MPT graphs orrespond to pratial problems. For ex-

ample, when modeling genome-wide assoiation studies, �nding the hromosomal region showing the

highest evidene for a massive loss of heterozygosity in a population of individuals involves solving the

maximum lique problem and partitioning all evidene-of-deletion sites into the minimal number of

deletions involves solving the minimum lique over problem [3℄. In our teleommuniations example,

a minimum lique over orresponds to partitioning the devies into a minimum olletion of sets of

fully-ommuniable devies.

Interestingly, the maximum weight lique problem on a MPT graph was shown to be polynomially

solvable due to the fat that an MPT graph an have at most O(n2) maximal liques [3℄. Additionally,

the minimum weight lique over problem was shown to be NP-omplete for submodular ost funtions

[3, 11℄. The omplexity of the unweighted lique over problem on MPT graphs remains unresolved.

Finally, losely related to MPT graphs is the lass of interval ath digraphs. A digraph D is an

interval ath digraph when eah vertex v of D an be mapped to an interval Iv of R together with

a point pv ∈ Iv suh that uv is an ar of D i� pu ∈ Iv. Notie that MPT graphs are preisely the

1

Using the phrasing of Golumbi and Trenk [24℄ this lass would be alled max point-ore bitolerane graphs. However,

this partiular lass of tolerane graphs was not disussed in [24℄.
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underlying undireted graphs of the symmetri edges of interval ath digraphs. Interval ath digraphs

have a vertex order haraterization [38℄, an asteroidal-triple haraterization [42℄, and a polynomial

time reognition algorithm [43℄. However, these results do not translate to MPT graphs.

Our Contributions: We provide haraterizations of MPT graphs, utilize these haraterizations

for ombinatorial optimization problems, and relate MPT graphs to well-known graph lasses.

In setion 2 we haraterize MPT graphs as a speial ase of L-graphs (intersetion graphs of L-

shapes in the plane). This will imply that MPT is also a sublass of retangle intersetion graphs (also

known as boxiity-2 graphs [45℄) and of triangle intersetion graphs. We also use this haraterization

to show that interval graphs and 2D ray graphs are strit sublasses of MPT graphs. We further

haraterize MPT graphs by ertain linear vertex orders. In partiular, we show that a graph G =
(V,E) is MPT i� the verties of G an be linearly ordered by < so that no quadruple u, v, w, x ∈ V
with u < v < w < x has the edges uw and vx without the edge vw. Related to this ordering ondition,

we also desribe MPT graphs as the intersetion of two speial interval graphs (see Theorem 5.5).

Finally, MPT graphs are haraterized as intersetion graphs of ertain line segments from yli line

arrangements.

These haraterizations are then used to study ombinatorial optimization problems on MPT

graphs. Namely, we demonstrate that the weighted independent set (WIS) problem an be solved

in polynomial time, the lique over problem an be 2-approximated in polynomial time, and that the

oloring problem is NP-omplete but an be log(n)-approximated in polynomial time. As part of the

approximations, we show that the lique over number γ(G) is at most twie the independene number

α(G) and that the hromati number χ(G) is at most O(ω log(ω)) where ω is the lique number

2

.

Finally, we observe some strutural results and ompare MPT graphs to several well-known graph

lasses. For example, we observe that outerplanar graphs are a proper sublass of MPT graphs

and haraterize them by a �ontat� MPT representation. We additionally observe in�nite fami-

lies of forbidden indued subgraphs for MPT graphs whih are onstruted from non-interval and

non-outerplanar graphs.

Related Work: While our results have been obtained independently, there are several plaes whih

overlap with some existing papers [37, 51, 9℄. We will identify eah of these as they are presented.

Note that [51℄ is tehnial report, [9℄ is a refereed onferene paper, and [37℄ is a journal publiation.

Some of our results also appear in the Masters Thesis of our o-author Thomas Hixon [26℄.

Preliminaries: All graphs onsidered in this paper are simple, undireted, and loopless (unless

otherwise stated). For a graph G with vertex set V and edge set E, we use the following notation. The
symbols n and m denote |V | and |E| respetively. For a subset S of V , G[S] denotes the subgraph of

G indued by S and G \ S denotes the subgraph of G indued by V \ S; i.e., G \ S = G[V \ S]. For a
vertex v ∈ V , N(v) denotes the neighborhood of v (i.e., the verties in G whih are adjaent to v).

2 Geometri representations of MPT graphs

In this setion we relate MPT graphs to geometri intersetion graphs. Spei�ally, we haraterize

MPT graphs as intersetion graphs of axis-aligned L-shapes whose orner points form a line with

2

The bound on χ(G) follows from [4℄ and one of our haraterizations.
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negative slope (namely, linear L-graphs as de�ned below). One we formalize this it will be easy to see

that this implies that MPT graphs are a speial sublass of boxiity-2 graphs and triangle intersetion

graphs. The equivalene between linear L-graphs and MPT graphs is also stated in [51℄. Later in this

paper we use these haraterizations to study ombinatorial optimization problems on MPT graphs

and to relate MPT graphs to lassial graph lasses.

An L-shape onsists of a vertial line segment and a horizontal line segment with a orner that is

the lowest point of the vertial segment and the left-most point of the horizontal segment. We de�ne a

linear L-system L to be a olletion of L-shapes {L1, . . . , Ln} in the plane suh that the orner points

of L1, . . . , Ln are distint and form a line with negative slope. We say that a graph G is a linear

L-graph if G is the intersetion graph of a linear L-system L and we refer to L as a linear L-system of

G. We de�ne linear retangle graphs and linear right-triangle graphs similarly (i.e., with the lower-left

orners of the shapes forming a line with negative slope; note: we always onsider the lower-left orner

of eah triangle to be the right angle). In partiular, it is easy to see that these three graph lasses are

the same; e.g., as in Figure 2.

Without loss of generality we assume that the orner points in all linear systems have the form

(c,−c) for some positive integer c. This allows us to speify eah L-shape L in a linear L-system by

(tL, cL, rL) where: −tL is the y-oordinate of the top of L, (cL,−cL) is the orner point of L, and rL
is the x-oordinate of the right-most point of L. Suh an L-shape is given in Figure 1.

