
THE MAXIMUM NUMBER OF EDGES IN A GRAPHOF BOUNDED DIMENSION,WITH APPLICATIONS TO RING THEORYGEIR AGNARSSON, STEFAN FELSNER, AND WILLIAM T. TROTTERAbstract. With a �nite graph G = (V;E), we associate a partially orderedset P = (X;P ) with X = V [E and x < e in P if and only if x is an endpointof e in G. This poset is called the incidence poset of G. In this paper, weconsider the function M(p; d) de�ned for p; d � 2 as the maximum numberof edges a graph G can have when it has p vertices and the dimension of itsincidence poset is at most d. It is easy to see that M(p; 2) = p � 1 as onlythe subgraphs of paths have incidence posets with dimension at most 2. Also,a well known theorem of Schnyder asserts that a graph is planar if and onlyif its incidence poset has dimension at most 3. So M(p; 3) = 3p � 6 for allp � 3. In this paper, we use the product ramsey theorem, Tur�an's theoremand the Erd}os/Stone Theorem to show that limp!1M(p; 4)=p2 = 3=8. Wethen derive some ring theoretic consequences of this in terms of minimal �rstsyzygies and Betti numbers for monomial ideals.1. IntroductionIn recent years, researchers have discovered interesting connections betweengraphs and the dimension of their incidence posets. Our goal here is to studythe following extremal problem:Problem 1.1. For integers p; d � 2, �nd the maximum number M(p; d) of edges agraph on p vertices can have if the dimension of its incidence poset is at most d.The starting point for this research is the following well known theorem ofW. Schnyder [12].Theorem 1.2. A graph G is planar if and only if the dimension of its incidenceposet is at most 3.As an immediate consequence of Schnyder's theorem, we see that determiningthe value of M(p; 3) is just the same as �nding the maximum number of edges in aplanar graph on p vertices, so M(p; 3) = 3p� 6 for all p � 3.We can also determine the exact value of M(p; 2), as it is easy to see that theincidence poset of a graph has dimension at most 2 if and only if it is either a pathor a subgraph of a path. It follows that M(p; 2) = p� 1, for all p � 2.Date: November 3, 1997.1991 Mathematics Subject Classi�cation. 06A07, 05C35.Key words and phrases. Graph, partially ordered set, dimension, regularity lemma, ramseytheory, extremal graph theory.The research of the third author is supported in part by the O�ce of Naval Research and theDeutsche Forschungsgemeinschaft. 1



2 G. AGNARSSON, S. FELSNER, AND WILLIAM T. TROTTERSo in this paper, we concentrate on the determination of M(p; 4). In this case,we will will prove the following asymptotic formula.Theorem 1.3. limp!1 M(p; 4)p2 = 38 :The proof of our main theorem requires several powerful combinatorial tools,including the product ramsey theorem, Tur�an's theorem and the Erd}os/Stone the-orem. We shall also require some basic background material on dimension theory.For this, we refer the reader to Trotter's monograph [16].The next section develops notation and terminology to help in applying thesetools, while the third section contains the proofs of results necessary to verify Theo-rem 1.3. Section 4 discusses related combinatorial problems, and Section 5 presentssome applications to ring theory, a topic which served as the original motivationfor this line of research. 