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Abstract

The linear extension diameter of a finite poset P is the maximum

distance between a pair of linear extensions of P, where the distance

between two linear extensions is the number of pairs of elements of P
appearing in different orders in the two linear extensions. We prove

a formula for the linear extension diameter of the Boolean Lattice

and characterize the diametral pairs of linear extensions. For the

more general case of a downset lattice DP of a 2-dimensional poset P,

we characterize the diametral pairs of linear extensions of DP and

show how to compute the linear extension diameter of DP in time

polynomial in |P|.

1 Introduction

With a finite poset P consider its linear extension graph G(P), which has the
linear extensions of P as vertices, with two of them being adjacent exactly
if they differ only in a single adjacent transposition. The linear extension
graph was originally defined in [11]. It is implicitly used in investigations
around finite posets and sorting problems, see e.g. [3]. Explicit research has
been initiated in [12], see also [10].

The linear extension diameter of P , denoted by led(P), is the diameter
of G(P), see [5]. It equals the maximum number of pairs of elements of P
that can be in different orders in two linear extensions of P . A diametral

pair of linear extensions of P is a diametral pair of G(P).
A realizer of P is a set R of linear extensions of P such that the compa-

rabilities of P are exactly the intersection of the comparabilities of the linear
extensions in R (cf. [14]). The dimension of a poset P is the minimum size
of a realizer. If P is 2-dimensional, i.e., if it has a realizer R = {L1, L2}, then
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every incomparable pair x||y of elements of P appears in different orders in
L1 and L2. It follows that P is 2-dimensional exactly if led(P) equals the
number of incomparable pairs of P . Figure 1 shows a six-element poset P
(called the chevron) with its linear extension graph. Note that P has seven
incomparable pairs, but the diameter of its linear extension graph is only six.
Hence, the dimension of P must be at least three.
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Figure 1: The chevron and its linear extension graph.

A diametral pair L1, L2 can be used to obtain an optimal drawing of P :
Use L1 and L2 on the two coordinate axes to get a position in the plane for
each element of P . Since the number of incomparable pairs which appear
in different orders in L1 and L2 is maximized, the resulting drawing has a
minimal number of pairs x, y which are comparable in the dominance order,
i.e., xi < yi for all coordinates i, but incomparable in P . See Figure 2 for an
example.

In [2] it was shown that, given a poset P , it is NP-complete in general to
determine the linear extension diameter of P . In Section 2 we prove a formula
for the linear extension diameter of the Boolean lattice, and characterize the
diametral pairs of linear extensions of the Boolean lattice. In Section 3 we
characterize the diametral pairs of linear extensions for the more general class
of downset lattices of 2-dimensional posets. We also show how to compute the
linear extension diameter of the downset lattice of a 2-dimensional poset P
in time polynomial in |P|.

Note that the results of Section 2 are contained in the results of Section 3.
Section 2 provides an easier acess to our proof techniques. However, since
Section 3 is largely self-contained, the self-confident reader may proceed there
right away.
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2 Boolean Lattices

Let Bn denote the n-dimensional Boolean lattice, that is, the poset on all
subsets of [n], ordered by inclusion. In this section we prove the following
conjecture from [5].

Conjecture 1 (Felsner, Reuter ’99). led(Bn) = 22n−2 − (n + 1) · 2n−2.

We will also characterize the diametral pairs of linear extensions of Bn.
Central to our investigations is a generalization of the reverse lexicographic
order. Before defining it, let us clarify some notation: Let σ be a permutation
of [n]. We say that i is σ-smaller than j, and write i <σ j, if σ−1(i) < σ−1(j).
We define σ-larger analogously. The σ-maximum (σ-minimum) of a finite
set S is the element which is σ-largest (σ-smallest) in S. For example, if
σ = 2413, then 4 <σ 1, and maxσ{3, 4} = 3.

Definition 1. Define a relation on the subsets of [n] by setting

S <σ T ⇐⇒ max
σ

(S△T ) ∈ T

for a pair S, T ⊆ [n]. We call this relation the σ-revlex order.

In the lemma below we prove that the σ-revlex order defines a linear
extension of Bn. We denote this linear extension by Lσ. By σ we denote the
reverse of a permutation σ. In Theorem 9 we prove that the pairs Lσ, Lσ are
exactly the diametral pairs of linear extensions of Bn. Figure 2 shows the
drawing of B4 resulting from Lid, Lid.
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Figure 2: The drawing of B4 based on the diametral pair Lid, Lid.
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Lemma 2. The relation of being in σ-revlex order defines a linear exten-

sion Lσ of the Boolean lattice.