L

−tL

−cL

cL rL

Figure 1: Anatomy of an L-shape in a linear L-system. Notie that we inlude a �platform� orre-

sponding to the line x+ y = 0 to emphasize the linearity of the system.

•
•

•
•

•
•

v1

v2

v3

v4

v5

v6

v1
v2

v3
v4

v5
v6

v1
v2

v3
v4

v5
v6

v1
v2

v3
v4

v5
v6

Figure 2: (from left-to-right) The net G, a linear L-system L of G, the linear retangle-system orre-

sponding to L, and the linear right-triangle-system orresponding to L.

Theorem 2.1 Max point-tolerane graphs are preisely linear L-graphs.

Proof: Let {(s1, p1, e1), . . . , (sn, pn, en)} be a MPT representation of a graph G. Consider the linear
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L-system L = {L1, . . . , Ln} where tLi
= −si, cLi

= pi, and rLi
= ei. The theorem follows from the

depition of this onstrution given in Figure 3 �

−si

−pi

si pi ei

Figure 3: Illustrating the equivalene between MPT representations and linear L-systems. From left-

to-right: the L-shape orresponding to a pointed-interval, two examples of non-adjaent verties as

pointed-intervals and the orresponding linear Ls, and one example of adjaent verties as pointed-

intervals and the orresponding linear Ls.

3 L-systems of Interval Graphs

In this setion we onnet interval graphs with MPT graphs. We do this by demonstrating that every

interval representation of a graph is equivalent to an anhored linear L-system (see De�nition 3.1 and

Proposition 3.2). Interval graphs have are also observed to be a sublass of MPT graphs in [51℄. In fat,

they laim that rooted path graphs (a superlass of interval graphs) are a sublass of MPT graphs, but

they do not observe our haraterization. We later use this haraterization in our 2-approximation of

lique over and to identify an in�nite family of non-MPT graphs.

De�nition 3.1 A linear L-system L is anhored if there exists A ∈ R suh that tL ≤ A ≤ cL for every

L ∈ L. Note: we say that L is anhored at A and refer to A as the anhor point of L.

Proposition 3.2 G = (V,E) is an interval graph i� G has an anhored linear L-system.

Proof: (=⇒) Let I = {I1, . . . , In} be an interval representation of G where si and ei denote the

starting and ending points of the interval Ii (respetively) for eah i ∈ {1, . . . , n}. Furthermore, (wlog)

assume si ≥ 0 and si < sj i� i < j. Consider the linear L-system L = {L1, . . . , Ln} suh that

Li = (0, si, ei); i.e., L is anhored at 0. Notie that, when two intervals Ii, Ij (1 ≤ i < j ≤ n) interset,
the orresponding L-shapes Li, Lj will also interset. Spei�ally, the horizontal segment of Li will

interset the vertial segment of Lj (see Figure 4 (left)). Moreover, when two intervals are disjoint

the orresponding L-shapes will be disjoint sine their horizontal segments will not have any ommon

x-oordinates (see Figure 4 (right)).

(⇐=) Let L = {L1, . . . , Ln} be an anhored linear L-system of G. Consider the interval representa-
tion I = {I1, . . . , In} suh that Ii = (cLi

, rLi
). The equivalene of I and L follows similarly to (=⇒).

�

Corollary 3.3 Interval graphs are a strit sublass of MPT graphs.
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Ii
Ij

Li

Lj

Ii
Ij

Li

Lj

Figure 4: Illustrating the mapping between intervals and Ls for adjaent verties (left) and non-adjaent

verties (right).

Proof: This follows from Proposition 3.2 and the fat that the graph in Figure 2 is an MPT graph

but not an interval graph [36℄. �

4 Combinatorial Optimization Problems

In this setion we will disuss the weighted independent set (WIS) problem, lique over (CC) problem,

and the oloring problem on MPT graphs. In partiular, we will show the WIS problem an be solved

in O(n3) time, the CC problem an be 2-approximated in quadrati time, the oloring problem is

NP-omplete but an be log(n)-approximated in linear time.

Throughout this setion we onsider an MPT graph G = (V,E) together with a linear L-system

L = {L1, . . . , Ln} of G where i < j i� the orner point of Li ours to the left of Lj . Without loss of

generality we shall assume that the orner point of Li is (i,−i) for eah i ∈ {1, . . . , n}; i.e., pi = i in
the orresponding MPT representation and Li = (ti, i, ri).

4.1 Maximum Weight Independent Set

The IS problem, even for the unweighted ase, is known to be NP-omplete for: L-graphs, boxiity-

2 graphs, and triangle intersetion graphs sine they ontain the intersetion graphs of vertial and

horizontal line segments (also known as 2-DIR) and the problem is NP-omplete on 2-DIR [34℄. Prior

to [34℄, the IS problem was known to be NP-omplete on boxiity-2 graphs [16, 28℄. However, for

interval graphs, the WIS problem is known to be solvable in linear time from a superlass (e.g., hordal

graphs [17℄) of interval graphs. A graph is hordal when it has no indued k-yle for all k ≥ 4.
Notie that an independent set in an MPT graph orresponds to a olletion of disjoint L-shapes in

a linear L-system. We use this equivalene to solve the WIS problem on a vertex-weighted MPT graph

in polynomial time algorithm via dynami programming. A lose examination of our approah reveals

its similarity to an algorithm for WIS on generalizations of interval graphs [37℄. The approah in [37℄

also involves the use of dynami programming with respet to ertain intervals (whih we simplify to

dominant L-shapes) and no spei� time bound other than polynomial is laimed. However we believe

our presentation is muh learer for the ontext of MPT graphs and it provides a diret time bound

of O(n3). Also, there has been a reent O(n2) dynami programming algorithm for this problem [9℄

(this is based on [37℄), but here we believe that the simpliity of our approah provides insight into

the struture of independent sets in MPT graphs and so we have inluded it.

