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Abstract. We study the generation of uniformly distributed linear extensions using
Markov chains. In particular we show that monotone coupling from the past can be
applied in the case of linear extensions of two-dimensional orders. For width two orders
a mixing rate of O(n®logn) is proved. We conjecture that this is the mixing rate in
the general case and support the conjecture by empirical data. On the course we ob-
tain several nice structural results concerning Bruhat order and weak Bruhat order of
permutations.

1 Introduction

Markov chains have been proven useful for random generation and approximate counting
of combinatorial objects, see Kannan [Kan94]. Among the best studied objects in this area
are linear extensions of partial orders. The interest in random linear extensions has several
sources. For example, it has applications in the general sorting problem (see Brightwell
et al. [BFT95]). The problems of randomly generating and counting linear extensions
correspond to the generation of random points and volume computations for the order
polytope. This polytope is a good first instance for the application of algorithms that
work on polyhedra or more general convex bodies (e.g., see Lovasz [Lov92]). In their
paper about volume approximation for polyhedra Dyer et al. [DFK89] already mention
as consequence the approximation of the number of linear extensions. Karzanov and
Khachiyan [KK91] study a natural Markov chain on the set of linear extensions of an
order. Their algorithm returns an approximately uniformly distributed linear extension of
an n element order after O(n%logn) steps.

Here is the process analyzed in [KK91] for generating a random linear extension of
order P: start from an arbitrary linear extension L = (z1,..,z,) of P. Pick a position
i € {1,..,n — 1} uniformly at random. If elements z; and x;; are incomparable in P
interchange them with probability 1/2 otherwise leave L unchanged. Repeat this step
a large number of times. From the theory of Markov chains it follows easily that the
resulting linear extension is almost uniformly distributed. In [BW91b] Brightwell and
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Winkler show how to extend this to a polynomial approximation scheme for the problem
of counting linear extensions. In the same paper this counting problem is shown to be
# P-complete.

Recently, Propp and Wilson [PW95] proposed a stopping rule for Markov chains called
coupling from the past. This rule can be used to sample according to the exact stationary
distribution of a Markov chain. For coupling from the past to be practical the Markov
chain has to obey a certain monotonicity property. In this manuscript we show that
the above described Markov chain has the required monotonicity in the special case of
two-dimensional orders. We report on experiments that support the conjecture that cou-
pling yields a uniformly distributed linear extension in expected O(n?logn) steps. The
conjecture is also supported by a proof of this coupling time for orders of width two.

The paper is organized as follows. In the next section we review some basic facts on
Markov chains and describe how coupling from the past works. Section 3 exemplifies the
framework with the easy example of linear extensions of width two orders. In Section 4
we show that the path order on the linear extensions allows monotone coupling for two-
dimensional orders to work. In Section 5 we discuss mixing and coupling times and report
on empirical studies.

2 Coupling from the past

Let {X;};>0 be an irreducible and aperiodic (i.e., ergodic) Markov chain on state space S
with transition matrix P = (p;j). From the theory of Markov chains it follows that there
is a unique probability distribution 7 satisfying >, m;p;; = =; for all states j. Hence, if 7 is
the distribution of X then 7 is the distribution of X; for all ¢ > s, therefore 7 is called the
stationary distribution of the Markov chain. It is known that if we run an ergodic Markov
chain for a large number T' of steps the probability that the final state is ¢ converges to
;. Much work has been done to analyze the convergence rate of combinatorial Markov
chains, i.e., to estimate the time T the chain has to run so that the distribution of X7 and
w are close, e.g., in total variation distance. For an overview see Kannan [Kan94].