Proof. We need to show that the σ-revlex relation defines a linear order on
the subsets of [n] which respects the inclusion order. The last part is easy to
see: For S, T ⊆ [n] with S ⊆ T we have S△T ⊆ T , thus S <σ T .

It is also clear that the relation is antisymmetric and total. So we
only need to prove transitivity. Assume for contradiction that there are
three sets A,B,C ⊆ [n] with A <σ B and B <σ C and C <σ A. Then
maxσ(A△B) = b ∈ B, maxσ(B△C) = c ∈ C and maxσ(C△A) = a ∈ A.

Note that from b ∈ B and c /∈ B we have that b 6= c. Because the situation
of the three elements a, b, c is symmetric, it follows that they are pairwise
different. Assume that a = minσ{a, b, c}. Then by definition of a we know
that every element in C which is σ-larger than a is also in A. Hence c ∈ A.
Since c /∈ B, it follows that c ∈ A△B, and thus maxσ(A△B) = b >σ c. Now
by definition of c, every element in B which is σ-larger than c is also in C.
Thus b ∈ C. But we also know that b /∈ A, and hence b ∈ C△A. But this is
a contradiction since b >σ a = maxσ(C△A).

Definition 3. For D ⊆ [n] and I ⊆ [n] \ D we define CD,I as the set of all

ordered pairs (S, T ) of subsets of [n] with S△T = D and S ∩ T = I.

Clearly, the sets CD,I partition the ordered pairs of subsets of [n] into
equivalence classes. Note that these equivalence classes are in bijection with
the intervals of Bn: The class CD,I corresponds to the interval [I,D∪ I], and
it contains all pairs (S, T ) with S ∩ T = I and S ∪ T = D ∪ I.

Another important observation is that we can associate with a subset
X ⊆ D the pair (X ∪ I,Xc ∪ I) ∈ CD,I , where Xc = D \ X. On the other
hand, for each pair (S, T ) ∈ CD,I we have S \ I =: X ⊆ D and T = Xc ∪ I .
We obtain the following useful lemma:

Lemma 4. The pairs of a class CD,I are in bijection with the subsets of D.

Each class contains 2d ordered pairs, where |D| = d.

Recall that the distance between two linear extensions of a poset P is
the number of pairs of elements of P appearing in different orders in the two
linear extensions. We call such a pair a reversal. Note that reversals are
unordered pairs, whereas the equivalence classes CD,I contain ordered pairs.
Therefore we will often have to switch between ordered and unordered pairs
in our proofs.

The following proposition, settling the lower bound of Conjecture 1, was
proved inductively in [5]. Here, we give a more combinatorial proof.
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Proposition 5. Given a permutation σ of [n], the distance between Lσ and

Lσ as linear extensions of Bn is

22n−2 − (n + 1) · 2n−2.

Proof. We need to count the number of unordered pairs of subsets of [n]
appearing in different orders in Lσ and Lσ. We claim that an equivalence
class CD,I contributes exactly 2d−2 reversals between Lσ and Lσ if d ≥ 2, and
none if d < 2.

Observe that since σ is the reverse permutation of σ, the σ-minimum of
a set equals its σ-maximum, and vice versa. Thus we have

S <σ T ⇐⇒ min
σ

(S△T ) ∈ T.

Let CD,I be an equvialence class as in Definition 3. If D is empty, then CD,I

contains only the pair (I, I), and thus cannot contribute any reversal. If
D consists of only one element, say, x, then CD,I consists of the two pairs
(I, x∪I) and (x∪I, I). Since I ⊂ x∪I, the class CD,I again cannot contribute
any reversal.

So let us assume that D contains at least two elements, and hence
maxσ D 6= minσ D. Then a pair in CD,I corresponding to some X ⊆ D is a
reversal between Lσ and Lσ if and only if exactly one of the elements minσ D
and maxσ D is contained in X. Since we want to count (S, T ) and (T, S)
only once, let us count the sets X ⊆ D with minσ D ∈ X and maxσ D /∈ X.
There are 2d−2 such sets, and thus CD,I contributes 2d−2 reversals between
Lσ and Lσ as claimed.

How many reversals does this yield in total? Each set D ⊆ [n] forms a
class together with each set I ⊆ [n] \ D. Since there are 2n−d choices for I,
each D with d ≥ 2 accounts for 2n−d · 2d−2 = 2n−2 reversals. There are
2n − (n + 1) possibilities to choose a set D ⊆ [n] with d ≥ 2. Thus the
distance between Lσ and Lσ is

2n−2 · (2n − (n + 1)) = 22n−2 − (n + 1) · 2n−2.