We now disuss the key idea. Let J be a sub-olletion of disjoint L-shapes of L. We say that an
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L-shape Li is dominant in J if it ontains the right-most point among the L-shapes in J ; i.e., Li ∈ J
and ri = maxLj∈J rj . Consider a dominant Li and some Lj ∈ J suh that j > i. Notie that Lj

annot ontain any points to the right of the line x = rj (sine Li is dominant). Moreover, Lj must

our stritly below the line y = −i (sine Lj 's orner point is below Li's orner point). Similarly, for

Lj′ ∈ J with j′ < i, Lj′ again annot ontain any points to the right of the line x = rj . Furthermore,

Lj′ is ontained stritly above the line y = −i. Thus, for an L-shape Li, if Li is dominant in a sub-

olletion J of disjoint L-shapes of L, then the L-shapes whih belong to J and preede Li an be

hosen independently of the L-shapes whih belong to J and follow Li.

The following notation is depited in Figure 5. For a, b ∈ {1, . . . , n} and a ≤ b, let L0,n+1 = L and

La,b = L0,b ∩ La,n+1 where:

• L0,b = {Li : 1 ≤ i ≤ b− 1, ri < rb, and Li ∩ Lb = ∅}; and
• La,n+1 = {Li : a+ 1 ≤ i ≤ n, ri < ra, and Li ∩ La = ∅}.

Lb

La

Figure 5: The L-shapes stritly ontained in the shaded regions illustrate L0,b (left) and La,n+1 (right).

Let opt[a, b] denote the maximum total weight of a olletion of mutually disjoint L-shapes in La,b.
Notie that opt[0, n+1] is the maximum weight of an independent set in G. Furthermore, by the above

disussion, we have the following reurrene for opt[a, b]:
opt[a, b] = max

Li∈La,b

(opt[a, i] + w(Li) + opt[i, b])

It is easy to see that the olletion of sets {La,b : a, b ∈ {0, . . . , n + 1}, a ≤ b} an be omputed in

O(n3) time (sine eah of La,b an be omputed in O(n) time). Moreover, the size of the table opt is
O(n2), and the time to ompute eah entry is O(n). Thus, we have the following theorem.

Theorem 4.1 For a vertex weighted MPT graph with a given linear L-system, a maximum weight

independent set an be omputed in O(n3) time.

4.2 Clique Cover

The CC problem is known to be NP-omplete on boxiity-2 graphs (from unit square intersetion

graphs [16℄), and L-graphs (from irle graphs [31℄). However it is solvable in polynomial time on

interval graphs and outerplanar graphs.

In this subsetion we desribe a polynomial time 2-approximation algorithm for the CC problem

on MPT graphs. Our approah uses ideas similar to the algorithm for hitting set in [7℄. From our

algorithm we will see that the lique over number γ(G) is at most twie the independene number

α(G) for any MPT graph G. Reently it has been observed that a hitting set for a linear retangle-

system an be 2-approximated in polynomial time [9℄. Suh a hitting set also provides a orresponding
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lique over of the same size and their proof implies the 2α(G) bound. This proof uses a duality gap

argument regarding the di�erene between the size of a MIS and and the size of a minimum hitting

set and is quite di�erent from our approah. Additionally, our approah is faster and simpler.

Our algorithm begins with the linear L-system L = {L1, ..., Ln}. Reall that L is ordered aording

to the orner points of the L-shapes. From L we greedily selet an independent set I. We then build a

partial lique over of G with one lique for eah element of I. Finally, we onsider the graph H whih

remains after removing these liques and observe that it is an interval graph. Sine H is an interval

graph we an e�iently ompute an optimal lique over for it. This ompletes the overview of our

algorithm. Notie that, sine H will be an interval graph (i.e., a perfet graph), γ(H) = α(H). Thus,
the size of the lique over that we produe is |I|+ α(H) ≤ 2α(G). We now desribe our algorithm in

detail.

First we onstrut the greedy independent set as follows. Let I1 = {L1}, and let Ii = Ii−1 ∪ {Lj}
suh that Lj does not interset any L-shape in Ii−1 and j is the smallest index satisfying this property.

Let I = {Li1 , ..., Lik} be the maximal independent set onstruted in this way suh that ij < ij′

whenever j < j′. Sine I is an independent set in G, we an see that k is at most the lique over

number of G. We will onstrut a partial lique over using I and show that the remaining graph H
will be an interval graph.

To this end, onsider the following disjoint sets of verties. For eah j ∈ {1, . . . , k − 1}, let

Cj = {vℓ : ij ≤ ℓ < ij+1, and rℓ ≥ ij+1}. First we laim that eah suh Cj is a lique, and then we

laim that removing all suh Cjs from G results in an interval graph H.

Claim 1: Cj is a lique.

Proof: Consider two verties in Cj . Their orner points our between the orners of Lij and Lij+1
,

their top points our above the orner of Lij (otherwise one of them would be hosen into I instead

of Lij+1
), and their right points our to the right of the orner of Lij+1

. Thus, they must interset;

i.e., Cj is a lique. �

Claim 2: H = G \ (
⋃k

j=1Cj) is an interval graph.

Proof: Consider vp in H where ij ≤ p < ij+1 and 1 ≤ j < k. First, due to our onstrution of I,
either vp = vij or vp is a neighbor of some vij′ where ij′ ≤ ij ; i.e., the vertial segment of every suh vp
intersets the line y = ij . Seond, we know that the right-most point of Lp is to the left of Lij+1

(sine

vp /∈ Cj). This implies that every neighbor vq of vp in H has ij ≤ q < ij+1. Thus, H indued on its

verties between vij and vij+1
is an interval graph (sine it has an anhored linear L-system anhored

at ij) and is a disjoint union of onneted omponents of H.

The same argument applies to verties vp with ik ≤ p. This show that H is the disjoint union of

interval graphs; i.e., H itself is an interval graph. �

Notie that the greedy independent set as well as the liques Cj are easily generated in linear time.

Moreover, the CC problem on interval graphs an be solved in linear time [27℄. This leads to the main

theorem of this subsetion.

Theorem 4.2 For an MPT graph G the lique over number is at most twie the independene number.

Also, when a linear L-system is given as input, the lique over G an be 2-approximated in O(n+m)
time.
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4.3 Coloring

The oloring problem is known to be NP-omplete on L-graphs (sine irle graphs, also known as

interval overlap graphs, are ontained in L-graphs [1℄ and oloring irle graphs is NP-omplete [20℄),

on boxiity-2 graphs [28℄, and on triangle intersetion graphs (sine they inlude planar graphs [10℄

and oloring is NP-omplete on planar graphs [19℄). On the other hand, the oloring problem an be

solved in linear time on interval graphs [22℄ and outerplanar graphs [44℄.