2. Combinatorial ToolsThroughout the paper, we denote the n-element set f1; 2; : : : ; ng by [n]. Givena �nite set S and an integer k with 0 � k � jSj, we denote the set of all k-elementsubsets of S by �Sk�. Given an integer t, �nite sets S1; S2; : : : ; St and an integer k,we call an element of �S1k �� �S2k �� � � � � �Stk � a grid (also, a kt grid ).The next theorem is the �rst of three powerful tools we need to prove our maintheorem. We refer the reader to [8] for the proof and for additional material onapplications of Ramsey theory.Theorem 2.1 (The product ramsey theorem). Given positive integersm, k, r andt, there exists an integer n0 so that if S1; S2; : : : ; St are sets with jSij � n0 for alli 2 [t], and f is any map which assigns to each kt grid in �S1k �� �S2k �� � � � � �Stk �a color from [r], then there exist subsets H1; H2; : : : ; Ht and a color � 2 [r] so that1. Hi 2 �Sim�, for all i = 1; 2; : : : ; t, and2. f(g) = � for every kt grid g 2 �H1k �� �H2k �� � � � � �Htk �.In what follows, we will refer to the least n0 for which the conclusion of thepreceding theorem holds as the product ramsey number PRN(m; k; r; t).For integers p and t with 1 � t � p, let T(p; t) denote the balanced completet-partite graph on p vertices, i.e., if p = qt + r, where 0 � r < k, then T(p; t) is acomplete t-partite graph having t� r parts of size q and r parts of size q + 1. LetT(p; t) count the number of edges in T(p; t). Evidently,T(p; t) = �t� r2 �q2 +�r2�(q + 1)2 + r(t� r)q(q + 1):The following well known theorem [14] is often viewed as the starting point forextremal graph theory.Theorem 2.2 (Tur�an's theorem). For positive integers p and t with p � t+1, themaximum number of edges in a graph G on p vertices which does not contain acomplete subgraph of size t + 1 is T(p; t). Furthermore equality is obtained onlywhen G is isomorphic to T(p; t).



GRAPHS AND DIMENSION 3The asymptotic version of Tur�an's theorem is also of interest, as it serves tomotivate material to follow.Corollary 2.3. For a positive integer t and a positive real number � > 0, thereexists an integer p0 so that if p � p0 and G is a graph on p vertices having morethan � 12� 12t+��p2 edges, then G contains a complete subgraph on t+1 vertices.Given a graphH on n vertices and an integer p � n, let T(H; p) be the maximumnumber of edges a graph on p vertices can have if it does not contain H as asubgraph. So Tur�an's theorem is just the determination of T(H; p) in the specialcase where H is a complete graph.Suppose that the chromatic number of H is t+ 1. Then the complete balancedt-partite graph T(p; t) does not contain H, as all its subgraphs are t-colorable. Itfollows that limp!1 T(H; p)p2 � 12 � 12t :The following classic theorem asserts that this is asymptotically the right answer|provided t � 2. The case where t = 1 is quite di�erent, although this detail is notof concern in this paper.Theorem 2.4 (The Erd}os/Stone theorem). LetH be a graph with chromatic num-ber t+ 1 � 3. Then limp!1 T(H; p)p2 = 12 � 12t :3. Proof of the Principal TheoremIn this section, we develop the results necessary for the proof of Theorem 1.3.We �rst present the lower bound. It is the easier of the two bounds.Theorem 3.1. If G is a graph whose chromatic number is at most 4, then theincidence poset of G has dimension at most 4.Proof. Let V = V1 [ V2 [ V3 [ V4 be a partition of the vertex set V of G into 4independent sets. Then let L be any linear order on V . We denoted by Ld the dualof L, i.e., x < y in Ld if and only if x > y in L. Then de�ne 4 linear orders L1, L2,L3 and L4 on V by the following rules:1. In L1, L(V1) < L(V2) < L(V3) < L(V4);2. In L2, L(V4) < L(V3) < L(V2) < L(V1);3. In L3, Ld(V3) < Ld(V4) < Ld(V1) < Ld(V2);4. In L4, Ld(V2) < Ld(V1) < Ld(V4) < Ld(V3).Then extend these linear orders to linear extensions of the incidence poset of Gby inserting the edges as \low as possible." It is just an easy exercise to show thatthis results in a realizer of the incidence poset so that it has dimension at most 4,as claimed.Oberving that a t-partite graph has chromatic number at most t, we can then writethe following lower bound for M(p; 4).Corollary 3.2. For every p � 4, M(p; 4) � T(p; 4).



