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A linear extension of a partial order P is a linear order L = x1,x>..., T, respecting
the order relations of P, i.e. x; < z; implies ¢ < j for all x;,z; € P. In other words, L
is the linear sum L = Cy @ C; @ ... D (), of disjoint chains Cy, C,...,C,, in P, whose
union is all of P, such that z € C;, 2’ € C; and x < 2 implies ¢ < j. We may assume
the chains to be maximal, i.e. the last element of C;, max Cj, is noncomparable with the
first element of C;1, min C;y1. The pairs (max C;, min C;,1) then are the jumps of P.
The number of jumps of L is denoted by sp(L) and the jump number of P is

s(P) = min{sp(L) : L is a linear extension of P}.

The problem of determining the jump number has been shown to be NP-hard by Pul-
leyblank [Pu], his result motivates the study of lower bounds for s(P).

Width bounds and defect bounds

According to Dilworth’s theorem, the minimum number of chains which form a partition
of P is equal to the width w(P) of P — the size of a maximum antichain. Therefore

s(P) > w(P) — 1. (1)

A partial order P is called a Dilworth poset, if the above bound is exact, i.e. if s(P) =
w(P) — 1. Duffus, Rival and Winkler [DRW] proved that cycle-free posets are Dilworth,
Systo, Koh and Chia [SKC| proposed a polynomial algorithm to recognize Dilworth
posets of heigth one and Bouchitté, Habib [BH| proved that the recognition of Dilworth
posets is NP-complete. In this paper we will propose some strengthenings of the width
bound.

A different approach to bound s(P) is due to Gierz, Poguntke [GP] they proved
rank(Mp) > |P| — s(P) — 1, where Mp denotes the incidence matrix of P. Define the
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defect of a matrix M to be def (M) = size(M ) — rank(M) to obtain the more conveniant
formulation

s(P) > def(Mp) — 1. 2)

We now give a new, short and simple proof for this bound: Let L be a jump optimal
linear extension of P, i.e. s;(P) = s(P). Order the rows and columns of Mp according to
the order of L, Mp then is an upper diagonal matrix with zero diagonal. On the super-
diagonal of Mp we find a 1 for each bump i.e. for each pair (z;, ;1) with z; < z;41
and a 0 for each jump (z;,z;41) of L. Delete the first row and the last column of Mp
(both have all entries 0) as well as all the rows and columns corresponding to a 0 on the
super-diagonal. The matrix M} thus obtained is an upper diagonal matrix with all 1
diagonal, hence rank(M}) = size(M}p) = |P| — s(P) — 1. With rank(Mp) > rank(M})
we have finished the proof. O

We now show that the defect bound is superior to the width bound, i.e.
def (Mp) = |P| — rank(Mp) > w(P). (3)

Let A be an antichain of size w(P). The elements of P are partitioned into A, A! = {x :
x < a for some a € A} and A! = {x : > a for some a € A}. Note that all the nonzero
entries of Mp are in the union of the set of rows corresponding to elements of Al with
the set of columns of the elements of A'. Hence rank(Mp) < |At| + |AT| = |P| — |A|.O

An observation first made by Chein and Habib [CH] leads to an improvement of the
width bound. Let (z;,x;11) be a bump in a linear extension L of P, then (x;,z;y1) is
an edge in the diagram Dp, i.e. in the transitive reduction, of P. Therefore, the chains
into which L partitions P even give a path partition of Dp. Given a digraph D, let the
width w(D) of D be the minimal size of a path partition of D. Then

s(P) > w(Dp) — 1 > w(P) — 1. (4)

The following example shows that the diagram-width bound may be superior to the
defect bound.
Example A

w(P) =
def(Mp) = 3
w(Dp) =

Now let Mp, be the incidence matrix of the diagram. Since our proof of (2) did only
refer to the 1’s induced by bumps of L we get the inequality rank(Mp,) > |P|—s(P)—1
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and hence
s(P) > def(Mp,) — 1. (5)

Between this diagram-defect bound and the diagram-width bound a relation similar
to (3) holds, namely

def (Mp,) > w(Dp). (6)