In this setion we will demonstrate that it is NP-omplete to determine the hromati number for

MPT graphs, but it an be log(n)-approximated in polynomial time. We will use χ(G) to denote the

hromati number of G.
Prior to proving the hardness result we observe that χ(G) an be log(n)-approximated using known

tehniques. For any boxiity-2 graph G, the relationship between the χ(G) and ω(G) (the lique

number) has been well-studied. The best results regarding this relationship are given in [4℄. The

relevant result for MPT graphs is as follows. For a boxiity-2 graph G with a retangle system suh

that no retangle ontains another, χ(G) is O(ω(G) log(ω(G))) and this log(n)-approximation of χ(G)
an be omputed in polynomial time. It is easy to see from our haraterization of MPT graphs as

linear boxiity-2 graphs, that this result applies diretly to MPT graphs. Thus, the hromati number

of MPT graphs an be log(n)-approximated in polynomial time.

We now turn to the hardness of oloring for MPT graphs. To do this we transform the hardness of

oloring of irular-ar graphs to this lass. Cirular-ar graphs are the intersetion graphs of ars of

a irle. Determining a minimum oloring of a irular-ar graph is known to be NP-hard [20℄; i.e., it

is NP-omplete to determine whether a irular ar graph is k olorable when k is part of the input.

Theorem 4.3 It is NP-omplete to determine the hromati number for MPT graphs.

Proof: Consider a irular-ar graph G = (V,E). We use n and m to denote |V | and |E| respetively.
Now, for any k > 2, we will onstrut an MPT graph G′ = (V ′, E′) suh that: |V ′| = O(n), |E′| =
O(n2), and χ(G) ≤ k i� χ(G′) ≤ k. Moreover, G′

is easily onstruted in O(n2) time. An example of

this onstrution is depited in Figure 6. The basi idea is that we �ut� the irular-ar representation

at an arbitrary point p. This point orresponds to a lique and we split every vertex rossing this point

into two verties so that the result is an interval graph. This interval graph has an anhored linear

L-system to whih we add a lique onsisting of k verties. This lique will ensure that in any oloring

of this onstruted graph, the two opies of every split vertex have the same olor. We now present

the formal proof.

Consider an arbitrary irular-ar representation A of G (suh a representation an be onstruted

in O(n+m) time [39℄). Let p be a �xed point on the irle of A and let Ap = {A1, . . . , Aℓ} be the ars
of A that inlude p. The verties {v1, . . . , vℓ} orresponding to Ap form a lique in G (sine the ars

all share the point p). Hene, if no ars pass through the point p, then G is an interval graph; i.e., G
is an MPT graph and so we an let G′ = G and we are done. Similarly, if ℓ > k, then χ(G) > k and

we are done; i.e., we simply let G′
be a lique on ℓ verties. Thus we may assume 1 ≤ ℓ ≤ k.

We now form an interval graph H from G by �utting� the irular-ar representation A at the

point p. Formally, for some small enough ǫ > 0 and eah i ∈ {1, . . . , ℓ}, we replae the ar Ai = (si, ei)
with two ars A1

i = (si, p− ǫ), and A2
i = (p+ ǫ, ei) and onsider H as the resulting intersetion graph.

In partiular, eah vertex vi is replaed by two verties v1i and v2i orresponding to the ars A1
i and

9
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Figure 6: Sample onstrution from the proof of Theorem 4.3 where the �ut� ontains 5 verties and

k = 6.

A2
i respetively. Notie that |V (H)| = n + ℓ and |E(H)| ≤ 2m. Sine there are no ars passing

through the point p in this irular-ar representation of H, the graph H is an interval graph. Thus,

by Proposition 3.2, H has an anhored linear L-system.

Finally, we add a lique of size k to H so that the result is an MPT graph G′
and in any k-oloring

of G′
, the verties v1i and v2i must be assigned the same olor. To this end, we de�ne G′ = (V ′, E′) as

follows:

V ′ = V (H) ∪ {u1, . . . , uk},

E′ = E(H) ∪ {utv
j
i : j ∈ {1, 2}, i ∈ {1, . . . , ℓ}, t ∈ {i+ 1, . . . , k}} ∪ {uiuj : i, j ∈ {1, . . . , k}, i 6= j}.

We show that G′
has a k-oloring i� χ(G) ≤ k.

=⇒ Notie that the verties v11 and v21 are adjaent to the same lique of size k − 1 in G′
. Thus, in

any k-oloring of G′
, v11 and v21 must be assigned the same olor. Indutively, it is easy to see that v1i

and v2i must also reeive the same olor in any k-oloring of G′
. Spei�ally, ui, v

1
i , and v2i will reeive

the same olor for every i ∈ {1, . . . , ℓ}. Thus, any k-oloring of G′
provides a k-oloring of G.

⇐= We an extend any k-oloring f : V (G)→ {1, . . . , k} of G to a k-oloring f ′ : V (G′)→ {1, . . . , k}
of G′

as follows. For every v ∈ V (G) \ {v1, . . . , vℓ}, set f ′(v) = f(v). For eah i ∈ {1, . . . , ℓ}, set
f ′(ui) = f ′(v1i ) = f ′(v2i ) = f(vi), and then hoose f ′(uℓ+1), . . . , f

′(uk) so that {f
′(uℓ+1), . . . , f

′(uk)} =
{1, . . . , k} \ {f(v1), . . . , f(vℓ)}. It is easy to see that f ′

is a k-oloring of G′
. This ompletes the proof

of the laim.

All that remains is to show that G′
has the appropriate size and that it is an MPT graph. Notie

that |V (G′)| = n + ℓ+ k ≤ 3n and |E(G′)| ≤ 2m +
(

k
2

)

+ (k − ℓ) ∗ 2ℓ +
∑ℓ−1

t=1 2t ≤ 3n2
. Thus, G′

has

the appropriate size. Furthermore, we an onstrut an MPT representation of G′
by starting from an
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anhored linear L-system of H and adding L-shapes for the new lique �above� this anhored linear

L-system (see Figure 6). Thus, G′
is an MPT graph.