The coupling from the past framework gives a stopping rule that allows to sample
with unbiased stationary distribution. First we extend our time axis to the past and
adopt the convention that the state returned by the sampling procedure will always be
the state at time 0. This is achieved by starting the chain with X_7. Now assume a
routine RANDOMMAP that returns at each call a function f : § — S so that, for all
i,j €8, Pr(f(i) = j) = pij- If {fi}-7<: is a sequence of functions produced by calls to
RANDOMMAP then for every X_r € S the sequence {X;}; with X;1; = f;(X;) is a Markov
chain with transition matrix P. If T is large the distribution of Xy will be close to m. The
crucial observation, however, is the following. Suppose t' is such that the composed map
F oy =fi10f90...f ¢ is a constant map and %, is the unique value in the image of
the composed map then for all T > ' and all initial states X_7 the state returned by
the sampling procedure is i,. Imagine the sequence {f;} to be extended to —oc and a «
distributed random state X_.,. The sequence {X;}; with X;11 = f;(X;) is a Markov chain
with transition matrix P. Consequently, X; is 7 distributed for every ¢. Such informal
reasoning suggests that state i, returned by the procedure is 7 distributed too.

The algorithm is as follows: At time ¢ let f_; «+ RANDOMMAP and consider F_; =



F_(_1yo f-t. Assoon as F_; becomes constant, return the constant state i,. With the
tacit assumption that the probability is 1 that the algorithm returns a value at all, we
have the following theorem (see [PW95]).

Theorem 1 If P is an ergodic transition matriz the state returned by coupling from the
past is distributed according to the stationary distribution of the Markov chain.

As stated the algorithm is far from practical. We now review, from [PW95] the mono-
tone Monte Carlo algorithm for sampling according to m. Suppose there exists an ordering
< on the state space S with elements 0,1 € S such that 0 < z < 1 for all z € S. Moreover,
every f ever produced by RANDOMMAP has the property that z < y implies f( ) < f(y).
It is clear that in this setting F_; is a constant map exactly if F_;(0) = F_;(1). Hence,
instead of observing a huge state space we may restrict the observation to just two states.

3 Random linear extensions of orders of width two

The width of an order P is the minimum number of chains of a partition of the elements of
P into chains. It is classical that a minimum chain partition of P can be found efficiently.
Let P be of width two partitioned into chains A = {a; < a2 < ... < ax} and B = {b; <
by < ... < by} A linear extension L = z1,z9,...,z, of P is a permutation of the
elements such that for all z < y in P element = comes before y in L. Let L be a linear
extension of a width two order. With L associate a 0-1 sequence by

0 ifxz; €A,

) for 1 <i<n.
1 ifx; €B,

sequence(L,1) = {

Let us also define

ones(L, k) = Z sequence(L,i), for 1<k <n.
1<i<k

Lemma 2 The mapping L — sequence(L) is one-to-one and the image of the mapping is
a subset of ([z}). 0

There is a nice geometric characterization of the image of the mapping: visualize
sequence(L) as a lattice path. Starting at the origin (0,0) scan sequence(L) from left to
right and draw a south-east diagonal step for each 0 and a north-east diagonal step for
each 1 found. The paths end in point (n,n — 2k) (see Fig. 1).

Comparability relations between elements of A and B lead to forbidden areas for the
paths corresponding to linear extensions. If a; < b; the ith occurence of 0 in sequence(L)
must be left of the jth occurence of 1 for all L, i.e., ones(L,7+ 7 — 1) < j. Symmetrically,
relation b; < a; translates to ones(L,i+ j — 1) > i. Thus the forbidden areas are V and A
shaped regions as shown in Fig. 2.

Fact 1. A lattice path from (0,0) to (n,n — 2k) corresponds to a linear extension of P iff
it respects the forbidden areas of all comparable pairs a; € A and b; € B.

Lattice paths carry a natural ‘below’ ordering <, as shown in Fig. 4. Formally,
sequence(S) <, sequence(T') iff ones(S,k) < ones(T,k) for 1 < k < n. Note that the
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Figure 1: A linear extension and the corresponding path.
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Figure 2: Forbidden wedges for paths of Figure 3: <,-maximal and <p-minimal
linear extensions of P. lattice path.

forbidden areas for lattice path of linear extensions of P can be characterized in terms of
a <p-maximal lattice path 7 and a <,-minimal lattice path g (see Fig. 3). Fact 1 can be
restated as: a lattice path p from (0,0) to (n,n — 2k) corresponds to a linear extension of
Piff o <, p <p 11
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Figure 4: Path 11001101110 is above path 00101111101.