For proving the other half of the conjecture, we will need Kleitman’s
Lemma (see [7] or [1]):

Lemma 6 (Kleitman’s Lemma). Let F1 and F2 be families of subsets of [d]
which are closed downwards, that is, for every set in Fi all its subsets are

also in Fi. Then the following formula holds:

|F1| · |F2| ≤ 2d|F1 ∩ F2|.
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Theorem 7. led(Bn) = 22n−2 − (n + 1) · 2n−2.

Proof. Proposition 5 yields led(Bn) ≥ 22n−2−(n+1) ·2n−2, since the distance
between any pair of linear extensions is a lower bound for the linear extension
diameter. To prove that this formula is also an upper bound, we will again
use the equivalence classes from Definition 3. Given two linear extensions
L1, L2 of Bn, we will show that each CD,I can contribute at most 2d−2 reversals
between L1 and L2.

Let us fix a class CD,I . It will turn out that the set I actually plays no
role for our argument, therefore we assume that I = ∅. The only thing this
assumption changes is that for a set X ⊆ D, now (X,Xc) itself is a pair of
CD,I . The reader is invited to check that the following argument goes through
unchanged if each X is replaced by X ∪ I and each Xc by Xc ∪ I.

We say that X ⊆ D is down in a linear extension L if X < Xc in L.
Let F1 be the family of subsets of D which are down in L1, and F2 the
family of subsets of D which are down in L2. A pair (X,Xc) ∈ CD,I yields
a reversal between L1 and L2 exactly if X is down in one Li, but not in the
other. Thus our aim is to find an upper bound on |F1△F2|.

The following key observation captures the essence of transitive forcing
between the different pairs: If X < Xc in Li, and Y ⊆ D is a subset of X,
then Xc ⊆ Y c, and hence by transitivity Y < X < Xc < Y c in Li. Thus
from X ∈ Fi it follows Y ∈ Fi for every subset Y of X. This means that F1

and F2 each form a family of subsets of [d] which is closed downwards. Hence
we can apply Kleitman’s Lemma, which yields |F1| · |F2| ≤ 2d|F1 ∩ F2|.

We observe that for every L and every set X ⊆ D, exactly one of X
and Xc is down in L. Hence we have |F1| = |F2| = 2d−1. It follows that
|F1 ∩ F2| ≥ 2d−2.

Also, if X is down in both L1 and L2, then Xc is down in neither. That
is, X ∈ F1 ∩ F2 ⇐⇒ Xc ∈ (F2 ∪ F1)

c, and thus |F1 ∩ F2| = |(F2 ∪ F1)
c|.

From this we obtain

|F1△F2| = 2n − |F1 ∩ F2| − |(F2 ∪ F1)
c| ≤ 2d − 2d−2 − 2d−2 = 2d−1.

In F1△F2, every reversal is counted twice – once with the set that is
down in L1 and once with the set that is down in L2. Therefore the number
of (unordered) reversals that CD,I can contribute is at most 2d−2. Now we
can use the same calculation as in the proof of Proposition 5 to show that
the total number of reversals is at most 22n−2 − (n + 1) · 2n−2.

In the above two proofs we have shown the following fact, which we state
explicitely for later reference:
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Fact 8. If L,L is a diametral pair of linear extensions of Bn, then each

equivalence class CD,I with d ≥ 2 contributes exactly 2d−2 reversals between L
and L.

We have shown that for every permutation σ of [n], the linear extensions
Lσ and Lσ form a diametral pair of the Boolean lattice. Thus we know n!/2
diametral pairs. The following theorem proves that these are in fact the only
ones.

Theorem 9. The diametral pairs of the Boolean lattice are unique up to

isomorphism. More precisely, if L,L is a diametral pair of linear extensions

of Bn and σ is the order of the atoms in L, then L = Lσ and L = Lσ.

Proof. We will show by induction on k that each set of cardinality k is in
σ-revlex order in L and in σ-revlex order in L with all sets of cardinality
less or equal to k. We will use the fact that every equivalence class CD,I

with d ≥ 2 contributes exactly 2d−2 reversals between the diametral linear
extensions L and L.

Recall that σ denotes the order of the atoms in L. For every pair i <σ j
of atoms, consider the class CD,I defined by D = {i, j} and I = ∅. This class
needs to contribute 22−2 = 1 reversal. Thus, i and j must appear in reversed
order in L. Hence the permutation defining the order of the atoms in L is σ.

Let Lk be the restriction of L to the sets of cardinality at most k. Our
induction hypothesis is that all pairs of sets in Lk−1 are in σ-revlex order,

that is, Lk−1 = Lk−1
σ , and that all pairs of sets in L

k−1
are in σ-revlex order,

that is, L
k−1

= Lk−1
σ . For the induction step, we will first show that each

set of size k is in the desired order in Lk and L
k

with all sets of strictly
smaller cardinality, then that it is in the desired order with all sets of equal
cardinality.