From the above onstrution we an see that determining the hromati number for MPT graphs

is NP-hard, sine it is NP-hard to determine the hromati number for irular-ar graphs. �

This leaves open the k-oloring problem for �xed k ≥ 3. In partiular, note that in the above

onstrution it was neessary that the number of olors k was part of the input, sine for �xed k, the
k-oloring problem is solvable in polynomial time on irular-ar graphs [20℄.

5 Other Charaterizations

In this setion we haraterize MPT graphs by linear vertex orders, the intersetion of interval graphs,

and as a restrited lass of segment graphs.

5.1 Vertex Ordering

Several well known graph lasses have been haraterized by speial linear orders on their verties; e.g.,

interval graphs (see De�nition 5.1 and Theorem 5.2), unit interval graphs [48℄, hordal graphs [12℄, and

o-omparability graphs [35℄. In this setion we haraterize MPT graphs as graphs with MPT-orders

(see De�nition 5.3 and Theorem 5.4). This haraterization is also stated in [51℄. We then use this

ordering to show that a graph is an MPT graph i� it is the intersetion of two �speial� interval graphs

(see Theorem 5.5).

De�nition 5.1 An I-order of a graph G with verties v1, . . . , vn is an ordering v1 < v2 < · · · < vn
suh that: for every u < v < w, if uw ∈ E(G), then uv ∈ E(G).

Theorem 5.2 [41, 46, 47℄ G is an interval graph i� G has an I-order. Moreover for any interval

representation I of a graph G, ordering the verties of G by the left end-points of their intervals results

in an I-order of G.

De�nition 5.3 An MPT-order of a graph G with verties v1, . . . , vn is an ordering v1 < v2 < · · · < vn
suh that: for every u < v < w < x, if uw, vx ∈ E(G), then vw ∈ E(G).

Notie that MPT-order is a generalization of I-order. In partiular, let σ be an I-order of a graph

G. Now suppose we have u, v, w, x ∈ V (G) suh that u <σ v <σ w <σ x and uw, vx ∈ E(G). Sine σ
is an I-order with v <σ w <σ x and vx ∈ E(G), the edge vw is fored. Thus, σ is an MPT-order; i.e.,

every I-order is also an MPT-order. We now prove that MPT graphs are haraterized as the graphs

with MPT-orders.

Theorem 5.4 G = (V,E) is an MPT graph i� G has an MPT-order (i.e., the verties of G an be

ordered by < so that for every u, v, w, x ∈ V , if u < v < w < x and uw, vx ∈ E, then vw ∈ E).

11



Proof: (=⇒) Let {(sv, pv, ev) : v ∈ V } be an MPT representation of G. Order the verties of G suh

that vertex v omes before vertex u if pv ≤ pu. Now, onsider any four distint verties u, v, w, x where

u < v < w < x and uw, vx ∈ E. Then, it is easy to realize that, due to the onsidered ordering, it

holds that sw ≤ pu ≤ pv and ev ≥ px ≥ pw, whih implies vw ∈ E.
(⇐=) Let G = (V,E) be a graph with ordered vertex set V = {v1, . . . , vn} suh that for any

i, j, k, ℓ ∈ {1, . . . , n}, if i < j < k < ℓ and vivk, vjvℓ ∈ E then vkvj ∈ E (i.e., v1 < · · · < vn is

an MPT-order). We now onstrut an MPT representation of G based on this ordering. For eah

i ∈ {1, . . . , n}, let:

• si = min{i, j} where j is the smallest index suh that vjvi is an edge in G.
• pi = i
• ei = max{i, j} where j is the largest index suh that vivj is an edge in G.

Clearly I = {(si, pi, ei) : i ∈ {1, . . . , n}} is an MPT representation in whih every edge of G is aptured.

Now we need to demonstrate that this representation does not inlude any edges whih are not edges

of G. Suppose that for some j, k ∈ {1, . . . , n}, j < k, vjvk /∈ E but sk ≤ pj and ej ≥ pk. Sine sk ≤ pj
there must be vi with i < j suh that vivk ∈ E. Similarly, there must be vℓ with ℓ > k suh that

vjvℓ ∈ E. However, we now have i < j < k < ℓ with vivk, vjvℓ ∈ E but vjvk /∈ E; i.e., a ontradition

to the vertex order. Thus I is an MPT representation of G. �

Notie that, sine every I-order is an MPT-order and every graph with an MPT-order is an MPT

graph, we have an alternate proof of Corollary 3.3; i.e., that every interval graph is an MPT graph.

Also, sine the order of verties in an MPT-order orresponds to the order of the points in an MPT

representation, they also orrespond to the order of the orner points in a linear L-system of an MPT

graph.

We onlude this setion by further haraterizing MPT graphs as the intersetion of two related

interval graphs.

Theorem 5.5 G = (V,E) is an MPT graph with MPT-order σ = (v1 < . . . < vn) i� there are interval

graphs H1 = (V,E1) and H2 = (V,E2) suh that E = E1 ∩ E2, σ is an I-order of H1, and the reverse

of σ (i.e., vn < · · · < v1) is an I-order of H2.

Proof: (=⇒) Let σ = v1 < · · · < vn be an MPT-order of G, and let L be the linear L-system of

G onstruted in the proof of Theorem 5.4 using this order; i.e., cvi < cvj i� i < j. Construt an

anhored linear L-system L1 by extending the horizontal segment of every L-shape in L to the right

beyond the orner of the right-most L-shape in L. Similarly, onstrut an anhored linear L-system L2
by extending the vertial segment of every L in L so that it reahes above the orner of the left-most

L-shape in L. By Proposition 3.2, eah of L1 and L2 orresponds to an interval representation. Let

H1 = (V,E1) and H2 = (V,E2) be the interval graphs spei�ed by L1 and L2. Notie that, by Theorem
5.2, σ is an I-order of H1 and the reverse of σ is an I-order of H2. Thus, we just need to ensure that

E1 ∩ E2 = E. Clearly E ⊆ E1 ∩ E2 from our onstrution of L1 and L2. Moreover there an be no

edge in both E1 and E2 whih is not in E simply due to how these �extra� edges ome into existene

(see Figure 7).