We come back to monotone coupling fom the past. Define a family of 2(n — 1) random
maps, two for each ¢+ = 1..n — 1. The upward flip at position i changes ‘01’ at positions
i,i+ 1 in sequence(L) into ‘10’ if allowed. The downward flip at position i changes ‘10 at
positions 7,7 + 1 in sequence(L) into ‘01’ if allowed. (See Fig. 5). The next fact states the
monotonicity of these random maps:
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Figure 5: An upward and a downward flip.

Fact 2. Let 7/ and p’ be obtained by an upward (downward) flip at some position. If
T <, p then 7" <, p'.

Theorem 1 and the monotonicity of the Markov-chain provide us with a simple method
of generating a uniformly distributed linear extension of P: run the Markov-chain from
the past until Fy(79) = Fy(m), i.e., until 79 and 71 have coupled.

Theorem 3 The expected number of steps it takes for 7o and 1 to couple is O(n?logn).

This bound is almost sharp since a lower bound of Q(n?) for the expected number of
steps can be given. See a forthcoming paper of Wilson [Wil95] for the details.

4 Linear extensions of two-dimensional orders

A classical theorem of Dushnik and Miller [DM41] states that every order is the intersection
of its linear extensions. A set R of linear extensions of order P is called a realizer iff P
is the intersection of the linear extensions in R. The dimension of P is the minimum
number of linear extensions in a realizer. Let 01,09 be a realizer of a two-dimensional
order P on elements 1,..,n. Rename z as o; '(z) and let 7 = o, '(02(z)). It follows
that z < y in P iff z < y as integers and 7 !(z) < 7 '(y) (denoted by z bef; y). This
allows the identification of two-dimensional orders with n elements and permutations in
Syn. Henceforth, we casually write P, instead of P to indicate that P corresponds to m,
i.e., that {id, w} is a realizer of P.

Pause for a moment to note that orders of width two are two-dimensional: the linear
extensions corresponding to the maximum 7; and the minimum path 79 are the linear
extensions of a realizer.

An inversion of a permutation o is a pair (i,7) with i < j and jbef,i. Let I(o) be
the set of inversions of o. A sorting transposition of o € S, at positions ¢ and j is a
permutation o' = sort(o,i,5) € S, which is the same as o save o} = 0; and o = o; if
o; > 0 (otherwise, o' = o). Similarly, an unsorting transposition at positions i and j is a
permutation ¢’ = unsort(c,i,5) with of = 0; and o} = 0; if 0; > 0; (otherwise, o' = o).
A sorting (unsorting) adjacent transposition at position i is one with j =i + 1.

The weak Bruhat order (Sp,<yp) on the permutations S, of length n relates two
permutations 7 <,p o if 7 can be obtained from ¢ by a sequence of sorting adjacent
transpositions (see Fig. 6).

There is a simple interpretation of the weak Bruhat order.

Lemma 4 All inversions of T are inversions of o if and only if o >up 7. m|



Figure 6: The order Ps5149 and its linear extensions in weak Bruhat order.

Proof. 1f ¢ >,p 7 then 7 is obtained from ¢ by sorting transpositions; but sorting
transpositions can only reduce the number of inversions. On the other hand, starting with
o we bubble the element 7y to the first position by adjacent transpositions. All these
adjacent transpositions must be sorting. Otherwise, o contains an inversion that is not
in 7. Next, continue with 79, etc. O

It is also easy to identify linear extensions in the weak Bruhat order.

Lemma 5 The set of linear extensions of Py is the ideal of the weak Bruhat order gener-
ated by 7, i.e., 0 is a linear extension of Py iff o <yp .

Proof. A moments thought shows that o is a linear extension of P, iff I(0) C I(n). O

This is a special case of a more general relation between linear extensions of orders
and convex subsets of the weak Bruhat order studied in more detail by Bjorner and
Wachs [BW91a] and Reuter [Reu96].