4 G. AGNARSSON, S. FELSNER, AND WILLIAM T. TROTTERExamining the formula for the number of edges in T(p; 4), we have the followinglower bound for M(p; 4).Corollary 3.3. limp!1 M(p; 4)p2 � 38 :Remark: Although asymptotically the same as p ! 1, T(p; 4) is not equal toM(p; 4). In [2, Thm 1.2] an explicit embedding of a graph on p � 8 vertices withp2+5p�242 � (bp4c+1)(p� 2bp4c) edges into N40 is given. Hence we have at least thatM(p; 4)�T(p; 4) � 2p� 12 for all p � 8.Now we turn our attention to providing an upper bound on M(p; 4).Lemma 3.4. There exists an integer p0 so that any graph G whose incidence posethas dimension at most 4 does not contain the balanced complete 5-partite graphT(5p0; 5).Proof. Set m = 2, k = 1, r = (5!)4 and t = 5. We show that the conclusion of thelemma holds for the value p0 = PRN(m; k; r; t).To accomplish this, we assume that G is a graph so that:1. G contains a subgraph H isomorphic to T(5p0; 5), and2. The incidence poset ofG has dimension at most 4, as evidenced by the realizerR = fL1; L2; L3; L4g.We then argue to a contradiction.Label the �ve disjoint independent sets in the copy of T(5p0; 5) as S1, S2, S3,S4 and S5. We then de�ne a coloring of the 15 grids in �S11 � � �S21 � � : : : �S51 � asfollows. Each 15 grid is just a 5-element set containing one point from each Si.Then consider the order of these 5 points in the four linear extensions L1, L2, L3and L4. In each L�, the 5 points can occur in any of 5! orders. So taking the 4orders altogether, there are at r = (5!)4 patterns.Applying the product ramsey theorem, it follows that for each i 2 [5], there isa 2-element subset Hi contained in Si so that all the grids these subsets producereceive the same color.Now it follows easily that the linear orders treat the sets H1, H2, H3, H4 and H5as blocks, i.e., if a point from one block is over a point from another block in Lk,then both points from the �rst block are over both points from the second block inLk.In view of the preceding remarks, we can de�ne 4 linear ordersM1, M2, M3 andM4 on [5] by the rule i < j in Mk if and only if both points from Hi are less thanboth points from Hj in Lk. Then set S = fM1;M2;M3;M4g.Claim 1. For distinct i; j; k 2 [5], there is some � 2 [4] so that i is larger thanboth j and k in M�.To see that this claim is valid, consider a vertex x 2 Hi and an edge e withone end point in Hj and the other in Hk. Since x and e are incomparable in theincidence poset, there is some � 2 [4] with x > e in L�. It follows that x is largerthan both end points of e in L�. In turn, this implies that i is larger than both jand k in M�.Claim 2. For distinct i; j 2 [5], and for each vertex x 2 Hi, there is a unique� 2 [4] with i > j in M� and x the largest element of Hi in L�.



GRAPHS AND DIMENSION 5To see that this claim holds, note that it is enough to show that there is some� 2 [4] with i > j in M� and x the largest element of Hi in L�. The uniqueness of� follows from the symmetry of the parameters.Now let y be the other vertex in Hi, and let z be any vertex from Hj . Then lete be the edge fy; zg. Since x and e are incomparable, there is some � 2 [4] withx > e in L�. Since x > e > z in L�, i > j in M�. Since x > e > y in L�, x is thelargest vertex in Hi in L�.This next claim follows immediately from Claim 2.Claim 3. For distinct i; j 2 [5], there are exactly two integers �; � 2 [4] with i > jin M� and in M� . Furthermore, the restrictions of L� and L� to Hi are dual.For distinct i; j 2 [5], let S(i > j) = f�; �g be the 2-element set so that i > j inM� and in M� .Claim 4. For distinct i; j; k 2 [5], S(i > j) \ S(i > k) 6= ;.To see that this claim is valid, suppose to the contrary that for distinct i; j; k 2[5], S(i > j) \ S(i > k) = ;. After relabelling, we may assume that i > j in M1and in M2 while i > k in M3 and in M4. It follows that k > i > j in both M1 andin M2, while j > i > k in both M3 and in M4. But this implies that there is no� 2 [4] so that i is larger than both j and k in M�, which contradicts Claim 1.Claim 5. For every i 2 [5], there exists an integer �(i) 2 [4] so that �(i) 2 S(i > j),for all j 2 [5] with