(⇐=) Let H1 = (V,E1) and H2 = (V,E2) suh that V = {v1, . . . vn}, σ = (v1 < · · · < vn) is an
I-order of H1, and the reverse of σ is an I-order of H2. We now laim that σ is an MPT-order of
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Figure 7: (left) Lu, Lv suh that uv ∈ E1 \E. (right) Lu, Lv suh that uv ∈ E2 \ E.

G = (V,E1 ∩ E2). Consider 1 ≤ i < j < k < ℓ ≤ n where vivk, vjvℓ ∈ E1 ∩ E2. Notie that vjvk ∈ E1

sine σ is an I-order of H1 and vjvℓ ∈ E1. Similarly, vjvk ∈ E2 sine the reverse of σ is an I-order of

H2 and vivℓ ∈ E2. Thus, vjvk ∈ E1 ∩ E2 as needed. �

5.2 Cyli Segment Graphs

In this setion we haraterize MPT graphs as intersetion graphs of line segments from a yli line

arrangement. A line arrangement is simply a olletion of lines in the plane (see [14℄ for more on line

arrangements). A line arrangement A is yli when there is a onvex funtion f (e.g., a parabola)

suh that every line in A is tangent to f . We de�ne yli segment graphs as the intersetion graphs

of line segments where the underlying line arrangement is yli with respet to some funtion f and

eah segment ontains a point on f . In the following theorem we prove that yli segment graphs are

preisely MPT graphs. This follows easily from our haraterization of MPT graphs via MPT-orders

(see Theorem 5.4).

Theorem 5.6 MPT graphs are preisely yli segment graphs.

Proof: Let σ = (v1 < . . . < vn) be an MPT-order of an MPT graph G. We will onstrut a yli

segment representation of G by mapping eah vertex to a segment of a line tangential to the parabola

y = x2. First, we assign eah vi the tangent line ℓi of the parabola for the point (i, i
2). Now, to hoose

the segment of ℓi for the vertex vi we onsider the left-most and right-most verties, say vimin
and vimax

,

from N(vi) ∪ {vi}. In partiular, we let the segment Si for vi be de�ned as the segment of ℓi starting
from ℓimin

and ending on ℓimax
. Note, if i = imin (i = imax) then we simply use the point (i, i2) as the

starting (ending) point of the segment ℓi. Clearly eah Si passes through the point (i, i2). Thus, we

have onstruted a valid yli segment representation. Consider an edge vivj of G with i < j. From
our onstrution, Si passes through the line ℓj in order to reah Simax

. Similarly, Sj passes through

the line ℓi in order to reah Sjmin
. Thus, Si and Sj interset. Now, suppose that Si and Sj interset

(i < j), but vivj is not an edge of G. In order for these segments to interset, eah must need to �reah

over� the other. In partiular, this means that there is vp and vq suh that p < i < j < q, and vivq
and vjvp are edges in G; i.e., this violates the MPT-order. Therefore, every MPT graph has a yli

segment representation.

To onstrut an MPT-order from a yli segment representation one simply uses the order of the

tangent points and the proof follows similarly to the above. �

With our haraterization established we note that it may be interesting to onsider generalizations

in this ontext. In partiular, one might onsider intersetion graphs of line segments whih are tangent

to onvex bodies or unimodal funtions in R
2
.
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6 Non-MPT graphs and More Sublasses of MPT graphs

In this setion we observe two additional strit sublasses of MPT graphs (namely, outerplanar graphs

and 2D ray graphs). We further observe in�nite families of graphs whih are not MPT graphs.

6.1 Outerplanar graphs

In this setion we onsider outerplanar graphs as a restrited form of MPT graphs. In partiular,

we onsider linear L-ontat-systems and demonstrate that the graphs of these ontat systems are

preisely outerplanar graphs. It has been independently stated that outerplanar graphs are a sub-

lass of MPT graphs [51℄. Their proof is ompletely di�erent from ours and does not provide the

haraterization we have observed.

A graph is outerplanar if it has a rossing-free embedding in the plane suh that all verties are on

the same fae. Moreover, an outerplanar graph is said to be maximal when it is not a proper subgraph of

any outerplanar graph with the same number of verties. We will demonstrate that outerplanar graphs

are preisely the linear ontat L-graphs (see De�nition 6.1 and Theorem 6.3). For more information

on ontat L-graphs see [6, 5, 32℄.

De�nition 6.1 A graph G is a linear L ontat graph when it has a linear L-system L suh that no

two L-shapes �ross-over� eah other; i.e., for L-shapes Lu = (tu, cu, ru), Lv = (tv, cv , rv), if Lu∩Lv 6= ∅
and cu < cv, then either cu = tv or ru = cv. Moreover, we say suh an L ontat system is equilateral

when, for eah L-shape, the vertial and horizontal segments have the same length.

We will use the following haraterization of maximal outerplanar graphs related to 2-trees (whih

follows easily from [40℄). A 2-tree is a graph that an be onstruted by starting from an edge and

iteratively adding verties with exatly two adjaent neighbors. Semi-squares will also play a role

throughout this setion. A semi-square is a right-triangle whose vertial and horizontal sides are the

same length (e.g., the lower-left �half� of a square). Notie that, there are four types of semi-squares

depending on the hoie of orner: lower-left (ll), lower-right (lr), upper-left (ul), and upper-right

(ur). It is known that max tolerane graphs are preisely semi-square intersetion graphs where every

semi-square has the same type (e.g., max tolerane graphs are preisely the ll-semi-square intersetion

graphs) [30℄.

Theorem 6.2 ([40℄) Let G be a maximal outerplanar graph. For any edge v1v2 of the outerfae of G,
the verties of G an be ordered v1, . . . , vn suh that vi (2 < i ≤ n) has exatly two neighbors, u and v,
in Gi−1 = G[{v1, . . . , vi−1] and uv is and edge of G. We refer to suh an order as an outerplanar-order.

Theorem 6.3 Every maximal outerplanar graph G is a linear equilateral-L ontat graph.

