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A linear extension of a partial order P is a linear order L = x1, x2..., xn respecting
the order relations of P , i.e. xi < xj implies i < j for all xi, xj ∈ P . In other words, L

is the linear sum L = C0 ⊕ C1 ⊕ . . . ⊕ Cm of disjoint chains C0, C1, . . . , Cm in P , whose
union is all of P , such that x ∈ Ci, x′ ∈ Cj and x < x′ implies i ≤ j. We may assume
the chains to be maximal, i.e. the last element of Ci, max Ci, is noncomparable with the
first element of Ci+1, min Ci+1. The pairs (max Ci, min Ci+1) then are the jumps of P .
The number of jumps of L is denoted by sP (L) and the jump number of P is

s(P ) = min{sP (L) : L is a linear extension of P}.

The problem of determining the jump number has been shown to be NP -hard by Pul-
leyblank [Pu], his result motivates the study of lower bounds for s(P ).

Width bounds and defect bounds

According to Dilworth’s theorem, the minimum number of chains which form a partition
of P is equal to the width w(P ) of P – the size of a maximum antichain. Therefore

s(P ) ≥ w(P ) − 1. (1)

A partial order P is called a Dilworth poset, if the above bound is exact, i.e. if s(P ) =
w(P )−1. Duffus, Rival and Winkler [DRW] proved that cycle-free posets are Dilworth,
Sys lo, Koh and Chia [SKC] proposed a polynomial algorithm to recognize Dilworth
posets of heigth one and Bouchitté, Habib [BH] proved that the recognition of Dilworth
posets is NP -complete. In this paper we will propose some strengthenings of the width
bound.

A different approach to bound s(P ) is due to Gierz, Poguntke [GP] they proved
rank(MP ) ≥ |P | − s(P ) − 1, where MP denotes the incidence matrix of P . Define the
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defect of a matrix M to be def (M) = size(M)− rank(M) to obtain the more conveniant
formulation

s(P ) ≥ def (MP ) − 1. (2)

We now give a new, short and simple proof for this bound: Let L be a jump optimal
linear extension of P , i.e. sL(P ) = s(P ). Order the rows and columns of MP according to
the order of L, MP then is an upper diagonal matrix with zero diagonal. On the super-
diagonal of MP we find a 1 for each bump i.e. for each pair (xi, xi+1) with xi < xi+1

and a 0 for each jump (xi, xi+1) of L. Delete the first row and the last column of MP

(both have all entries 0) as well as all the rows and columns corresponding to a 0 on the
super-diagonal. The matrix M∗

P thus obtained is an upper diagonal matrix with all 1
diagonal, hence rank(M∗

P ) = size(M∗
P ) = |P | − s(P ) − 1. With rank(MP ) ≥ rank(M∗

P )
we have finished the proof. 2

We now show that the defect bound is superior to the width bound, i.e.

def (MP ) = |P | − rank(MP ) ≥ w(P ). (3)

Let A be an antichain of size w(P ). The elements of P are partitioned into A, A↓ = {x :
x < a for some a ∈ A} and A↑ = {x : x > a for some a ∈ A}. Note that all the nonzero
entries of MP are in the union of the set of rows corresponding to elements of A↓ with
the set of columns of the elements of A↑. Hence rank(MP ) ≤ |A↓| + |A↑| = |P | − |A|.2

An observation first made by Chein and Habib [CH] leads to an improvement of the
width bound. Let (xi, xi+1) be a bump in a linear extension L of P , then (xi, xi+1) is
an edge in the diagram DP , i.e. in the transitive reduction, of P . Therefore, the chains
into which L partitions P even give a path partition of DP . Given a digraph D, let the
width w(D) of D be the minimal size of a path partition of D. Then

s(P ) ≥ w(DP ) − 1 ≥ w(P ) − 1. (4)

The following example shows that the diagram-width bound may be superior to the
defect bound.
Example A

P :

w(P ) = 3

def (MP ) = 3

w(DP ) = 4

Now let MDP
be the incidence matrix of the diagram. Since our proof of (2) did only

refer to the 1’s induced by bumps of L we get the inequality rank(MDP
) ≥ |P |−s(P )−1
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and hence

s(P ) ≥ def (MDP
) − 1. (5)

Between this diagram-defect bound and the diagram-width bound a relation similar
to (3) holds, namely

def (MDP
) ≥ w(DP ). (6)

Proof: [Fe] exhibited a generalization of Dilworth’s theorem to directed acyclic graphs.
The duals to the path partitions of a dag D = (V, E) are the so called 1–weightings.
A function χ : V −→ {−1, 0, 1} is a 1–weighting if for all paths W in D we have
χ(W ) =

∑

x∈W
χ(x) ≤ 1. The value of a 1–weighting is χ(V ) =

∑

x∈V
χ(x). The duality

theorem is: The maximal value of an 1–weighting of D equals the minimum number of
paths in a path partition of D.

