
Markov Chains for Linear Extensions,the Two-Dimensional CaseStefan Felsner Lorenz Wernisch�felsner@inf.fu-berlin.de wernisch@inf.fu-berlin.deFreie Universit�at Berlin,Fachbereich Mathematik, Institut f�ur Informatik,Takustra�e 9, 14195 Berlin,Germany.Abstract. We study the generation of uniformly distributed linear extensions usingMarkov chains. In particular we show that monotone coupling from the past can beapplied in the case of linear extensions of two-dimensional orders. For width two ordersa mixing rate of O(n3 logn) is proved. We conjecture that this is the mixing rate inthe general case and support the conjecture by empirical data. On the course we ob-tain several nice structural results concerning Bruhat order and weak Bruhat order ofpermutations.1 IntroductionMarkov chains have been proven useful for random generation and approximate countingof combinatorial objects, see Kannan [Kan94]. Among the best studied objects in this areaare linear extensions of partial orders. The interest in random linear extensions has severalsources. For example, it has applications in the general sorting problem (see Brightwellet al. [BFT95]). The problems of randomly generating and counting linear extensionscorrespond to the generation of random points and volume computations for the orderpolytope. This polytope is a good �rst instance for the application of algorithms thatwork on polyhedra or more general convex bodies (e.g., see Lov�asz [Lov92]). In theirpaper about volume approximation for polyhedra Dyer et al. [DFK89] already mentionas consequence the approximation of the number of linear extensions. Karzanov andKhachiyan [KK91] study a natural Markov chain on the set of linear extensions of anorder. Their algorithm returns an approximately uniformly distributed linear extension ofan n element order after O(n6 logn) steps.Here is the process analyzed in [KK91] for generating a random linear extension oforder P : start from an arbitrary linear extension L = (x1; ::; xn) of P . Pick a positioni 2 f1; ::; n � 1g uniformly at random. If elements xi and xi+1 are incomparable in Pinterchange them with probability 1/2 otherwise leave L unchanged. Repeat this stepa large number of times. From the theory of Markov chains it follows easily that theresulting linear extension is almost uniformly distributed. In [BW91b] Brightwell and�Lorenz Wernisch has been supported by the Graduiertenkolleg \Algorithmische Diskrete Mathematik"1



Winkler show how to extend this to a polynomial approximation scheme for the problemof counting linear extensions. In the same paper this counting problem is shown to be#P -complete.Recently, Propp and Wilson [PW95] proposed a stopping rule for Markov chains calledcoupling from the past. This rule can be used to sample according to the exact stationarydistribution of a Markov chain. For coupling from the past to be practical the Markovchain has to obey a certain monotonicity property. In this manuscript we show thatthe above described Markov chain has the required monotonicity in the special case oftwo-dimensional orders. We report on experiments that support the conjecture that cou-pling yields a uniformly distributed linear extension in expected O(n3 logn) steps. Theconjecture is also supported by a proof of this coupling time for orders of width two.The paper is organized as follows. In the next section we review some basic facts onMarkov chains and describe how coupling from the past works. Section 3 exempli�es theframework with the easy example of linear extensions of width two orders. In Section 4we show that the path order on the linear extensions allows monotone coupling for two-dimensional orders to work. In Section 5 we discuss mixing and coupling times and reporton empirical studies.2 Coupling from the pastLet fXtgt�0 be an irreducible and aperiodic (i.e., ergodic) Markov chain on state space Swith transition matrix P = (pij). From the theory of Markov chains it follows that thereis a unique probability distribution � satisfyingPi �ipij = �j for all states j. Hence, if � isthe distribution of Xs then � is the distribution of Xt for all t � s, therefore � is called thestationary distribution of the Markov chain. It is known that if we run an ergodic Markovchain for a large number T of steps the probability that the �nal state is i converges to�i. Much work has been done to analyze the convergence rate of combinatorial Markovchains, i.e., to estimate the time T the chain has to run so that the distribution of XT and� are close, e.g., in total variation distance. For an overview see Kannan [Kan94].The coupling from the past framework gives a stopping rule that allows to samplewith unbiased stationary distribution. First we extend our time axis to the past andadopt the convention that the state returned by the sampling procedure will always bethe state at time 0. This is achieved by starting the chain with X�T . Now assume aroutine RandomMap that returns at each call a function f : S ! S so that, for alli; j 2 S, Pr(f(i) = j) = pij. If fftg�T�t is a sequence of functions produced by calls toRandomMap then for every X�T 2 S the sequence fXtgt withXt+1 = ft(Xt) is a Markovchain with transition matrix P . If T is large the distribution of X0 will be close to �. Thecrucial observation, however, is the following. Suppose t0 is such that the composed mapF�t0 = f�1 � f�2 � : : : f�t0 is a constant map and i� is the unique value in the image ofthe composed map then for all T � t0 and all initial states X�T the state returned bythe sampling procedure is i�. Imagine the sequence fftg to be extended to �1 and a �distributed random state X�1. The sequence fXtgt withXt+1 = ft(Xt) is a Markov chainwith transition matrix P . Consequently, Xt is � distributed for every t. Such informalreasoning suggests that state i� returned by the procedure is � distributed too.The algorithm is as follows: At time t let f�t  RandomMap and consider F�t =2