Note that in the width two case the relation <, and the weak Bruhat relation on
the corresponding permutations coincide. It is thus tempting to suspect that a suitable
generalization of Fact 4 will hold with <, replaced by <,,p. This is not quite the case as the
following example shows: 312 <, 5 321 and sort(312,1,2) = 132 and sort(321, 1,2) = 231
but 132 £,,5 231.

Similarly to the definitions of Section 3 we define for a permutation o € S, the path
at level | by

sequence;(o,1) = {0 Tf oi <, for 1 <i<mn.
1 ifo; >1,
Hence, sequence, (o, i) indicates whether o reaches level [ at position 7 (see Fig. 7). Rep-
resent sequences of ones and zeros by graphical paths as shown in Fig. 7. A one (zero) in
the sequence at level [ corresponds to an upward (downward) step in the path of level [.
Again we define

ones; (o, k) = Z sequence;(o,i), for 1<k <mn.
1<i<k
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Figure 7: Path diagrams of permutation 3412

Note that ones;(o,n) =n — 1+ 1 for every o € S,,. The path order (S,,<,) on S, relates
two permutations 7 <, o if ones;(7,i) < ones;(o,) for all 1 <1[,i < n. This means that
the paths of o are above that of 7 on all levels (see Figs. 7 and 4).

A sorting adjacent transposition at position k corresponds to an upward flip in the
paths of all levels, i.e., a ‘10’ configuration is converted to a ‘01’ configuration (all other
configurations are unchanged). Similarly, an unsorting adjacent transposition changes a
‘01" configuration to a ‘10’ configuration (see Fig. 5).

From Figs. 4 and 5 it is clear that if one path is above the other this remains so after
both paths are flipped upwards or downwards at the same position. Since an adjacent
transposition corresponds to flips at the same position on all levels we have

Lemma 6 Let o' and 7' be obtained from o and T by an adjacent transposition at the
same position. If o >, 7 then o' >, 7' O

The relation ¢ >,p 7 means that the paths of 7 can be obtained from that of o by
downward flips (i.e., sorting adjacent transpositions).

Lemma 7 Ifo >,p T then o >, 7. O

Note that the converse is not true. For example, 231 >, 132 but 231 2,5 132 since the
interchange of 2 and 3 cannot be obtained by adjacent transpositions that are sorting.
But it is possible to characterize the relation >, in terms of transpositions.

The Bruhat order (Sy, <p) on the permutations of S, relates two permutations 7 <,p o
if 7 can be obtained from o by a sequence of sorting (not necessarily adjacent) transposi-
tions.

Lemma 8 For two permutations o and 7, o >p 7 if and only if 0 >, 7.

Proof. Note that if o’ is obtained from o by a sorting transposition then ones;(o, k) >
ones; (o', k) for all 1 <1,k < n. Hence, o >p 7 implies 0 >, 7.

To prove the converse we find a sorting transposition that changes o to ¢’ such that
o' >, 7. It is easily seen that such a transposition reduces the number of inversions. To



be more precise, if o; > o; with ¢+ < j are interchanged then the number of inversions
reduces exactly by the cardinality of the set {k | i <k < j and 0; < 0}, < 0;}. Hence, we
are done by induction on the number of inversions.

To find the searched sorting transposition let 7 be minimal such that o; # 7; (then
o; > 7;). Such ¢ exists if 0 # 7. Next let j > ¢ be minimal with 7; < 0; < ;. Such j
exists: since o = 7, for all £ < 4, there must be a k > i with o, = 7; < 0; (of course,
o; need not be this o). Then o’ is obtained from ¢ by a sorting transposition of o at
positions i and j. It remains to show that o’ >, 7.

We define the function

¢1(k) = ones;(o, k) — ones) (7, k), 1<,k <mn,

which counts the overhead of ones in ¢ over that in 7 in the first k& positions and which is
nonnegative for all [ and k if and only if 0 >, 7.

T T;
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Figure 8: Selectively decrease (left) or increase (right) ¢;(k — 1).