So let A be a set of size k in Bn and let A′ be the subset of A which is
largest in Lk−1. Let B be the immediate successor of A′ in Lk−1.

Claim. A needs to sit in the slot between A′ and B in Lk.

Note that A′ = A \ a for an atom a ∈ [n]. By induction, all subsets
of A are in σ-revlex order in L. So we know that if A′′ is a second subset of
cardinality k − 1, then the element of A that is missing in A′ is smaller than
the element of A that is missing in A′′. Therefore a = minσ A.

Now observe that since A′ < B in Lk−1 and |A′| = k − 1 we have A′||B.
Again by induction we know that maxσ(A′△B) = b ∈ B. If there were
b′ ∈ B \A′ with b′ 6= b, then A′ < B \b′ < B in Lk−1, which is a contradiction
to the choice of B. Therefore B \ A′ = {b}.
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Because of A′||B, there is an element a′ ∈ A′ \ B. We have b >σ a′ and
therefore also b >σ a. Hence, b = maxσ(A△B) and a = minσ(A△B).

Consider the class CD,I defined by D = A△B and I = A ∩ B. Note
that |D ∪ I| = |A ∪ B| = |A ∪ {b}| = k + 1. Choose a set X ⊆ D \ {a, b}.
Then |X ∪ I| ≤ k − 1, thus we can apply the induction hypothesis to get
X ∪ I < b ∪ I in L, and with b ∈ Xc it follows X ∪ I < Xc ∪ I in L.
Analogously we have X ∪ I < a ∪ I < Xc ∪ I in L. Thus the pair (X,Xc)
does not yield a reversal between L and L, and neither does the pair (Xc, X).

There are 2d−2 choices for X, hence we have found 2d−1 ordered pairs
in CD,I which do not yield reversals between L and L. By Lemma 8, the
class CD,I contributes exactly 2d−2 reversals. But the remaining 2d−1 ordered
pairs in CD,I can yield at most 2d−2 reversals, thus, they all have to be reversed
between L and L. It follows that all subsets Y of D containing exactly one
of the two atoms a and b have to be down in exactly one of the two linear
extensions.

In particular, we can choose Y = A \ I to see that {A,B} must be a
reversal. In L, we know the order of A and B: Set A′′ = I ∪ a ⊆ A, then
minσ(B△A′′) = a ∈ A′′. But this means maxσ(B△A′′) = a ∈ A′′. So we
have B < A′′ in L by induction and thus B < A in L by transitivity. Hence
it follows that A < B in L. This proves our claim that A has to sit in the
slot between A′ and B in L. △

Because maxσ(A△B) = b ∈ B, by showing A < B in Lk we have shown
that A is in σ-revlex order with B in Lk. Since the slot after A′ is the lowest
possible position for A in Lk, it follows by transitivity that A is in σ-revlex
order with all sets of cardinality < k in Lk. By reversing the roles of L and
L we see that A also has to be in σ-revlex order in L with all sets of smaller
cardinality. Now we will show that all pairs of sets with equal cardinality k
need to be in σ-revlex order in L.

Let us consider two sets Ai, Aj ∈ Bn with cardinality k. If they are in-
serted into different slots in Lk, then their order in Lk equals their order in Lσ,
thus they are in σ-revlex order. If they go into the same slot, this means that
they have the same largest (k−1)-subset A′ in L. Thus |Ai△Aj| = 2. We also
know that ai := Ai\A′ = minσ Ai and aj := Aj\A′ = minσ Aj. Assume with-
out restriction that ai <σ aj . Then for the pair of sets {Aj, {ai}} we know
ai = minσ(Aj△{ai}) = maxσ(Aj△{ai}). Thus by induction, Aj < ai < Ai

in L, that is, Ai and Aj belong to different slots in L. Now since the class CD,I

containing (Ai, Aj) needs to contribute 22−2 = 1 reversal between L and L,
and (Ai, Aj) is the only incomparable pair in this class (except for the reversed
pair), we know that we must have Ai < Aj in Lk. Since maxσ(Ai△Aj) = aj,
this means that Ai and Aj are in σ-revlex order in Lk.
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Again we can apply the same argument with the roles of L and L reversed

to show that all sets of cardinality k are in σ-revlex order in L, thus L
k

= Lk
σ.

By induction we conclude that L = Lσ and L = Lσ.

Another conjecture in [5] suggested a connection between diametral pairs
and reversed critical pairs. A critical pair of a poset P is an ordered pair (x, y)
of elements of P such that all elements smaller than x are also smaller than y
in P , and all elements larger than y are also larger than x in P . Critical pairs
appear as an important ingredient in the dimension theory of posets, see for
example [14]. A critical pair (x, y) is reversed in a linear extension L of P if
x > y in L.