Let χ be a 1–weighting of value w(DP ) and X = χ−1(1), Z = χ−1(−1), then w(DP ) =
|X| − |Z|. To get (6) we have to show |P | − rank(MDP

) ≥ |X| − |Z| or equivalently

rank(MDP
) ≤ |P | − |X| + |Z|. (∗)

Now, delete in DP all the elements of Z and all the edges incident with elements
of Z to obtain D0

P . The incidence matrix MD0

P
is obtained from MDP

by deleting the
|Z| rows and the |Z| columns corresponding to elements of Z. Therefore rank(MD0

P
) ≥

rank(MDP
)−2|Z|. The remaining elements, P \Z, are partitioned by the ‘antichain’ X

into the classes X, X↓ and X↑. An argument as in the proof of (3) gives rank(MD0

P
) ≤

(|P | − |Z|) − |X|. The two inequalities for rank(MD0

P
) together give (∗). 2

In fact, from each digraph F with intermediate edgeset, i.e. P ≥ F ≥ DP , we obtain

s(P ) ≥ def (MF ) − 1 ≥ w(F ) − 1.

The quality of the width bound is monotone, i.e. P ≥ F1 ≥ F2 ≥ DP implies
w(F2) ≥ w(F1), however, the defect of MF can be strictly larger then both, def (MP )
and def (MDP

).

Example B

F :

def (MP ) = 3

def (MF ) = 4

def (MDP
) = 3

The following problem stays open for further research: Given P , find a digraph F

between P and DP which minimizes rank(MF ) (gives the best bound on s(P )). Anyway,
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even the best defect bound can be arbitrarily far from s(P ). This is shown by a family
of orders described in the next example

Example C

The defect of all intermediate digraphs of these posets is 2, but the jump number
can be arbitrarily large. We now exhibit a further bound related to path partitions.

On ♦-free path partitions

The crucial observation here is that every path in DP induced by a linear extension
of P is the unique connection between its minimum and ist maximum, in other words
(min C)↑∩ (max C)↓ = C for all chains which are part of a linear extension. Call a path
with this property a ♦-free path and denote the minimal size of a ♦-free path partition
of DP by ♦(P ). We obtain

s(P ) ≥ ♦(P ) − 1 ≥ w(DP ) − 1. (7)

The following proposition proves this bound to be exact for the class of 2-dimensional
lattices.

Proposition 1 If P is a 2-dimensional lattice then s(P ) = ♦(P ) − 1.

Proof: A partition C = {C1, . . . , Ck} of a diagram DP into ♦-free paths can be arranged
to form a linear extension only if the digraph DC consisting of the vertices C1, . . . , Ck

and the arcs Ci → Cj if there are x ∈ Ci and y ∈ Cj with x < y is acyclic – every
‘linear extension’ of DC then gives a linear extension of P . A chordless cycle of length
r in DC would correspond to a subset (say {C1, . . . , Cr}) of C, and elements xi, yi ∈ Ci,
i = 1 . . . r, satisfying

y1 < x1, x1 > y2, y2 < x2, x2 > y3 . . . , xr−1 > yr, yr < xr, xr > y1.

An ordered set {x1, y1, x2, y2, . . . , xr, yr} of size 2r, r ≥ 2, with these comparabilities
and no others is called a r-cycle. A chordless cycle of length r in DC would exhibit an
induced r-cycle in P . However, r-cycles r ≥ 3 are known to be 3-dimensional, hence
they can not appear as induced suborders of a 2-dimensional lattice.

2-cycles {Ci, Cj} ⊆ DC are excluded by the planarity of the diagram of a 2-
dimensional lattice P (see[KR]): To elements x1, y1 ∈ Ci, x2, y2 ∈ Cj forming a 2-cycle,
i.e. y1 < x1, x1 > y2, y2 < x2, x2 > y1, there are paths W from y1 to x2 and W ′ from y2
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to x1 in DP . The paths W and W ′ must cross. By the planarity of DP they can not
contain crossing edges. Hence there is a point p ∈ W ∩ W ′. By disjointness p 6∈ Ci or
p 6∈ Cj, assume p 6∈ Ci, then the path from y1 to x1 through p contradicts the ♦-freeness
of Ci. 2

Unfortunately I could not decide whether ♦(P ) is polynomially computable, bot I
offer two strategies to approximate ♦(P ).

The first method is based on the network-flow technique used to compute w(P ) and
w(DP ) (see [Fu, Fe]). In the actual case we use a second commodity to avoid paths
which are not ♦-free. Call a path W in DP minimaly dependent if every subpath of W

is ♦-free.
We first associate the network N = (V, A) with DP . Here

V = {s1, t1} ∪ {x′|x ∈ P} ∪ {x′′|x ∈ P},

A = {(s, x′)| x ∈ P} ∪ {(x′′, t)| x ∈ P} ∪ {(x′, y′′)| (x, y) ∈ DP}

Now let W be the collection of all minimaly dependent paths in DP . We extend N

for the second commodity. To an arc e ∈ DP let We = (W e
1 , . . . , W e

ej
) be a list of all

minimaly dependent paths containing e. If e = (x, y) replace the edge (x′, y′′) ∈ A by
a path x′, w

e,1
1 , w

e,2
1 , . . . , we,1

ej
, we,2

ej
, y′′, with new intermediate points. Add new points

w′, w′′ for each W ∈ W and arcs (w′, w
e,1
i ) and (we,2

i , w′′) if W is the i-th member of
We. Finally insert a source s2 and all edges (s2, w

′) as well as a target t2 and the edges
(w′′, t2). This results in N∗. Note that the size of N∗ is polynomially bounded in |P |.