Assume 7; < I < 0;. Then we show ¢;(k) > ¢, (k) > 0, for i < k < j. This is true
for k = i since ¢;(i) = 1 and ¢, (i) = 0 (recall that o and 7 coincide in the first ¢ — 1
positions). Now assume ¢;(k — 1) > ¢, (kK — 1) and observe that ¢;(k) is obtained from
¢1(k—1) by an increase of —1, 0, or 1 depending on o}, and 7;. But to selectively decrease
¢1(k — 1) without decreasing ¢, (k — 1) (see left part of Fig. 8) or to selectively increase
¢+, (k — 1) without increasing ¢;(k — 1) (see right part of Fig. 8) we need 7; < o}, <1 < 0,
which for k£ < j is in contradiction to the definition of j.

When we replace o by o’ then ¢;(k) is reduced by 1 only for 7; < 0; < 1 < 0; and
i < k < j. By the statememt of the preceding paragraph, ¢(k) is strictly positive for such
k before the replacement and hence ¢;(k) remains nonnegative after it. O

We will consider transpositions that are under the control of a permutation w. We
say that an unsorting adjacent transposition of a permutation o at position i under m is a
permutation o’ = unsort, (o, 1) € S, which is the same as o save 0; = 0,41 and 0;,| = 0;
if 0,41 > 0; and pos(o;11,7) < pos(o;, 7) (i.e., ;41 bef; 0;), (otherwise, o’ = o).

The central observation that is useful in showing the monotonicity of the linear exten-
sions of some permutation 7 under adjacent transpositions allowed under 7 is stated in
the following lemma.

Lemma 9 Suppose m >yp 0,7 and o >, T for permutations w,o,7 € S, and suppose that
unsort, (o, k) = o whereas unsort,(7,k) = 7' # 7. Then o >, 7'.



Proof. Assume that the consequence of the lemma is not true, i.e., that ¢ %, 7’. Since
o >, 7 there must be a level [ with ones;(o, k — 1) = ones;(7,k — 1) = ones;(7’,k — 1) and
sequence, (o, k) = sequence;(7, k) = 0 but sequence;(7',k) = 1 (a path of 7 on some level
is no longer under the path of o as 7 makes an upward flip to 7/, see Fig. 9).

- |

_

a Ok Ok+1

Figure 9: 7 is below o, 7’ is above o. Figure 10: Position of a in 0.

Hence, we have oy, 7, <l and oy41, 711 > | as well as oy, bef; op1 and 741 bef; 7.
These facts as well as the fact that ones;(o,j) > ones;(7,j), 1 < 4,5 < n, will be used
throughout the proof.

We also know that either oy differs from 7y or oy differs from 741¢. Furthermore,
since oy bef, o1, either pos(og, 7) < k or pos(oxi1,7) > k+ 1. We only have to consider
the first case. The second case is reduced to the first when the transformation v — 4 with
¥ = n+1—y,_; is applied to 7,0, and 7, since the relations <,p and <, are preserved
under this transformation and oy, opy; exchange their roles. Thus, in the sequel we
assume pos(oy,7) < k.

We first show the following statement (see Fig. 10).

There exists an a with pos(a,o) < k, pos(a,7) > k, and o < a < I. Moreover,
Tk+1 befﬂ Of.

Suppose that for all ¢ > o with pos(a,o) < k we have pos(a,7) < k, then, since
additionally pos(oy,7) < k, on level o, we have onesy, (7,k — 1) > ones,, (0.k — 1), a
contradiction. Since onesgy, (0,k — 1) > ones,, (7,k — 1) > 1 there is also at least one a as
described above. Such an a also fulfills a bef, oy (so, by Lemma 4, abef; o) and a = 73
or 7,1 bef; a (so 7,1 bef; a) implying that 74 bef; oy.

T T

Tk+1 Ok Ok+1 b c Ok Ok+1 Tk+1 b

Figure 11: Position of b in o. Figure 12: Position of b and ¢ in o.

Next we show a complementary statement (see Fig. 11).



There exists a b with pos(b,o) > k+ 1, pos(b,7) < k, and 011 > b > 1.