F�(t�1) � f�t. As soon as F�t becomes constant, return the constant state i�. With thetacit assumption that the probability is 1 that the algorithm returns a value at all, wehave the following theorem (see [PW95]).Theorem 1 If P is an ergodic transition matrix the state returned by coupling from thepast is distributed according to the stationary distribution of the Markov chain.As stated the algorithm is far from practical. We now review, from [PW95] the mono-tone Monte Carlo algorithm for sampling according to �. Suppose there exists an ordering� on the state space S with elements 0̂; 1̂ 2 S such that 0̂ � x � 1̂ for all x 2 S. Moreover,every f ever produced by RandomMap has the property that x � y implies f(x) � f(y).It is clear that in this setting F�t is a constant map exactly if F�t(0̂) = F�t(1̂). Hence,instead of observing a huge state space we may restrict the observation to just two states.3 Random linear extensions of orders of width twoThe width of an order P is the minimum number of chains of a partition of the elements ofP into chains. It is classical that a minimum chain partition of P can be found e�ciently.Let P be of width two partitioned into chains A = fa1 < a2 < : : : < akg and B = fb1 <b2 < : : : < bn�kg. A linear extension L = x1; x2; : : : ; xn of P is a permutation of theelements such that for all x < y in P element x comes before y in L. Let L be a linearextension of a width two order. With L associate a 0-1 sequence bysequence(L; i) = (0 if xi 2 A;1 if xi 2 B; for 1 � i � n:Let us also de�ne ones(L; k) = X1�i�k sequence(L; i); for 1 � k � n:Lemma 2 The mapping L! sequence(L) is one-to-one and the image of the mapping isa subset of �[n]k �.There is a nice geometric characterization of the image of the mapping: visualizesequence(L) as a lattice path. Starting at the origin (0; 0) scan sequence(L) from left toright and draw a south-east diagonal step for each 0 and a north-east diagonal step foreach 1 found. The paths end in point (n; n� 2k) (see Fig. 1).Comparability relations between elements of A and B lead to forbidden areas for thepaths corresponding to linear extensions. If ai < bj the ith occurence of 0 in sequence(L)must be left of the jth occurence of 1 for all L, i.e., ones(L; i+ j � 1) < j. Symmetrically,relation bi < aj translates to ones(L; i+ j � 1) � i. Thus the forbidden areas are _ and ^shaped regions as shown in Fig. 2.Fact 1. A lattice path from (0; 0) to (n; n� 2k) corresponds to a linear extension of P i�it respects the forbidden areas of all comparable pairs ai 2 A and bj 2 B.Lattice paths carry a natural `below' ordering �p as shown in Fig. 4. Formally,sequence(S) �p sequence(T ) i� ones(S; k) � ones(T; k) for 1 � k � n. Note that the3



b1b2
b3P a4a3a2a1 L = b1a1a2a3b2a4b3Figure 1: A linear extension and the corresponding path.

b1 < a3a1 < b2a2 < b3
Figure 2: Forbidden wedges for paths oflinear extensions of P . Figure 3: �p-maximal and �p-minimallattice path.forbidden areas for lattice path of linear extensions of P can be characterized in terms ofa �p-maximal lattice path �1 and a �p-minimal lattice path �0 (see Fig. 3). Fact 1 can berestated as: a lattice path � from (0; 0) to (n; n� 2k) corresponds to a linear extension ofP i� �0 �p � �p �1.