Proof: Consider an outerplanar order v1, v2, . . . , vn of G. We iteratively build the linear equilateral-

L ontat system as follows. Let Lv1 = (−1, 0, 1) and Lv2 = (0, 1, 2) be the L-shapes for v1 and v2
respetively. Clearly Lv1 and Lv2 ontat eah other at the point (1, 0), both terminate at this point,

are equilateral, and their orner points lie on the line y = −x. Moreover, the ur-semi-square de�ned

by the points (0, 0), (1, 0), (1,−1) is:
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• empty (i.e., it is internally disjoint from all the L's we have so far),

• its diagonal is a segment of the line y = −x, and

• the point (1, 0) is the point of ontat between Lv1 and Lv2 .

Now assume that we have a linear equilateral-L ontat system Li−1 for v1, . . . , vi−1 suh that every

edge uv on the outerfae of Gi−1 orresponds to an empty ur-semi-square as in the base ase. We

extend this representation to a representation of Gi as follows. From the outerplanar ordering, the

vertex vi is adjaent in Gi−1 to preisely one pair u, v suh that uv is an edge on the outerfae of Gi−1.

Thus, we have an empty ur-semi-square (x,−x), (x+d,−x), (x+d,−x−d) where the point (x+d,−x)
is the ontat point of Lu and Lv. Consider Li = Li−1∪{Lvi} where Lvi = (x, x+d/2, x+d). Without

loss of generality Lvi ontats Lu at the point (x + d/2,−x) and Lv at the point (x + d,−x − d/2).
Moreover, these new ontat points form the appropriate empty and disjoint semi-squares as needed.

Finally, sine the semi-square orresponding to uv was empty before inserting Lvi , the L-shape Lvi

does not interset any other L-shapes. Thus, Li is a linear equilateral L ontat system as needed. �

Similarly to how linear L-graphs are equivalent to linear boxiity-2 graphs and linear right-triangle

graphs, we have the following orollary regarding linear ontat graphs.

Corollary 6.4 The following graph lasses are equivalent: outerplanar, linear L ontat, linear equilateral-

L ontat, linear ll-semi-square ontat, linear square ontat.

Proof: Sine maximal outerplanar graphs are linear equilateral L ontat graphs (by Theorem 6.3),

all outerplanar graphs are linear equilateral L ontat graphs. In partiular, one may simply adjust an

equilateral L a by small amount to remove any individual ontat with another L suh that no other

ontat is altered.

Moreover, given any of the ontat representations listed, one an easily onstrut an outerplanar

drawing of the graph. In partiular, eah vertex v is loated at its orresponding orner point on the

line y = −x and the edges uv are drawn by traing Lu and Lv to the orresponding ontat point.

Clearly all verties lie on the outside of suh a drawing and this an be done so that no edges interset.

�

6.2 2D Ray Graphs

A graph is a 2D ray graph when it is an intersetion graph of rays in the plane where the rays have

at most two diretions and parallel rays do not interset (i.e., this is a bipartite graph lass). For

more information on this graph lass (inluding its relationship to many well-known graph lasses) see

[33, 50℄. We observe that 2D ray graphs are a strit sublass of bipartite MPT graphs and that they

play an interesting role in the struture of neighborhoods of verties of MPT graphs.

Proposition 6.5 2D ray graphs are a strit sublass of bipartite MPT graphs.
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Proof: Notie that, without loss of generality, we may assume that any 2D ray representation of a

graph G only uses ↓ and← as the two diretions its rays follow. With this in mind it is easy to see that

this representation is in fat a linear L-system. In partiular, we an imagine a line with negative slope

that intersets all the rays and ours �below� and to the �left� of any point of intersetion between

two rays. Thus, by stopping all rays on this line we have a linear L-system of G. Additionally, this

inlusion is strit sine a 6-yle is not a 2D ray graph [33℄, but it is easily onstruted as a linear

L-graph. �

Reall that MPT graphs have been shown to have O(n2) maximal liques [3℄. Moreover, every

omplete bipartite graph is a 2D ray graph. Thus, O(n2) is a tight bound (up to a multipliative

onstant) on the number of maximal liques in MPT graphs.

We now onsider the neighborhood of a single vertex and observe the following onnetion to 2D

ray graphs and interval graphs.

Proposition 6.6 If G is an MPT graph and v is a vertex of G, then the neighborhood of v an be

partitioned into VL and VR suh that:

• G[VL] and G[VR] are interval graphs; and

• the bipartite graph indued by the edges onneting verties from VL to VR is a 2D ray graph.

Proof: Let L be a linear L-system of G. We set VL as the neighbors of v whose orner points our

prior to v's orner point and de�ne VR to be the remaining neighbors of v. Notie that the orner

points of verties in VR will our after v in L. The L-shapes of VL learly form an anhored linear

L-system and as suh orrespond to an interval representation. Thus, by Proposition 3.2, G[VL] and
(similarly) G[VR] are interval graphs. Moreover, by onsidering L, one an easily see that the bipartite

graph indued by the edges onneting verties from VL to VR is a 2D ray graph. In partiular, the

horizontal segments of VL orrespond to ← rays and the vertial segments of VR orrespond to ↓ rays.
�

6.3 Non-MPT graphs

In this setion we observe some strutural properties of MPT graphs that allow us to identify in�nite

families of non-MPT graphs. These non-MPT graphs will allow us to ompare MPT graphs to planar

and permutation graphs.

Proposition 6.7 If G is an MPT graph with non-adjaent verties u and v, then G[N(u) ∩N(v)] is
an interval graph.

Proof: Consider the relative position of u and v in the linear L-system ofG. Without loss of generality

they must our as in Figure 8. In eah possibility the orner point of any ommon neighbour of u
and v ours in the shaded region; i.e., in every linear L-system of G, the L-shapes orresponding to

N(u)∩N(v) form an anhored linear L-system (anhored to v's L-shape). Therefore, by Proposition 3.2,
G[N(u) ∩N(v)] is an interval graph.