i 6= j.To see that this claim holds, note that if it fails, then by Claim 4 there are threedistinct values �; �;  2 [4] so that� 2 S(i > j) \ S(i > k);� 2 S(i > k) \ S(i > l);and  2 S(i > l) \ S(i > j):It follows that the restrictions of L�, L� and L to Hi are identical, which contra-dicts Claim 3.Now here is the contradiction which completes the argument. Observe that foreach i 2 [5], i is the highest element of [5] in M�(i). Clearly, this is impossible asthere are only 4 orders in S.To complete the proof of Theorem 1.3, we need only appeal to the Erd}os/Stonetheorem. Let � > 0. Since the complete balanced 5-partite graph T(5p0; 5) haschromatic number 5, it follows that if p is su�ciently large, then any graph Gon p vertices with more than (3=8 + �)p2 edges contains T(5p0; 5) as a subgraph.Therefore the dimension of its incidence poset is at least 5.4. Related Results and DirectionsIt may actually be possible to provide an exact formula for M(p; 4), at leastwhen p is su�ciently large. The regularity forced by the Product Ramsey Theoremmakes this a possibility.For larger values of d, our results are not as precise. This is not surprising,because the problem is linked to the di�cult combinatorial problem of determin-ing the dimension of the complete graph. Researchers have studied this problemextensively, producing exact formulas for p � 13 and relative tight asymptotic es-timates for large values of p. Following the notation in [16], we let dim(k; r; p)



6 G. AGNARSSON, S. FELSNER, AND WILLIAM T. TROTTERdenote the dimension of the poset consisting of all k-element and r-element subsetsof f1; 2; : : : ; pg ordered by inclusion. Of course, �nding the dimension of the com-plete graph on p vertices is then just the problem of determining dim(1; 2; p). Werefer the reader to Kierstead's forthcoming survey article [10] for additional detailson this topic and an extensive bibliography.Observe that if we know that dim(1; 2;n+1) > d, for integers n and d, then wemay conclude that limp!1 M(p; d)p2 � 12 � 12n:(1)In [15], Trotter showed that dim(1; 2;n) � 4, when p � 12, and also thatdim(1; 2; 13) = 5. This would imply thatlimp!1 M(p; 4)p2 � 12 � 124 ;so the asymptotic result we have proved for M(p; 4) in the preceding section isconsiderably stronger.Unfortunately, for d = 5, we know of no better bound than the one obtainedfrom equation 1. In this same volume, Ho�sten and Morris [9] derive a new formulafor computing dim(1; 2;n) and use this formula to show that dim(1; 2;n) � 5 if andonly if n � 81. They also show that dim(1; 2;n) � 6 if and only if n � 2646 anddim(1; 2;n) � 7 if and only if n � 1425464. This discussion establishes the upperbound in the following result.Theorem 4.1. 2450 � limp!1 M(p; 5)p2 � 4081 :Proof. We sketch how the lower bound is derived. We show that the dimensionof any graph with chromatic number at most 25 has dimension at most 5. Inparticular, the complete 25-partite graph has dimension at most 5, regardless ofthe part-sizes. The bound then follows from counting the number of edges in thebalanced 25-partite graph.To accomplish this, we group the 25 parts into 5 blocks, each with 5 subblocks.The 5 blocks are labelled B1; B2; : : : ; B5. Then, within block Bi, we have 5 sub-blocks labelled Bi;1; Bi;2; : : : ; Bi;5. We consider the vertices themselves as positiveintegers. Within the subblocks, the order on vertices will either be in the naturalorder as integers, or the dual of this order. To distinguish between the two, when-ever we write just Bi;j , we also imply that the order is just as it occurs in the setof integers. But when we write B�i;j , we mean that the subblock Bi;j is to be inreverse order.Now we describe 5 linear orders on the 5 blocks:1. B4 < B3 < B2 < B5 < B1 in L1.2. B5 < B4 < B3 < B1 < B2 in L2.3. B1 < B5 < B4 < B2 < B3 in L3.4. B2 < B1 < B5 < B3 < B4 in L4.5. B3 < B2 < B1 < B4 < B5 in L5.We pause to note that the construction thus far is cyclic, and it will remain so.To complete the construction, we describe the ordering of the 5 subblocks of Bi,for each i = 1; 2; : : : ; 5. In this description, our notation is cyclic.