Figure 4: Path 11001101110 is above path 00101111101.We come back to monotone coupling fom the past. De�ne a family of 2(n�1) randommaps, two for each i = 1::n � 1. The upward 
ip at position i changes `01' at positionsi; i+1 in sequence(L) into `10' if allowed. The downward 
ip at position i changes `10' atpositions i; i+1 in sequence(L) into `01' if allowed. (See Fig. 5). The next fact states themonotonicity of these random maps: 4



1 00 10 101
Figure 5: An upward and a downward 
ip.Fact 2. Let � 0 and �0 be obtained by an upward (downward) 
ip at some position. If� �p � then � 0 �p �0.Theorem 1 and the monotonicity of the Markov-chain provide us with a simple methodof generating a uniformly distributed linear extension of P : run the Markov-chain fromthe past until Ft(�0) = Ft(�1), i.e., until �0 and �1 have coupled.Theorem 3 The expected number of steps it takes for �0 and �1 to couple is O(n3 log n).This bound is almost sharp since a lower bound of 
(n3) for the expected number ofsteps can be given. See a forthcoming paper of Wilson [Wil95] for the details.4 Linear extensions of two-dimensional ordersA classical theorem of Dushnik and Miller [DM41] states that every order is the intersectionof its linear extensions. A set R of linear extensions of order P is called a realizer i� Pis the intersection of the linear extensions in R. The dimension of P is the minimumnumber of linear extensions in a realizer. Let �1; �2 be a realizer of a two-dimensionalorder P on elements 1; ::; n. Rename x as ��11 (x) and let � = ��11 (�2(x)). It followsthat x < y in P i� x < y as integers and ��1(x) < ��1(y) (denoted by xbef� y). Thisallows the identi�cation of two-dimensional orders with n elements and permutations inSn. Henceforth, we casually write P� instead of P to indicate that P corresponds to �,i.e., that fid; �g is a realizer of P .Pause for a moment to note that orders of width two are two-dimensional: the linearextensions corresponding to the maximum �1 and the minimum path �0 are the linearextensions of a realizer.An inversion of a permutation � is a pair (i; j) with i < j and j bef� i. Let I(�) bethe set of inversions of �. A sorting transposition of � 2 Sn at positions i and j is apermutation �0 = sort(�; i; j) 2 Sn which is the same as � save �0i = �j and �0j = �i if�i > �j (otherwise, �0 = �). Similarly, an unsorting transposition at positions i and j is apermutation �0 = unsort(�; i; j) with �0i = �j and �0j = �i if �i > �j (otherwise, �0 = �).A sorting (unsorting) adjacent transposition at position i is one with j = i+ 1.The weak Bruhat order (Sn;�wB) on the permutations Sn of length n relates twopermutations � �wB � if � can be obtained from � by a sequence of sorting adjacenttranspositions (see Fig. 6).There is a simple interpretation of the weak Bruhat order.Lemma 4 All inversions of � are inversions of � if and only if � �wB � .5
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Figure 6: The order P35142 and its linear extensions in weak Bruhat order.Proof. If � �wB � then � is obtained from � by sorting transpositions; but sortingtranspositions can only reduce the number of inversions. On the other hand, starting with� we bubble the element �1 to the �rst position by adjacent transpositions. All theseadjacent transpositions must be sorting. Otherwise, � contains an inversion that is notin � . Next, continue with �2, etc.It is also easy to identify linear extensions in the weak Bruhat order.Lemma 5 The set of linear extensions of P� is the ideal of the weak Bruhat order gener-ated by �, i.e., � is a linear extension of P� i� � �wB �.Proof. A moments thought shows that � is a linear extension of P� i� I(�) � I(�).This is a special case of a more general relation between linear extensions of ordersand convex subsets of the weak Bruhat order studied in more detail by Bj�orner andWachs [BW91a] and Reuter [Reu96].Note that in the width two case the relation <p and the weak Bruhat relation onthe corresponding permutations coincide. It is thus tempting to suspect that a suitablegeneralization of Fact 4 will hold with�p replaced by �wB. This is not quite the case as thefollowing example shows: 312 �wB 321 and sort(312; 1; 2) = 132 and sort(321; 1; 2) = 231but 132 6�wB 231.Similarly to the de�nitions of Section 3 we de�ne for a permutation � 2 Sn the pathat level l by sequencel(�; i) = (0 if �i < l;1 if �i � l; for 1 � i � n:Hence, sequencel(�; i) indicates whether � reaches level l at position i (see Fig. 7). Rep-resent sequences of ones and zeros by graphical paths as shown in Fig. 7. A one (zero) inthe sequence at level l corresponds to an upward (downward) step in the path of level l.Again we de�neonesl(�; k) = X1�i�k sequencel(�; i); for 1 � k � n:6