�

Notie that Proposition 6.7 is tight. In partiular, if one adds a independent set I to an interval

graph G suh that every element of I is adjaent to every vertex in G, then the resulting graph G′
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Figure 8: The three ways to represent two non-adjaent verties u, v in a linear L-model. Notie that

any ommon neighbor of u and v must have its orner point in the shaded region.

is an MPT graph. Spei�ally, by Proposition 3.2, G has an anhored linear L-system L. We form a

linear L-system for G′
as follows. Starting from L, one simply adds a set of |I| horizontal segments

suh that the �rst one ours �just below� the anhor point of L, and eah subsequent segment ours

�just below� the previous segment. Eah suh segment will interset every L-shape of in L (sine they

are anhored) and they are disjoint from eah other. Thus, this is a linear L-system of G′
; i.e., G′

is an

MPT graph. This leads to the following observation regarding minimal forbidden indued subgraphs

for MPT graphs. The set of minimal forbidden indued subgraphs of interval graphs is known [36℄ and

is in�nite.

Observation 6.8 If H is a minimal forbidden indued subgraph for interval graphs and G is obtained

from H by adding two non-adjaent universal verties x and y to H; i.e., V (G) = V (H) ∪ {x, y} and
E(G) = E(H)∪ {zu : z ∈ {x, y} and u ∈ V (H)}, then either G, G \ {x}, or H is a minimal forbidden

indued subgraph of MPT graphs.

By Proposition 6.7 we see that K2,2,2, the graph formed by taking a 4-yle together with two

non-adjaent verties adjaent to eah vertex of the yle, is not an MPT graph. However, it is easy

to see that this graph is a permutation graph as well as a planar graph (see Figure 9). Moreover, non

planar graphs (e.g., the 5-lique) and non permutation graphs (e.g., the graph in Figure 2) are both

MPT graphs. Thus we have the following observation.

Figure 9: A planar drawing of the non-MPT graph K2,2,2 together with a permutation representation

of it.

Observation 6.9 The MPT graph lass is inomparable with both planar graphs and permutation

graphs.

The minimal forbidden indued subgraphs of MPT graphs inlude many more graphs than those

built from the graphs non-interval graphs. For example, we will show that the full subdivision of any

non-outerplanar graph is also not an MPT graph. The full subdivision G of a graph H is the graph

obtained from H by subdividing every edge of G. It is known that any string representation S of the
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full-subdivision H of a planar graph G is ombinatorially equivalent to some planar embedding of G
[13℄. In partiular, in S, eah edge e of G orresponds to a string Se whih onnets exatly the two

strings orresponding to verties inident with e and Se does not interset any other strings. From this

it is easy to see that the full-subdivision of any non-planar graph is not a string graph [13℄.

A graph G is an outer-string graph when it has a string representation suh that, for a �xed irle

C, every string is ontained within C and exatly one endpoint of eah string belongs to C. It is

easy to see that outer-string graphs are a superlass of MPT graphs; i.e., we an easily repliate a

linear L-system with an outer-string representation. Moreover, in Lemma 6.10, we observe that the

full-subdivision of a non-outerplanar graph is not an outer-string graph and, onsequently, not an MPT

graph.

Lemma 6.10 If H is a non-outerplanar graph and G is the graph obtained from H by subdividing

every edge of H, then G is not an outer-string graph (i.e., G is not an MPT graph).

Proof: Sine G is not outerplanar, any string representation S of H neessarily ontains a string

Sv suh that Sv is ontained in a region enlosed by the strings of a set X of non-neighbors of v. In
partiular, it is not possible to draw a irle onto S so that both Sv and every string of the verties in

X satisfy the outer-string property. �

Even with the set of forbidden graphs we have observed, there are yet many more whih are not

aptured (e.g., the omplement of a 7-yle). Thus, a omplete desription of the minimal forbidden

indued subgraphs for MPT graphs remains an open problem.

7 Conluding Remarks

In this paper we have introdued max point-tolerane graphs. We have haraterized this lass and

demonstrated inlusions with respet to well-known graph lasses. Our results are summarized in

Theorems 7.2 and 7.3 below. We also solved the WIS problem in polynomial time, 2-approximated the

lique over problem in polynomial time, showed the NP-ompleteness of the oloring problem, and

log(n)-approximated the oloring problem in polynomial time.

Interesting open problems remain for this graph lass. Perhaps the most interesting is that of

reognition. Our haraterizations of this graph lass provide a variety of ways to approah this prob-

lem. Several ombinatorial optimization problems remain open for this graph lass. Two partiularly

interesting ones are: k-oloring (for �xed k) and unweighted lique over. One may also try to im-

prove the χ binding funtion as we rely on an existing result regarding oloring axis-aligned retangles

where no pair are in a ontainment relation. Additionally, one may be interested to further study the

relationships with existing graph lasses.

Another diretion of researh would be to study min point-tolerane graphs. In partiular, just as

there are min tolerane graphs and max tolerane graphs one an onsider min point-tolerane (mPT)

graphs.

De�nition 7.1 A graph G = (V,E) is a min point-tolerane (mPT) graph if eah vertex v of G an

be mapped to a pointed-interval (Iv, pv) where Iv is an interval of R and pv ∈ Iv suh that uv is an

edge of G i� either pu ∈ Iv or pv ∈ Iu.
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It should be noted that this graph lass is referred to as point-ore bi-tolerane graphs and further

information an be found in Chapter 5 of [24℄. Additionally, there is a direted graph lass utilizing this

de�nition, namely, the interval ath digraphs [42, 43℄ mentioned in the introdution. The min point-

tolerane graphs are preisely the undireted graphs underlying interval ath digraphs. In ontrast,

max point-tolerane graphs are preisely the undireted graphs underlying the bi-direted edges of

interval ath digraphs.

Theorem 7.2 The max point-tolerane graph lass stritly inludes interval graphs, outerplanar graphs,

and 2D ray graphs.

Theorem 7.3 For a graph G = (V,E), the following are equivalent:

• G is a max point-tolerane graph.

• G is a linear L-graph (equivalently, a linear retangle-graph or a linear right-triangle-graph).

• The verties of G an be ordered by < so that for every u, v, w, x ∈ V (G), if u < v < w < x and

uw, vx ∈ E(G), then vw is an edge of G.
• There are two interval graphs H1 = (V,E1) and H2 = (V,E2) suh that E = E1 ∩ E2 and the

verties of G an be ordered by < so that for every u < v < w if uw ∈ E1 then uv ∈ E1 and if

uw ∈ E2 then wv ∈ E2.

• G is a yli segment graph.

• There is an interval ath digraph D = (V,A) suh that the bi-direted ars of D are preisely

the edges of G.
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