GRAPHS AND DIMENSION 71. Bi;1 < Bi;2 < Bi;3 < Bi;4 < Bi;5 in Li.2. B�i;5 < B�i;4 < B�i;3 < B�i;2 < B�i;1 in Li+1.3. B�i;1 < B�i;3 < B�i;5 < B�i;2 < B�i;4 in Li+2.4. B�i;1 < B�i;4 < B�i;2 < B�i;5 < B�i;3 in Li+3.5. Bi;5 < Bi;4 < Bi;3 < Bi;2 < Bi;1 in Li+4.To extend these linear orders to linear extensions of the incidence poset, we insertthe edges as low as possible. Then to verify that we have constructed a realizer, itsu�ces to show that for every vertex x and every edge e not containing x as one ofits endpoints, there is some i 2 [5] so that x > e in Li. Now let y and z denote theend points of e. So we must only show that there is some i 2 [5] with x over bothy and z in Li.Taking advantage of the symmetry in the construction, we may assume that xbelongs to block B1.If neither y nor z is in B1, then x is over both y and z in L1.Now suppose that y also belongs to B1 but that z does not. Then x is over yand z in L1 unless x < y in Z. Now consider the case where x < y in Z. Becausethe restrictions of L1 and L2 to B1 are dual, x is over y and z in L2 unless z is inblock B2. So we also assume z is in B2.Now we observe that if x and y belong to the same subblock of B1, then x isover y and z in L4. On the other hand, if x and y are in di�erent subblocks, the xis over y and z in L5.Next consider the case where x, y and z belong to B1. Here there are twosubcases. Suppose �rst that neither y nor z belong to the same subblock as x. If yand z belong to the same subblock, then x is over y and z in one of L1 and L2. Ify and z belong to di�erent subblocks, then we observe that subblocks B1;1, B1;3,B1;4 and B1;5 are the top subblocks in the 5 linear orders, so we may assume x isin subblock B1;2. This subblock appears in second position in L2 and in L3, so itfollows that we may assume that one of y and z is in subblock B1;1 and the otheris in B1;4. Now observe that x is over y and z in L4.Note that since they are end points of an edge, we cannot have both y and zin the same subblock as x. So to complete the proof, we consider the case wherey belongs to the same subblock as x, say B1;i but that z belongs to subblock B1;jwith i 6= j. If i < j in Z, then x is over y and z in one of L2 and L5. So we mayassume i > j. If x > y in Z, then x is over y and z in L1. So we may assume x < yin Z. Finally, note that with these conditions, x is over y and z in one of L3 andL4.As d!1, the problem of determining M(d; p) becomes essentially the same as�nding the dimension of the complete graph Kp. The construction used by Spencerin [13] shows that if d � 3, and p � 2( d�1bd�12 c);then the dimension of the complete graph Kp is at most d. Furthermore, it is aneasy exercise to show that the dimension of any graph with chromatic number atmost p is at most d+ 2.On the other hand, in [7], F�uredi, Hajnal, R�odl and Trotter show that dim(Kp)is at least as large as the chromatic number of the double shift graph on [p]. Thisin turn is just the least d for which there are p antichains in the poset consistingof all subsets of [d] ordered by inclusion, a fact that was used in the proof of the