level 4level 3level 2level 1
level 4level 3level 24 1 23Figure 7: Path diagrams of permutation 3412Note that onesl(�; n) = n� l + 1 for every � 2 Sn. The path order (Sn;�p) on Sn relatestwo permutations � �p � if onesl(�; i) � onesl(�; i) for all 1 � l; i � n. This means thatthe paths of � are above that of � on all levels (see Figs. 7 and 4).A sorting adjacent transposition at position k corresponds to an upward 
ip in thepaths of all levels, i.e., a `10' con�guration is converted to a `01' con�guration (all othercon�gurations are unchanged). Similarly, an unsorting adjacent transposition changes a`01' con�guration to a `10' con�guration (see Fig. 5).From Figs. 4 and 5 it is clear that if one path is above the other this remains so afterboth paths are 
ipped upwards or downwards at the same position. Since an adjacenttransposition corresponds to 
ips at the same position on all levels we haveLemma 6 Let �0 and � 0 be obtained from � and � by an adjacent transposition at thesame position. If � �p � then �0 �p � 0.The relation � �wB � means that the paths of � can be obtained from that of � bydownward 
ips (i.e., sorting adjacent transpositions).Lemma 7 If � �wB � then � �p � .Note that the converse is not true. For example, 231 �p 132 but 231 6�wB 132 since theinterchange of 2 and 3 cannot be obtained by adjacent transpositions that are sorting.But it is possible to characterize the relation �p in terms of transpositions.The Bruhat order (Sn;�B) on the permutations of Sn relates two permutations � �wB �if � can be obtained from � by a sequence of sorting (not necessarily adjacent) transposi-tions.Lemma 8 For two permutations � and � , � �B � if and only if � �p � .Proof. Note that if �0 is obtained from � by a sorting transposition then onesl(�; k) �onesl(�0; k) for all 1 � l; k � n. Hence, � �B � implies � �p � .To prove the converse we �nd a sorting transposition that changes � to �0 such that�0 �p � . It is easily seen that such a transposition reduces the number of inversions. To7



be more precise, if �i > �j with i < j are interchanged then the number of inversionsreduces exactly by the cardinality of the set fk j i < k � j and �j � �k < �ig. Hence, weare done by induction on the number of inversions.To �nd the searched sorting transposition let i be minimal such that �i 6= �i (then�i > �i). Such i exists if � 6= � . Next let j > i be minimal with �i � �j < �i. Such jexists: since �k = �k for all k < i, there must be a k > i with �k = �i < �i (of course,�j need not be this �k). Then �0 is obtained from � by a sorting transposition of � atpositions i and j. It remains to show that �0 �p � .We de�ne the function�l(k) = onesl(�; k) � onesl(�; k); 1 � l; k � n;which counts the overhead of ones in � over that in � in the �rst k positions and which isnonnegative for all l and k if and only if � �p � .
�i �i �k �k