We consider two cases. First, assume 741 < o4 (see Fig. 11). If pos(rx41,0) > k+1,
we have oj,q bef; 7441 (Lemma 4) which together with the first statement above gives
ok+1 bef; ok, a contradiction. Hence, pos(7xy1,0) < k. But pos(rgi1,7) = kK + 1 and
ones; (o, k—1) = ones;(7, k—1) and so there must be at least one b > [ more with pos(b, o) >
k41 and pos(b, 7) < k than there are 2 > [ with pos(z,0) < k and pos(z,7) > k+1. We
know that if 7411 < n, ones;, 11(0,k—1) > ones;,  41(7,k —1). So it is impossible that
for all such b’s b > 741. Hence, there is one with op 1 > 7431 > b.

Now assume 7yy1 > 0g+1. In a first step we find a ¢ > 7441 with pos(c,0) < k and
pos(c,7) > k + 1 (see Fig. 12). If pos(7x11,0) < k we simply set ¢ = 7;41. Otherwise,
pos(Tgi1,0) >k + 1 (note here that 71 # ok, Tkr1 # Ogy1). Since pos(7xi1,7) =k + 1
but ones;(o, k + 1) > ones;(7,k +1), for all ¢ < 7,41, there must be a ¢ > 7,41 as searched
for. Similarly as in the preceding paragraph, since ones;(o, k — 1) = ones)(7,k — 1), there
must be a b > [ with pos(b,0) > k+ 1, pos(b, 7) < k, to compensate for such c¢. Of course,
ones;(o,k+ 1) > ones;(7,k+1) on levels 7 with o < i < 7511, and we may assume that

b < opyr.
\
\l —
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Figure 13: Position of ¢ and b in o. Figure 14: Position of ¢ and b in 7.

With the two statements we can now prove the lemma. The first statement implies
abef; 0. The second one implies 011 = b or o)1 bef, b (see Fig. 13). Both imply b bef; a
(see Fig. 14). Consequently, by Lemma 4, oy bef; ok, a contradiction. O

It is now simple to proof the montonicity of adjacent transpositions.

Theorem 10 Suppose m >,p 0,7 and o >, 7. If o', 7' are obtained from o, T by a
(sorting or unsorting) adjacent transposition at the same position under 7 then o' > 7'.

Proof. Lemma 6 can be applied in the case of a sorting transposition. In the case of an
unsorting tranposition it can also be applied if 0 # ¢’ and 7 # 7/. If 7 # 7/ and 0 = 0’ use
Lemma 9. If 7 = 7" and ¢ # o', by Lemma 7, ¢’ >, 0 implies 0/ >, o and the theorem
follows. O

5 Remarks on the coupling time

The monotone Monte Carlo algorithm describeded after Theorem 1 together with Theo-
rem 10 allows to sample uniformly from the linear extensions of P; by observing traces of

10



(id, 7) from the past until they couple. The function RANDOMMAP consists of a randomly
chosen position where to make an adjacent transposition and a choice whether to sort or
unsort.

The problem remaining is to estimate the number of Markov steps needed for the
coupling. But note that this is only of theoretical interest, since the algorithm stops as
soon as coupling occurs. In contrast, estimations for the mixing time of runs of Markov
chains are an essential criterion when to stop a corresponding (forward) algorithm if one
wants to obtain with high probability a good approximation of the stationary distribution.

If we set m to the permutation n,n — 1,...,1 (i.e., all permutations are allowed as
linear extensions) an analysis similar to that leading to Theorem 3 gives a coupling time
of O(n?logn) (the only difference is a slightly larger constant since the area between the
paths of all levels must be considered).

We are not able to give a similar sharp bound for the coupling time in the case where 7
is set to an arbitrary permutation. In Fig. 15 we tried to fit polynomials of degree three to
the outcome of experiments comparing coupling in the whole space of permutations (un-

2000000 T T T T T T T T
unrestricted coupling ¢
1800000 | weak Bruhat coupling  +
Length | unrestricted | weak Bruhat 1600000 | .
20 7071 3687 10753'5 1400000 | 1
30 30129 12757 & 1200000 | ]
40 73710 31224 3
50 153020 61374 g 1000000 | -
60 290506 120568 & 00000 | ]
80 753161 263692 o
100 1575570 14710 & 600000 ¢
400000 | ]
200000 | .
0 TT| I I I I

20 30 40 50 60 70 80 90 100
length of permutation

Figure 15: Average number of unrestricted and weak Bruhat coupling steps.

restricted) to coupling restricted to linear extensions of some permutation (weak Bruhat).
The method was to generate 10 random permutations (of course, by backward coupling)
of a given length and to couple them with the identity permutation. We think that these
experimental results give good reasons to suggest the following conjecture.