8 G. AGNARSSON, S. FELSNER, AND WILLIAM T. TROTTERpreceding theorem. Now the problem of estimating the number of antichains in thesubset lattice is a well studied problem known as \Dedekind's Problem." Althoughno closed form answer is known, relatively good asymptotic results have been found(see [11], for example), and they su�ce to show thatdim(Kp) � lg lg p+ �1=2 + o(1)� lg lg lg p:Inverting the preceding formula then allows us to give an asymptotic formula forlimp!1M(p; d)=p2 which is quite accurate when d is large.5. Some Algebraic ApplicationsIn this section we want to interpret the graph theoretical results from pre-vious sections algebraically in terms of monomial ideals of the polynomial ringk[X1; : : : ; Xd] where k is a �eld. We will in particular consider the case d � 5.Let R = k[X1; : : : ; Xd] and I � R an ideal generated by ff1; : : : ; fpg � R.These generators give rise to an R-module surjection � : Rp ! R given by:(r1; : : : ; rp) 7! pXi=1 rifiand hence we have I �= Rp= ker(�) as R-modules. The submodule ker(�) � Rp iscalled the (�rst) syzygy module of the p-tuple (f1; : : : ; fp) 2 Rp, and is denoted bySyz(f1; : : : ; fp). If now this module is generated by �r1; : : : ; �rq 2 Rp as an R-modulethen every solution �x = (x1; : : : ; xp) to the linear equationx1f1 + � � �+ xpfp = 0is an R-linear combination of the �r1; : : : ; �rq , that is, there are h1; : : : ; hq 2 R suchthat �x =Pqi=1 hi�ri.For a monomial ideal I of R whose minimal generators are the monomialsm1; : : :mp 2 R let mij (and mji) denote the least common multiple, lcm(mi;mj),of mi and mj . If now f�ei : i = 1; : : : pg is the standard basis for Rp and Sij =mijmi �ei � mijmj �ej then Syz(m1; : : : ;mp) is generated byS = fSij : 1 � i < j � pg(2)as an R-module. The Sij are called the minimal �rst syzygies of the monomial idealI . For short proof of this we refer to [1, pg 119] or [5, pg 322]. An analog resultcan be shown for Syz(g1; : : : gp) where fg1; : : : ; gpg is an arbitrary Gr�obner Basisin R, see [4, pg 245].Consider the elements Sij from (2). If we have three distinct indices i; j and ksuch that mk devides mij , then mij is divisible by all three monomials mi;mj andmk, and hence also by mik and mkj . Sincemijmi �ei � mijmj �ej = mijmik �mikmi �ei � mikmk �ek�+ mijmkj �mkjmk �ek � mkjmj �ej�We get that Sij 2 RSik +RSkj � X(�;�)6=(i;j)RS�;�(3)



GRAPHS AND DIMENSION 9Assume now on the contrary that Sij 2 P(�;�)6=(i;j)RS�;� for some i < j. Bytaking the projection down to the i-th component we get an equation of the formmijmi = X�>i;� 6=j fi�mi�mi � X�<i;�6=j f�im�imi ;(4)where fi� ; f�i 2 R. Multiplying through by mi and considering the coe�cient ofthe monomial mij both sides of (4), we see that there must be a  6= j such thatmi divides mij , and hence m divides mij and  62 fi; jg.Assume from now on that our monomial ideal I , which is minimally generated bym1; : : : ;mp 2 R, is generic, that is, no variable Xl appears with the same nonzeroexponent in two generators mi and mj of I . Let S be as in (2), we have thenLemma 5.1. For a generic monomial ideal I, minimally generated by m1; : : : ;mp,there is a unique minimal subest M of S that generates Syz(m1; : : : ;mp) as an R-module. M consists of all Sij 2 S such that mkjmij , k 2 fi; jg.Proof. Let us �rst show thatM generates Syz(m1; : : : ;mp). It su�ces to show thateach Sij is an R-linear combination of elements fo M , that is Sij 2 SpanR(M): Ifnot every Sij 2 S is in SpanR(M), there is an Sij not in SpanR(M) with thecorresponding monomial mij minimal w.r.t. the partial order among monomials inR de�ned by divisibility. We have in particular that Sij 62 M , and hence there isa k 62 fi; jg such that mkjmij . Hence we have that both mik and mkj devide