l�i�i �i �k �k
l�i

Figure 8: Selectively decrease (left) or increase (right) �l(k � 1).Assume �i < l � �i. Then we show �l(k) > ��i(k) � 0, for i � k < j. This is truefor k = i since �l(i) = 1 and ��i(i) = 0 (recall that � and � coincide in the �rst i � 1positions). Now assume �l(k � 1) > ��i(k � 1) and observe that �l(k) is obtained from�l(k�1) by an increase of �1, 0, or 1 depending on �k and �k. But to selectively decrease�l(k � 1) without decreasing ��i(k � 1) (see left part of Fig. 8) or to selectively increase��i(k� 1) without increasing �l(k� 1) (see right part of Fig. 8) we need �i � �k < l � �i,which for k < j is in contradiction to the de�nition of j.When we replace � by �0 then �l(k) is reduced by 1 only for �i � �j < l � �i andi � k < j. By the statememt of the preceding paragraph, �(k) is strictly positive for suchk before the replacement and hence �l(k) remains nonnegative after it.We will consider transpositions that are under the control of a permutation �. Wesay that an unsorting adjacent transposition of a permutation � at position i under � is apermutation �0 = unsort�(�; i) 2 Sn which is the same as � save �0i = �i+1 and �0i+1 = �iif �i+1 > �i and pos(�i+1; �) < pos(�i; �) (i.e., �i+1 bef� �i), (otherwise, �0 = �).The central observation that is useful in showing the monotonicity of the linear exten-sions of some permutation � under adjacent transpositions allowed under � is stated inthe following lemma.Lemma 9 Suppose � �wB �; � and � �p � for permutations �; �; � 2 Sn and suppose thatunsort�(�; k) = � whereas unsort�(�; k) = � 0 6= � . Then � �p � 0.8



Proof. Assume that the consequence of the lemma is not true, i.e., that � 6�p � 0. Since� �p � there must be a level l with onesl(�; k � 1) = onesl(�; k � 1) = onesl(� 0; k � 1) andsequencel(�; k) = sequencel(�; k) = 0 but sequencel(� 0; k) = 1 (a path of � on some levelis no longer under the path of � as � makes an upward 
ip to � 0, see Fig. 9).
0 1 1 0

Figure 9: � is below �, � 0 is above �. a �k �k+1
l

Figure 10: Position of a in �.Hence, we have �k; �k < l and �k+1; �k+1 � l as well as �k bef� �k+1 and �k+1 bef� �k.These facts as well as the fact that onesi(�; j) � onesj(�; j), 1 � i; j � n, will be usedthroughout the proof.We also know that either �k di�ers from �k or �k+1 di�ers from �k+1. Furthermore,since �k bef� �k+1, either pos(�k; �) < k or pos(�k+1; �) > k+1. We only have to considerthe �rst case. The second case is reduced to the �rst when the transformation 
 ! b
 withb
i = n+ 1� 
n�i is applied to �; �; and � , since the relations �wB and �p are preservedunder this transformation and �k, �k+1 exchange their roles. Thus, in the sequel weassume pos(�k; �) < k.We �rst show the following statement (see Fig. 10).There exists an a with pos(a; �) < k, pos(a; �) � k, and �k < a < l. Moreover,�k+1 bef� �k.Suppose that for all a > �k with pos(a; �) < k we have pos(a; �) < k, then, sinceadditionally pos(�k; �) < k, on level �k we have ones�k(�; k � 1) > ones�k(�; k � 1), acontradiction. Since ones�k(�; k � 1) � ones�k(�; k � 1) � 1 there is also at least one a asdescribed above. Such an a also ful�lls abef� �k (so, by Lemma 4, abef� �k) and a = �kor �k+1 bef� a (so �k+1 bef� a) implying that �k+1 bef� �k.
�k�k+1 b�k+1

l
Figure 11: Position of b in �. �k �k+1c �k+1 b

l
Figure 12: Position of b and c in �.Next we show a complementary statement (see Fig. 11).9



There exists a b with pos(b; �) � k + 1, pos(b; �) < k, and �k+1 � b � l.We consider two cases. First, assume �k+1 � �k+1 (see Fig. 11). If pos(�k+1; �) � k+1,we have �k+1 bef� �k+1 (Lemma 4) which together with the �rst statement above gives�k+1 bef� �k, a contradiction. Hence, pos(�k+1; �) < k. But pos(�k+1; �) = k + 1 andonesl(�; k�1) = onesl(�; k�1) and so there must be at least one b � l more with pos(b; �) �k+1 and pos(b; �) < k than there are x � l with pos(x; �) < k and pos(x; �) � k+1. Weknow that if �k+1 < n, ones�k+1+1(�; k� 1) � ones�k+1+1(�; k� 1). So it is impossible thatfor all such b's b > �k+1. Hence, there is one with �k+1 � �k+1 � b.Now assume �k+1 > �k+1. In a �rst step we �nd a c � �k+1 with pos(c; �) < k andpos(c; �) � k + 1 (see Fig. 12). If pos(�k+1; �) < k we simply set c = �k+1. Otherwise,pos(�k+1; �) > k + 1 (note here that �k+1 6= �k, �k+1 6= �k+1). Since pos(�k+1; �) = k + 1but onesi(�; k+1) � onesi(�; k+1), for all i � �k+1, there must be a c > �k+1 as searchedfor. Similarly as in the preceding paragraph, since onesl(�; k � 1) = onesl(�; k � 1), theremust be a b � l with pos(b; �) � k+1, pos(b; �) < k, to compensate for such c. Of course,onesi(�; k+1) � onesi(�; k+1) on levels i with �k+1 < i � �k+1, and we may assume thatb � �k+1.
�k �k+1 b