Now let the capacity of all arcs in N∗ be equal to one and maximize the flow F1 from
s1 to t1 under the requirement that the flow of the second commodity F2 has flow value
|F2| = |W|. Unfortunately we can not use the 2-commodity flow algorithm of Hu [Hu]
here, since Hu’s algorithm applies in the case of undirected networks only. But and we
may solve the flow problem as a linear program.

If the solution is integral then by the usual argument the flow F1 gives a path
partition C of DP into |P | − |F1| paths. The flow of the second commodity blocks one
unit of flow 1 in every minimaly dependent path, hence flow 2 warrants that the paths
in C are ♦-free. Vice versa every ♦-free path partition C of DP leads to an integral flow
with |F2| = |W| and |F1| = |P | − |C|. Let ♦F (P ) = |P | − max |F1|. As we have seen
♦F (P ) is a bound for ♦(P ).

♦(P ) ≥ ♦F (P ) ≥ w(DP ). (8)

For the second inequality remember w(DP ) = |P | −max |F |, the maximum being taken
over all s1, t1 flows in N .

The second approximation of ♦(P ) is based on the LP formulation of partition

problems. Note that the total number of ♦-free paths in DP is bounded by
(

|P |
2

)

since
such a path is determined by its start and endpoint. Therefore the LP -relaxation of
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♦-free path partition can be solved in poynomial time. Let the objective value of an
optimal solution be ♦LP (P ). Obviously ♦-free path partition is a restriction of path
partition; by the duality theorem cited above the LP -relaxation of path partition has
an optimal integral solution of value w(DP ), we thus get

♦(P ) ≥ ♦LP (P ) ≥ w(DP ). (9)

Now we prove an inequality between ♦F (P ) and ♦LP (P ).

Proposition 2 For every P we have ♦LP (P ) ≥ ♦F (P ).

Proof: Let a feasible solution of the LP -relaxation of path partition be given, i.e. for
every ♦-free path C in DP we have a variable zC , such that

∑

C:x∈C

zC = 1 for all x ∈ DP .

We now construct flows F1, F2 in N∗ with |F1| = |P | −
∑

C zC and |F2| = |W|.
For edges (x, y) ∈ DP we push an ammount of

∑

x,y∈C zC trough the path
s1, x

′, . . . , y′′, t1. This never violates the capacity constrains, since
∑

x,y∈C zC ≤
∑

x∈C zC = 1. To compute the total flow of the first commodity, |F1|, we first observe

∑

C

zC |C| =
∑

x∈P

∑

C:x∈C

zC =
∑

x∈P

1 = |P |.

Now
|F1| =

∑

(x,y)∈DP

∑

C:x,y∈C

zC =
∑

C

zC(|C| − 1) = |P | −
∑

C

zC

as required.
It remains to show, that we still can realize a flow of commodity 2 and value one

from w′ to w′′ for every W ∈ W. The remaining capacity for a w′ → w′′ flow is

∑

(x,y)∈W

(1 − F1(x
′, y′′)) =

∑

(x,y)∈W

(

1 −
∑

C:x,y∈C

zC

)

=
(

|W | − 1
)

−
(

∑

C

zC(|C ∩ W | − 1)
)

=
(

|W | − 1
)

−
(

∑

C

zC |C ∩ W |
)

+
(

∑

C:C∩W 6=∅

zC

)

.

For the second term we obtain

∑

C

zC |C ∩ W | =
∑

x∈W

∑

C:x∈C

zC = |W |.

6



The third term can be estimated by

∑

C:C∩W 6=∅

zC ≥
∑

C:minW∈C

zC +
∑

C:max W∈C

zC = 2,

the inequality holds since no ♦-free path can contain both of min W and max W . Alto-
gether we have established

(

|W | − 1
)

−
(

∑

C

zC |C ∩ W |
)

+
(

∑

C:C∩W 6=∅

zC

)

≥ (|W | − 1) − |W | + 2 = 1

and hence the claim. 2

The following example gives an order with ♦F (P ) < ♦LP (P ).

Example D

P :

♦F (P ) = 4.5

♦LP (P ) = s(P ) + 1 = 5

For the comparison of the defect bounds and the ♦-free bounds note that

• For the family given in example C: s(P ) = ♦F (P ) − 1

• For all crowns: def (MP ) ≥ ♦(P )
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