mijand since I is generic, neither mik nor mkj is equal to mij . Therefore both Sik andSkj are in SpanR(M) by minimality of mij , and hence by (3) Sij 2 SpanR(M), acontradiction. Therefore SpanR(M) = Syz(m1; : : : ;mp).Finally, the fact that M is a minimal subset of S generating Syz(m1; : : : ;mp)and unique, is a simple consequence of the fact that no element Sij 2 S is anR-linear combination of other elements in S, since (4) would imply Sij 62M .If we for each i 2 f1; : : : ; pg let �xi denote the point in Nd0 that corresponds to themonomial mi (that is, (a1; : : : ; ad)$ Xa11 � � �Xadd ) then we see that the number ofelements in M is simply the number of edges of the graph G = (V;E) with vertexset V = f�x1; : : : ; �xpg and edgeset E = ff�xi; �xjg : �xi _ �xj � �xk , k 2 fi; jgg (here�a_�b is the \join" of �a;�b 2 Nd0 , that is, the least element in Nd0 greater than or equalto both �a and �b, w.r.t. the usual partial order of Nd0 .) The number of edges in E isat most the maximal number of edges of a graph on p vertices of dimension d.It is easy to see that an embedding of a graph G of dimension d into Nd0 , canbe done in a generic manner. Hence if M(p; d) is as in Problem 1.1 then there is ageneric monomial ideal I generated minimally by m1; : : : ;mp 2 R = k[X1; : : : ; Xd]such that the set M form Lemma 5.1, has precisely M(p; d) elements.Hence we get the following corollary from Theorem 1.3:Corollary 5.2. If a is a real number > 3=8 then there exists an integer pa suchthat for any generic monomial ideal I generated minimally by p > pa monomialsm1; : : : ;mp in 4 variables, Syz(m1; : : : ;mp) can be generated by ap2 minimal �rstsyzygies. Moreover, 3=8 is the least real number with this property.Similarly one can write down a corollary of Theorem 4.1 about monomials in 5variables instead of 4, by replacing the number \3=8" with \40=81" in Corollary5.2. In that case, however, the least number playing the role of \40=81" is not40=81 itself necessarily, but a real number in the closed interval [24=50; 40=81].



10 G. AGNARSSON, S. FELSNER, AND WILLIAM T. TROTTERWe have so far given \down-to-earth" algebraic interpretations of the main re-sults in previous sections in terms of generic monomial ideals and their minimal�rst syzygies. We will now explain briey how further informations can be ob-tained from Theorem 1.3 in a more general setup, which is described thoroughly in[3, section 3].For a given generic monomial ideal I � R, the �rst syzygy-module is uniquelydetermined by the minimal elements of I , w.r.t. the partial order de�ned by di-visibility, and hence can be denoted by Syz(I) or Syz(R=I) without any danger ofambiguity. Hence the minimal set M from Lemma 5.1 also depends solely on I oron the quotient R=I . The number of elements of M , jM j, turns out to be �2(R=I),the second Betti number of R=I :Following the setup of section 3 in [3], for anyW � f1; 2; : : : ; pg denote lcmfmi :i 2 Wg bymW . Let �I be the Scarf complex of I , as the abstract simplicial complexon the set f1; 2; : : : ; pg de�ned by�I = fU � f1; 2; : : : ; pg : mU 6= mW for all W 6= Ug:This complex is of dimension d� 1, in the sense that the largest number of elmentsof a set U in �I is d� 1. Because of the geometric fact that �I can be viewed as asubcomplex of the boundary complex of a polytope in Rd , then each U 2 �I withjU j = j 2 f1; : : : ; dg is called a j � 1-face of �I .Now, for a graph