l
aFigure 13: Position of a and b in �.

l
b a�k �k+1Figure 14: Position of a and b in � .With the two statements we can now prove the lemma. The �rst statement impliesabef� �k. The second one implies �k+1 = b or �k+1 bef� b (see Fig. 13). Both imply bbef� a(see Fig. 14). Consequently, by Lemma 4, �k+1 bef� �k, a contradiction.It is now simple to proof the montonicity of adjacent transpositions.Theorem 10 Suppose � �wB �; � and � �p � . If �0, � 0 are obtained from �, � by a(sorting or unsorting) adjacent transposition at the same position under � then �0 � � 0.Proof. Lemma 6 can be applied in the case of a sorting transposition. In the case of anunsorting tranposition it can also be applied if � 6= �0 and � 6= � 0. If � 6= � 0 and � = �0 useLemma 9. If � = � 0 and � 6= �0, by Lemma 7, �0 �wB � implies �0 �p � and the theoremfollows.5 Remarks on the coupling timeThe monotone Monte Carlo algorithm describeded after Theorem 1 together with Theo-rem 10 allows to sample uniformly from the linear extensions of P� by observing traces of10



(id; �) from the past until they couple. The function RandomMap consists of a randomlychosen position where to make an adjacent transposition and a choice whether to sort orunsort.The problem remaining is to estimate the number of Markov steps needed for thecoupling. But note that this is only of theoretical interest, since the algorithm stops assoon as coupling occurs. In contrast, estimations for the mixing time of runs of Markovchains are an essential criterion when to stop a corresponding (forward) algorithm if onewants to obtain with high probability a good approximation of the stationary distribution.If we set � to the permutation n; n � 1; : : : ; 1 (i.e., all permutations are allowed aslinear extensions) an analysis similar to that leading to Theorem 3 gives a coupling timeof O(n3 log n) (the only di�erence is a slightly larger constant since the area between thepaths of all levels must be considered).We are not able to give a similar sharp bound for the coupling time in the case where �is set to an arbitrary permutation. In Fig. 15 we tried to �t polynomials of degree three tothe outcome of experiments comparing coupling in the whole space of permutations (un-
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Figure 15: Average number of unrestricted and weak Bruhat coupling steps.restricted) to coupling restricted to linear extensions of some permutation (weak Bruhat).The method was to generate 10 random permutations (of course, by backward coupling)of a given length and to couple them with the identity permutation. We think that theseexperimental results give good reasons to suggest the following conjecture.Conjecture 1 The expected coupling time of the above chain in the weak Bruhat ideal ofsome permutation � of length n is O(n3 log n).In [BW91b] it is shown that the counting problem for linear extensions is #P -complete.On the other hand, details are given of an algorithm for approximate counting of linearextensions. This algorithm uses the approximate uniform generation of linear extensions11