Proof: [Fe] exhibited a generalization of Dilworth’s theorem to directed acyclic graphs.
The duals to the path partitions of a dag D = (V| E) are the so called 1-weightings.
A function X : V — {—=1,0,1} is a 1-weighting if for all paths W in D we have
X(W) =>,cw X(z) < 1. The value of a 1-weighting is X(V') = Y ,cy X(2). The duality
theorem is: The maximal value of an 1-weighting of D equals the minimum number of
paths in a path partition of D.
Let X be a 1-weighting of value w(Dp) and X = x71(1), Z = x"}(—1), then w(Dp) =
| X|—1Z|. To get (6) we have to show |P| — rank(Mp,) > |X| —|Z| or equivalently
rank(Mp,) < |P| = [X]+[Z]. (+)
Now, delete in Dp all the elements of Z and all the edges incident with elements
of Z to obtain D%. The incidence matrix M py, is obtained from Mp, by deleting the
|Z| rows and the |Z] columns corresponding to elements of Z. Therefore rank(Mpo) >
rank(Mp,)—2|Z|. The remaining elements, P\ Z, are partitioned by the ‘antichain’ X
into the classes X, X! and X'. An argument as in the proof of (3) gives rank(M Do) <
(P[] —1Z]) — |X]. The two inequalities for rank(Mpo ) together give (x). O

In fact, from each digraph F' with intermediate edgeset, i.e. P > ' > Dp, we obtain
s(P) > def(Mp) — 1> w(F) — 1.

The quality of the width bound is monotone, ie. P > F; > F, > Dp implies
w(Fy) > w(Fy), however, the defect of Mp can be strictly larger then both, def(Mp)
and def (Mp,).

Example B

def(Mp) = 3
def(MF) =
def(MDP) = 3

The following problem stays open for further research: Given P, find a digraph F
between P and Dp which minimizes rank(MFp) (gives the best bound on s(P)). Anyway,
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even the best defect bound can be arbitrarily far from s(P). This is shown by a family
of orders described in the next example

Example C

The defect of all intermediate digraphs of these posets is 2, but the jump number
can be arbitrarily large. We now exhibit a further bound related to path partitions.

On <{-free path partitions

The crucial observation here is that every path in Dp induced by a linear extension
of P is the unique connection between its minimum and ist maximum, in other words
(min C)T N (max C')} = C for all chains which are part of a linear extension. Call a path
with this property a {-free path and denote the minimal size of a {-free path partition
of Dp by {(P). We obtain

s(P) > O(P) — 1> w(Dp) — 1. (7)

The following proposition proves this bound to be exact for the class of 2-dimensional
lattices.

Proposition 1 If P is a 2-dimensional lattice then s(P) = {(P) — 1.

Proof: A partition C = {C1, ..., C} of a diagram Dp into {-free paths can be arranged
to form a linear extension only if the digraph D¢ consisting of the vertices C, ..., Cy
and the arcs C; — Cj if there are v € C; and y € C; with z < y is acyclic — every
‘linear extension’ of D¢ then gives a linear extension of P. A chordless cycle of length
r in D¢ would correspond to a subset (say {C1,...,C,}) of C, and elements x;,y; € C;,
t=1...r, satisfying
Y1 < X1,T1 > Y2,Y2 < T2, T2 > Y3y Tp1 2> Y, Ypr < Ty, Ty > Y1.

An ordered set {z1,y1,%2,Y2,...,%,y,} of size 2r, r > 2, with these comparabilities
and no others is called a r-cycle. A chordless cycle of length r in D¢ would exhibit an
induced r-cycle in P. However, r-cycles r > 3 are known to be 3-dimensional, hence
they can not appear as induced suborders of a 2-dimensional lattice.

2-cycles {C;,C;} C D¢ are excluded by the planarity of the diagram of a 2-
dimensional lattice P (see[KR]): To elements xq,y; € C;, 22,92 € C; forming a 2-cycle,
ie. yp < a1, T1 > Yo, Ys < Xg, Ty > yq, there are paths W from 1, to x5 and W’ from



to x1 in Dp. The paths W and W’ must cross. By the planarity of Dp they can not
contain crossing edges. Hence there is a point p € W N W’. By disjointness p & C; or
p € C;, assume p & C;, then the path from y; to z; through p contradicts the {>-freeness
of Cl O

Unfortunately I could not decide whether {(P) is polynomially computable, bot I
offer two strategies to approximate {(P).

The first method is based on the network-flow technique used to compute w(P) and
w(Dp) (see [Fu, Fe]). In the actual case we use a second commodity to avoid paths
which are not {-free. Call a path W in Dp minimaly dependent if every subpath of W
is O-free.