It was conjectured in [5] that in every diametral pair of linear extensions
of P , at least one of the two linear extensions reverses a critical pair of
elements of P . In [2] it was shown that the conjecture is false in general,
but that almost all posets have the stronger property of being diametrally

reversing, which means that every linear extension contained in a diametral
pair reverses a critical pair. Still for Boolean lattices it remained open even
whether they have the weaker property.

With the help of Theorem 9, we can now settle this question:

Corollary 10. Boolean lattices are diametrally reversing.

Proof. Let L be a linear extension of Bn that is contained in a diametral pair.
Then by Theorem 9 we know that L = Lσ for some permutation σ of [n].
It can be checked that the n atom-coatom pairs ({i}, [n] \ i) for i ∈ [n] are
critical pairs of Bn (in fact, these are the only ones). Now let i = maxσ[n].
Then maxσ({i}△[n] \ i) = i. Thus [n] \ i < {i} in Lσ, which means that Lσ

reverses this critical pair. Hence every linear extension of Bn contained in a
diametral pair reverses a critical pair of Bn.

3 Downset Lattices of 2-Dimensional Posets

The Boolean lattice Bn can be viewed as the distributive lattice of downsets
of the n-element antichain. Now let P be an arbitrary poset. Denote by DP

the downset lattice of P , that is, the poset on all downsets of P , ordered
by inclusion. In Section 3.1 we give an upper bound for the linear extension
diameter of DP and show that it is tight if P is 2-dimensional. We also char-
acterize the diametral pairs of linear extensions of DP for 2-dimensional P .
For the proofs, we make use of the main ideas from the last section. In
Section 3.2 we show how to compute the linear extension diameter of DP in
time polynomial in |P|.
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We can use our results to obtain optimal drawings of DP as described in
the introduction, see Figure 3 for an example.
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Figure 3: A drawing of a downset lattice based on a diametral pair.

In this section we make fundamental use of the canonical bijection be-
tween downsets and antichains of a poset. We frequently switch back and
forth between the two viewpoints, concentrating on the one or the other in
our proofs. We write A↓ to refer to the downset generated by an antichain A.
We write Max(A) to refer to the antichain of maxima of a downset A.

3.1 Characterizing Diametral Pairs

This subsection is organized as follows: We first prove an upper bound for the
linear extension diameter of arbitrary downset lattices, using a generalization
of the equivalence classes from Definition 3. Then we show that for downset
lattices of 2-dimensional posets, a generalization of the revlex orders attains
this bound. Finally we prove that these are the only pairs of linear extensions
attaining the bound.

Definition 11. Let P be a poset, D ⊂ P and I ⊂ P \ D. We define CD,I

as the set of all ordered pairs (A,B) of antichains of P with D = A△B
and I = A ∩ B.

It is easy to see that the sets CD,I partition the ordered pairs of antichains
of P into equivalence classes. Note that for a class CD,I , the sets D and I
are disjoint. Furthermore, there is no relation in P between any element of I
and any element of D.
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Lemma 12. Let CD,I be an equivalence class as defined above. Let P [D]
be the subposet of P induced by the elements of D, and let K be the set of

connected components of P [D]. Then the pairs in CD,I are in bijection with

the subsets of K.

Proof. For a given equivalence class CD,I , let (A,B) be a pair in CD,I , thus
we have D = A△B. First observe that since A and B are antichains, P [D]
is a poset of height at most 2 (see Figure 3.1). Thus all elements of D belong
to the antichain Max(D) of maxima of P [D] or to the antichain Min(D) of
minima of P [D].

Consequently, every connected component κ of P [D] is either a single
element or has height 2. If κ is a single element, it belongs either to A or
to B. If κ has height 2, there are again two possibilities: Either the maxima
of κ all belong to A and its minima all belong to B, or the maxima of κ all
belong to B, and its minima all belong to A. Note that in the second case
the minima also belong to B↓, and in the first case also to A↓.

κ1 κ2 κ3 ∈ A

∈ A

∈ A ∈ B

∈ B

Figure 4: An example for P [D] with three components. The assignment of
minima and maxima to A and B specifies one of the eight pairs in the class.

We can get a different pair (A′, B′) ∈ CD,I by switching the roles of A
and B in one component of P [D]. We can do this switch independently for
each component, but we have to do it for the whole component to ensure
that the elements belonging to A and respectively B still form an antichain.

Let K ⊆ K be a subset of the components of P [D]. With K we associate
a subset XK of D by setting

XK =
⋃

κ∈K

Max(κ) ∪
⋃

κ/∈K, |κ|>1

Min(κ).