as a subroutine. In the case of two-dimensional orders monotone coupling certainly yields afaster approximative count. However, we don't know the complexity of the exact countingproblem.Problem 1 Prove #P -completeness of the counting problem for linear extensions of two-dimensional orders or show that they can be counted e�ciently.Nevertheless, a polynomial bound on the coupling time of the process can be given. Ageneral result of Wilson and Propp (Section 5 from [PW95]) relates expected coupling timeto expected mixing time. Combined with the estimate of Karzanov and Khachiyan [KK91]for the mixing time of the Markov chain we obtain a bound of O(n6 log2 n) for the couplingtime.The proof for the mixing rate in the work of Karzanov and Khachiyan is based on abound for the conductance of the transition graph of the Markov chain. This transitiongraph is the cover graph of the weak Bruhat ordering of the linear extensions as shown inFig. 6. De�ne the conductance of a graph asc = minX�V C(X;X)min(jXj; jX j)where C(X;X) is the number of edges from X to its complement X . Note that thisde�nition di�ers from the usual one by a factor of 1=(2n�2). For a discussion of the relationof conductance to mixing rate see, e.g., Kannan [Kan94]. Using geometric argumentsabout convex bodies Karzanov and Khachiyan prove c � 1np2n . It is believed that theconductance of linear extension graphs is at least 2=n (which would improve the boundfor the coupling time to O(n5 log2 n)). Known examples where 2=n is attained are disjointunions of a singleton element x, an odd length chain C, and an arbitrary order Q, whereX is the set of linear extensions with x preceding the middle element of C. Beside theconsequence for the mixing rate we consider this an important and nice conjecture:Conjecture 2 2=n is a lower bound for the conductance of the graph of linear extensionsof every n element order.Let x; y be incomparable elements of P the (x; y)-cut of the linear extension graph ofP is the partition X;X with X = fL : xbefL yg. To prove a slightly weaker bound of1=(n � 1) it would su�ce to show that the worst cuts with respect to conductance are(x; y)-cuts as is the case in the above examples with c = 2n .Lemma 11 The conductance of (x; y)-cuts is at least 1=(n� 1).Proof. Consider the sample space of linear extensions of P with the uniform distribution.For 1 � i � n�2 let ai be the probability that xbef y in L with (i�1) elements in betweenand let bi be the probability that y bef x with (i� 1) elements in between. Kahn and Saksin their seminal paper about balancing pairs [KS84] establish relations implying:(1) n�1Xi=1 ai + n�1Xi=1 bi = 1. 12



(2) a1 = b1.(3) a1 + b1 � a2 + b2.(4) If a1 � a2 then ai � ai+1 for all i and if b1 � b2 then bi � bi+1 for all i.Property (4) follows from the log-concavity of the sequences which is proved using theAlexandrov/Fenchel inequalities for mixed volumes.Assume w.l.o.g. that P ai � P bi and note that the conductance of the (x; y)-cut isb1=P bi. If b1 � b2 then by (4) P bi � (n� 1)b1, hence, c � 1=(n� 1). If b1 � b2 then by(3) a1 � a2 wich implies Pai � (n� 1)a1, hence c = b1=P bi � a1=P ai � 1=(n� 1).References[BFT95] G. Brightwell, S. Felsner, and T. Trotter. Balancing pairs and the cross productconjecture. Order, 12:321{335, 1995.[BW91a] Bj�orner and M. Wachs. Permutation statistics and linear extensions of posets.J. of Comb. Th. (A), 58:85{114, 1991.[BW91b] G. Brightwell and Winkler. Counting linear extensions. Order, 8:225{242, 1991.[DFK89] M. Dyer, A. Frieze, and R. Kannan. A random polynomial time algorithm forapproximating the volume of convex bodies. In 21th Annual ACM STOC, pages375{381, 1989.[DM41] B. Dushnik and E. Miller. Partially ordered sets. Am. J. Math., 63:600{610,1941.[Kan94] R. Kannan. Markov chains and polynomial time algorithms. In Proc. 35th Ann.IEEE Symp. on Foundations of Computer Science, pages 656{671, 1994.[KK91] A. Karzanov and L. Khachiyan. On the conductance of order markov chains.Order, 8:7{15, 1991.[KS84] Kahn and Saks. Balancing poset extensions. ORDER, 1984.[Lov92] L. Lov�asz. How to compute the volume? Jber. d. Dt. Math.-Verein. (Ju-bil�aumstagung 1990), pages 138{151, 1992.[PW95] J.G. Propp and D.W. Wilson. Exact sampling with coupled markov chains andapplications to statistical mechanics. Random Structures and Algorithms, 1995.[Reu96] K. Reuter. Linear extension of posets as abstract convex sets. Preprint, 1996.[Wil95] D. W. Wilson. personal communication, 1995.
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