G = (V;E) of order dimension d there is an embedding � : V [E ! [X1; : : : ; Xd] (the set of monomials of the polynomial ring R = k[X1; : : : ; Xd])such that if V = fv1; : : : ; vpg and E � ffvi; vjg : 1 � i < j � pg then � satis�es1. �(fvi; vjg) = lcmf�(vi); �(vj)g2. �(vk)j�(fvi; vjg), k 2 fi; jg.Let I� be the monomial ideal generated by f�(vi) : i = 1; : : : ; pg. We see that theincidence poset of G is simply the poset induced by �I� by considering the 0 and 1faces of �I� only. Hence to determine the maximal number of edges of a graph on pvertices of dimension d, is the same as determining the maximal number of 1-facesof a Scarf complex �I among all monomial ideals I , which we can assume to begeneric, in d variables minimally generated by p monomials. By Corollary 3.3 in[3] the number of j-faces of �I is equal to the Betti number �j+1(R=I). Hence forgeneral d our problem of detemining M(p; d) is a special case of the Upper BoundProblem [3, pg 12]:Problem 5.3. For i 2 f1; : : : ; dg determine �i(d; p), the maximal Betti numberamong all ideals, minimally generated by p monomials in d variables.It is easy to see that these maximal Betti numbers are attained among genericand artinian monomial ideals (that is, ideals I where R=I is �nitely dimensionalover the �eld k.) The Scarf complex of a generic artinian ideal I turns out to bethe boundary of a simplical polytope, with one facet removed. Hence for a givengeneric artinian ideal I generated minimally by p monomials in d variables we havethat for j 2 f0; 1; : : : ; d � 2g the number fj of j-faces of �I , together with fd�1which is the number of the d � 1-facets of �I + 1, satisfy the Dehn-Sommervilleequations [17, pg 252]:fj�1 = dXi=j (�1)d�i�ij�fi�1 for 0 � j � d=2



GRAPHS AND DIMENSION 11which, in fact, is the complete list of all linear equations among f�1; f0; : : : ; fd�1.Note that f�1 = 1 always, and f0 = p, the number of generators of I . By de�nitionof �i(d; p) we have therefore for a given monomial ideal I , that the numbers of facesof �I satisfy f0 = �1(d; p) = pfj � �j+1(d; p) for j 2 f1; : : : ; d� 2gfd�1 � �d(d; p) + 1:Consider now the Dehn-Sommerville equations in the case d = 4:f0 � f1 + f2 � f3 = 0f2 � 2f3 = 0(5)If now I is a generic artinian monomial ideal, minimally generated by p monomialsand with f1 maximal, that is f1 = M(p; 4), then we get from (5)f0 = pf1 = M(p; 4)f2 = 2M(p; 4)� 2pf3 = M(p; 4)� pand hence we see that each fj , where j 2 f0; 1; 2; 3g, is maximal if f0 = p is �xedand f1 is maximal. Thus we conclude that the maximal Betti numbers for monomialideals in 4 variables satisfy�1(4; p) = p�2(4; p) = M(p; 4)�3(4; p) = 2M(p; 4)� 2p�4(4; p) = M(p; 4)� (p+ 1):(6)For functions F;G : N ! N denote limp!1 F (p)=G(p) = 1 by F (p) � G(p). Wehave an asymptotic solution of Problem 5.3 from Theorem 1.3 in the case d = 4.Corollary 5.4. The maximal Betti numbers for a monomial ideal minimally gen-erated by p monomials in 4 variables satisfy�1(4; p) = p�2(4; p) � 3p2=8�3(4; p) � 3p2=4�4(4; p) � 3p2=8:Similarly the Dehn-Sommerville equations in the case d = 5 are:f0 � f1 + f2 � f3 + f4 = 22f1 � 3f2 + 4f3 � 5f4 = 02f1 � 3f2 + 6f3 � 10f4 = 0(7)from which we can, in the same way as in the case d = 4, deduce that�1(5; p) = p�2(5; p) = M(p; 5)�3(5; p) = 4M(p; 5)� 10p+ 20�4(5; p) = 5M(p; 5)� 15p+ 30�5(5; p) = 2M(p; 5)� 6p+ 11:(8)>From (6) and (8) we conclude
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