Let Xc
K = D \ XK . Now define a map from the powerset of K to CD,I via

K 7→ (AK , BK) = (XK ∪ I,Xc
K ∪ I).

We claim that this defines a bijection. Recall that D and I are disjoint and
that there are no relations between them. It follows that

AK△BK = (XK ∪ I)△(Xc
K ∪ I) = XK ∪ Xc

K = D,
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and
AK ∩ BK = (XK ∪ I) ∩ (Xc

K ∪ I) = I.

Thus K is indeed mapped to a pair in CD,I .
If K and K ′ are two different subsets of K, then XK and XK′ differ on at

least one component of P [D], and hence (AK , BK) 6= (AK′ , BK′). Therefore
our map is injective. Also, given a pair (A,B) ∈ CD,I it is easy to construct
K ⊆ K with (A,B) = (AK , BK). Thus our map is a bijection as claimed.

Note that the above lemma implies that there are exactly 2d pairs in
the class CD,I , where d = |K| denotes the number of connected components
of P [D].

For the following, let us keep in mind that CD,I contains ordered pairs,
whereas reversals, constituting the distance between two linear extensions,
are unordered pairs.

Theorem 13. Let DP be the downset lattice of a poset P. The linear exten-

sion diameter of DP is bounded by a quarter of the number of pairs (A,B) of

antichains of P such that P [A△B] has at least two connected components.

Proof. Let L1, L2 be an arbitrary pair of linear extensions of DP and CD,I

an equivalence class as in Definition 11. First note that if D is empty, then
the class CD,I only consists of a single pair, namely, (I, I). This class cannot
contribute any reversal. Now let D be non-empty, and assume that P [D] is
connected. Then with Lemma 12 we know that CD,I consists of the two pairs
(A,B) and (B,A), where A = Max(D) ∪ I and B = (D \ Max(D)) ∪ I. But
then we have B↓ ⊂ A↓, that is, the two downsets form a comparable pair
in DP . Hence CD,I cannot contribute any reversals if P [D] is connected.

Now let us assume that P [D] has at least two components. We claim
that at most half of the pairs contained in CD,I can be reversed between L1

and L2. This means that the number of (unordered) reversals that each class
can contribute is at most a quarter of the number of pairs that it contains.

Recall the notions from Lemma 12. For a pair (A,B) ∈ CD,I , let us call A↓

down in Li if A↓ < B↓ in Li, for i = 1, 2. The pairs in CD,I are in bijection
with the subsets of K. Define the family Fi as the family of subsets K of K
such that A↓

K is down in Li.
A pair {A↓, B↓} is a reversal between L1 and L2 exactly if A↓ is down

in one of the two linear extensions, but not in both. Put differently, a pair
(AK , BK) yields a reversal exactly if K is contained in one of the Fi, but not
in both. Thus we are interested in bounding |F1△F2|.

Let K ∈ Fi, and K ′ ⊂ K. We claim that K ′ ∈ Fi. Indeed, by definition
of XK we have (XK′ ∪ I)↓ ⊂ (XK ∪ I)↓, that is, A↓

K′ ⊂ A↓
K . Analogously it

holds (Xc
K ∪ I)↓ ⊂ (Xc

K′ ∪ I)↓ and hence B↓
K ⊂ B↓

K′ . Thus from A↓
K < B↓

K
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in Li it follows that A↓
K′ < A↓

K < B↓
K < B↓

K′ in Li. Therefore the families F1

and F2 are closed downwards, and we can apply Kleitman’s Lemma as in the
proof of Theorem 7. This yields |F1 ∩ F2| ≥ 2−d · |F1| · |F2|, where d = |K|.

Observe that if (A,B) ∈ CD,I is associated with the set K ⊆ K, then
(B,A) is associated with the set Kc = K \ K. Now in each Li, either
A↓ is down or B↓ is down. Thus K ∈ Fi exactly if Kc /∈ Fi. Hence
|F1| = |F2| = 2d−1. It follows that |F1 ∩ F2| ≥ 2d−2. Similarly, if A↓ is down
in both Li, then B↓ is down in neither, and vice versa. This means that
K ∈ F1 ∩F2 exactly if Kc ∈ (F1 ∪ F2)

c. Therefore |F1 ∩ F2| = |(F1 ∪ F2)
c|.

We conclude that

|F1△F2| = 2d − |F1 ∩ F2| − |(F1 ∪ F2)
c| ≤ 2d − 2d−2 − 2d−2 = 2d−1.

We have thus shown that each class CD,I can contribute at most 2d−2

reversals between two linear extensions of DP as claimed.