Conjecture 1 The expected coupling time of the above chain in the weak Bruhat ideal of
some permutation 7 of length n is O(n®logn).

In [BW91b] it is shown that the counting problem for linear extensions is # P-complete.
On the other hand, details are given of an algorithm for approximate counting of linear
extensions. This algorithm uses the approximate uniform generation of linear extensions

11



as a subroutine. In the case of two-dimensional orders monotone coupling certainly yields a
faster approximative count. However, we don’t know the complexity of the exact counting
problem.

Problem 1 Prove #P-completeness of the counting problem for linear extensions of two-
dimensional orders or show that they can be counted efficiently.

Nevertheless, a polynomial bound on the coupling time of the process can be given. A
general result of Wilson and Propp (Section 5 from [PW95]) relates expected coupling time
to expected mixing time. Combined with the estimate of Karzanov and Khachiyan [KK91]
for the mixing time of the Markov chain we obtain a bound of O (n’ log? n) for the coupling
time.

The proof for the mixing rate in the work of Karzanov and Khachiyan is based on a
bound for the conductance of the transition graph of the Markov chain. This transition
graph is the cover graph of the weak Bruhat ordering of the linear extensions as shown in
Fig. 6. Define the conductance of a graph as

C(X,X)
C= min ———_
XEV min(| X1, X))

where C(X,X) is the number of edges from X to its complement X. Note that this
definition differs from the usual one by a factor of 1/(2n—2). For a discussion of the relation
of conductance to mixing rate see, e.g., Kannan [Kan94]. Using geometric arguments
about convex bodies Karzanov and Khachiyan prove ¢ > ﬁ It is believed that the
conductance of linear extension graphs is at least 2/n (which would improve the bound
for the coupling time to O(n®log? n)). Known examples where 2/n is attained are disjoint
unions of a singleton element x, an odd length chain C, and an arbitrary order ), where
X is the set of linear extensions with z preceding the middle element of C'. Beside the
consequence for the mixing rate we consider this an important and nice conjecture:

Conjecture 2 2/n is a lower bound for the conductance of the graph of linear extensions
of every n element order.

Let z,y be incomparable elements of P the (x,y)-cut of the linear extension graph of
P is the partition X, X with X = {L : zbefy y}. To prove a slightly weaker bound of
1/(n — 1) it would suffice to show that the worst cuts with respect to conductance are

(z,y)-cuts as is the case in the above examples with ¢ = %

Lemma 11 The conductance of (x,y)-cuts is at least 1/(n — 1).

Proof. Consider the sample space of linear extensions of P with the uniform distribution.
For 1 <i < n—2let a; be the probability that = befy in L with (i —1) elements in between
and let b; be the probability that y bef 2 with (7 — 1) elements in between. Kahn and Saks
in their seminal paper about balancing pairs [KS84] establish relations implying:

n—1 n—1
(1) Zai"‘zbi:l-
i=1 i=1
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(2) a) = bl.
(3) a + b1 > a9 +b2.

(4) 1If ay > a9 then a; > a;41 for all ¢ and if by > by then b; > b1 for all i.

Property (4) follows from the log-concavity of the sequences which is proved using the
Alexandrov/Fenchel inequalities for mixed volumes.

Assume w.l.o.g. that Y a; > > b; and note that the conductance of the (z,y)-cut is
b1/ > b;. If by > by then by (4) > b; < (n — 1)by, hence, ¢ > 1/(n —1). If by < by then by
(3) a1 > ap wich implies Y- a; < (n —1)ai, hence c =b1/> b > a1/ > a; > 1/(n—1).
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