We first associate the network N = (V, A) with Dp. Here

V ={s,t1} U{2|z € P} U{2"|x € P},
A=A{(s,2)|z € P} U{(2",1)| z € P}U{(«",y")| (z,y) € Dp}

Now let W be the collection of all minimaly dependent paths in Dp. We extend N
for the second commodity. To an arc e € Dp let W, = (W7,..., W) be a list of all
m1n1maly dependent paths contamlng e. If e = (z,y) replace the edge (',y") € A by

a path 2/, wy ,wl 2 wel we 24", with new 1ntermed1ate points. Add new points

6]' )

w',w” for each W € W and arcs (w', w") and (w$? w”) if W is the i-th member of
W,. Finally insert a source s, and all edges (sy, w’) as well as a target ¢, and the edges
(w”,t2). This results in N*. Note that the size of N* is polynomially bounded in |P]|.

Now let the capacity of all arcs in N* be equal to one and maximize the flow F; from
s1 to t; under the requirement that the flow of the second commodity F; has flow value
|F5| = |[W)|. Unfortunately we can not use the 2-commodity flow algorithm of Hu [Hu]
here, since Hu’s algorithm applies in the case of undirected networks only. But and we
may solve the flow problem as a linear program.

If the solution is integral then by the usual argument the flow F) gives a path
partition C of Dp into |P| — |F}| paths. The flow of the second commodity blocks one
unit of flow 1 in every minimaly dependent path, hence flow 2 warrants that the paths
in C are {-free. Vice versa every {-free path partition C of Dp leads to an integral flow
with |Fy| = [W| and |Fy| = |P| — |C|. Let $p(P) = |P| — max|Fj|. As we have seen
Or(P) is a bound for $(P).

G(P) > $r(P) = w(Dp). (8)

For the second inequality remember w(Dp) = |P| — max |F'|, the maximum being taken
over all s1,t; flows in V.

The second approximation of {(P) is based on the LP formulation of partition
problems. Note that the total number of {>-free paths in Dp is bounded by (“23 |) since
such a path is determined by its start and endpoint. Therefore the LP-relaxation of
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{-free path partition can be solved in poynomial time. Let the objective value of an
optimal solution be {;p(P). Obviously {-free path partition is a restriction of path
partition; by the duality theorem cited above the LP-relaxation of path partition has
an optimal integral solution of value w(Dp), we thus get

G(P) = $rp(P) > w(Dp). 9)
Now we prove an inequality between {p(P) and {rp(P).
Proposition 2 For every P we have $rp(P) > $p(P).

Proof: Let a feasible solution of the LP-relaxation of path partition be given, i.e. for
every {-free path C'in Dp we have a variable z¢, such that

Z zc =1 for all x € Dp.
C:zeC
We now construct flows Fy, Fy in N* with |Fy| = |P| — X ¢ zc and |Fy| = |W).
For edges (z,y) € Dp we push an ammount of }, .o zc trough the path

si,2',...,y",t;.  This never violates the capacity constrains, since Y-, cczc <
> zcc zc = 1. To compute the total flow of the first commodity, |F}|, we first observe

;ZC\Clzz Y owe=Y 1=|P|

zeP C:xeC z€P

Now

Bl= ) > zC—ZzC |IC|—1)=|P|— Zz(;

(z,y)eDp C:z,yeC

as required.
It remains to show, that we still can realize a flow of commodity 2 and value one
from w’ to w” for every W € W. The remaining capacity for a w’ — w” flow is

> 0-RA@Ey) = Y (1- Y =)

(z.y)EW (zy)eW Cizyel

= (W1-1) = (Z=e(enw-1)
= (WI=1) = (Selenwl) + (3 z),

C:CNW #£0D

For the second term we obtain

ZZC|CQW|: Z Z ZC:‘W‘.
c

zeW C:zeC



The third term can be estimated by

oze> > e+ Y. =2,

C:CNW 0 C:min WeC Cimax WeC

the inequality holds since no {-free path can contain both of min W and max W. Alto-
gether we have established

(W =1)= Czclcnw)+( X z) > (W-D-[W[+2 = 1
C C:CNW £

and hence the claim. O
The following example gives an order with $p(P) < $rp(P).
Example D

Op(P) = 45
QLP(P)IS(P)—Fl = 5

For the comparison of the defect bounds and the <{>-free bounds note that
e For the family given in example C:  s(P) = $p(P) —1
e For all crowns: def(Mp) > $(P)
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