Next we are going to prove that the bound of the above theorem is tight
in the case of a 2-dimensional poset P . To do so, we define a particular
type of linear extension of DP . Let σ be a linear extension of P . For a set
S ⊆ P , let maxσ S be the element of S which is largest in σ. In analogy to
Definition 1, we have:

Definition 14. We define a relation <σ on the pairs {A↓, B↓} of downsets

of P as follows:

A↓ <σ B↓ ⇐⇒ max
σ

(A△B) ∈ B.

We call this relation the σ-revlex order.

Lemma 15. Let P be a poset and σ a linear extension of P. The relation

of being in σ-revlex order defines a linear extension Lσ of DP .

Proof. Since maxσ(A↓△B↓) = maxσ(A△B), we can equivalently define the
relation <σ directly via the downsets. Thus this relation is just a restriction
of the σ-revlex order on all subsets of P (see Definition 1) to the downsets
of P . In Lemma 2, we proved that the σ-revlex order on all subsets is a
linear order and that it extends the inclusion relation. This carries over to
the restriction to the downsets of P .

Note that for the special case P = Bn, the above lemma was already
shown in [6].

Now let σ be a linear extension of P which is contained in a diametral pair
of P . Since P is 2-dimensional, σ has a unique partner σ with which it forms a
realizer, i.e., a diametral pair. Thus all incomparable pairs of P are reversals
between σ and σ. We will frequently use the following characterization, which
is implicite already in [4], cf. also [9].
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Lemma 16. Let P be a poset of dimension 2. A linear extensions π of P is

contained in a realizer of cardinality 2 exactly if it is non-separating, that is,

for u, v ∈ P with u < v in P, there is no element x ∈ P with x ||u, v in P
and u < x < w in π.

In particular, σ and σ are non-separating. If a linear extension is not
non-separating, we call it separating.

Theorem 17. Let P be a 2-dimensional poset, and let σ, σ be a diametral

pair of linear extensions of P. Then Lσ, Lσ is a diametral pair of linear

extensions of DP .

Proof. We will show that for each class CD,I , the pair Lσ, Lσ realizes the
maximum possible number of reversals. Fix an arbitrary class CD,I . We have
seen that CD,I cannot contribute any reversals if P [D] is empty or consists of
only one component. Now let K be the set of connected components of P [D]
as before, and assume that |K| = d ≥ 2.

A pair (A,B) ∈ CD,I yields a reversal between Lσ and Lσ exactly if one of
the two elements maxσ(A△B) and maxσ(A△B) is contained in A, and the
other in B. Since (A,B) and (B,A) contribute only one reversal, let us count
the number of pairs (A,B) with maxσ(A△B) ∈ A and maxσ(A△B) ∈ B.

Note that the σ-maximum of A△B belongs to the antichain Max(D),
which is completely reversed between σ and σ. It follows that we have
maxσ Max(D) = minσ Max(D) and maxσ Max(D) = minσ Max(D). We
claim that maxσ Max(D) and minσ Max(D) lie in different components
of P [D].

Suppose for contradiction that maxσ Max(D) and minσ Max(D) both
lie in the component κ of P [D]. Since we assumed that P [D] has at
least two components, we can choose an element x ∈ Max(D) which is
not contained in κ and thus has no relation to any element of κ. Then
minσ Max(D) < x < maxσ Max(D) in σ. Denote by κ1 the set of elements
of κ which are σ-smaller than x, and by κ2 the set of elements of κ which
are σ-larger than x. Both sets are non-empty since minσ Max(D) ∈ κ1 and
maxσ Max(D) ∈ κ2. Since κ is a connected component of P [D], there are
elements u ∈ κ1 and v ∈ κ2 with u < v in P . But then u < x < v in σ with
x||u, v in P , and this is a contradiction because σ is non-separating.

We have shown that maxσ(A△B) and maxσ(A△B) lie in different com-
ponents of P [D], say, maxσ(A△B) ∈ κ and maxσ(A△B) ∈ λ with κ, λ ∈ K.
Now let K ⊆ K be a set of components with κ ∈ K and λ /∈ K. Consider
the pair (AK , BK) ∈ CD,I . By definition, we have maxσ(A△B) ∈ AK and
maxσ(A△B) ∈ BK . Thus the pair (AK , BK) contributes a reversal between
Lσ and Lσ. There are 2d−2 possibilities of choosing K. Thus every class CD,I
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with d ≥ 2 contributes at least 2d−2 reversals between Lσ and Lσ. We have
seen in Theorem 13 that this is maximal. Therefore Lσ and Lσ are a diame-
tral pair of linear extensions of DP .

We have now proved the fact that for a 2-dimensional poset P , every
class CD,I for which P [D] has at least two components contributes exactly
2d−2 reversals between a diametral pair of linear extensions of DP . Since
there are 2d pairs in CD,I , we have the following corollary:

Corollary 18. Let DP be the downset lattice of a 2-dimensional poset P. The

linear extension diameter of DP equals a quarter of the number of pairs (A,B)
of antichains of P such that P [A△B] has at least two connected components.

Note that the proof of Conjecture 1, thus, the formula for the linear
extension diameter of the Boolean lattice, follows from this corollary. A
special case of the proof of Theorem 22 yields led(Bn) = 22n−2− (n+1)2n−2.

In the next theorem we characterize the diametral pairs of linear exten-
sions of downset lattices of 2-dimensional posets.

Theorem 19. Let P be a 2-dimensional poset, and let L,L be a diametral

pair of linear extensions of DP . Let σ be the linear extension of P defined

by the order of the downsets x↓ for x ∈ P in L. Then σ is contained in

a diametral pair σ, σ of linear extensions of P, and we have L = Lσ and

L = Lσ.

Proof. We again use the equivalence classes from Definition 11. For each
incomparable pair x, y ∈ P, consider the equivalence class CD,I defined by
D = {x, y} and I = ∅. Then P [D] consists of two singletons. Since L,L
is a diametral pair, this class must contribute 22−2 = 1 reversal, and thus
x↓ and y↓ must appear in opposite order in L and L. Recall that σ is the
linear extension of P defined by the order of the downsets x↓ in L. Let us
denote the linear extension defined analogously for L by σ. We have seen
that every incomparable pair of elements of P must be a reversal between σ
and σ. Hence, σ, σ is a diametral pair of linear extensions of P .

In the following, we use induction on the cardinality of the downsets of P
to show that L = Lσ and L = Lσ, in analogy to the proof of Theorem 9. More
precisely, we show that each downset of cardinality k is in σ-revlex order in L
and in σ-revlex order in L with all downsets of cardinality ≤ k, by induction
on k. We use the fact that every equivalence class CD,I for which P [D] is
disconnected contributes exactly 2d−2 reversals between L and L. Note that
we have settled the base case already: All downsets of cardinality 1 are of the
form x↓ for some minimal element x ∈ P, and we have shown in the previous
paragraph that these behave as expected.
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Let Lk be the restriction of L to the sets of cardinality at most k. Our

induction hypothesis is that Lk−1 = Lk−1
σ and L

k−1
= Lk−1

σ . We structure
the induction step as follows: We first show that each set of size k is in the

desired order in Lk and L
k

with all sets of smaller size. This will be the main
part of the proof. Then we show that all pairs of sets of equal size k are in

the desired order in Lk and L
k
.

So let A↓ be a downset of cardinality k of P . Let Ã↓ be the subset of A↓

which is largest in Lk−1, and let B↓ be its immediate successor in Lk−1.

Claim. A↓ needs to sit in the slot between Ã↓ and B↓ in Lk.

Proving this claim requires some technical details. Here is an outline
of what we are going to do: We first locate the elements maxσ(A↓△B↓) =
maxσ(A△B) and maxσ(A↓△B↓) = maxσ(A△B). Using these we see that
{A↓, B↓} needs to be a reversal between L and L. From the order of A↓

and B↓ in L we can finally deduce that A↓ < B↓ in Lk.
We have Ã↓ = A↓\a for some a ∈ A. All subsets of A↓ are in σ-revlex order

in L by induction. So we know that if Â↓ is a second subset of cardinality k−1
of A↓, then the element of A↓ that is missing in Ã↓ is σ-smaller than the
element of A↓ that is missing in Â↓. Thus we can conclude that a = minσ A.
Since the antichain A is completely reversed between σ and σ, it follows that
a = maxσ A.

Now observe that since Ã↓ < B↓ in Lk−1 and |Ã↓| = k−1 we have Ã↓ ||B↓.
By induction we know that maxσ(Ã↓△B↓) ∈ B↓. Let b be the σ-smallest
element of B↓ \ Ã↓ which is σ-larger than all elements of Ã↓ \ B↓. Then
(Ã↓∩B↓)∪b is a downset of P . Observe that by induction Ã↓ < (Ã↓∩B↓)∪b
in Lk−1. Since (Ã↓∩B↓)∪b ⊆ B↓ we must have (Ã↓∩B↓)∪b = B↓ by the choice
of B↓. Thus B↓ \ Ã↓ = {b} and maxσ(Ã↓△B↓) = b. We will use the next
three paragraphs to show that maxσ(A↓△B↓) = b and maxσ(A↓△B↓) = a.

Note that B↓ 6⊆ A↓ by the choice of Ã↓, and thus B↓ \ A↓ = {b}. Hence
b 6≤ a in P . On the other hand, a 6< b in P because otherwise a ∈ B↓ \ Ã↓

and thus a = b, a contradiction. It follows that a||b in P .
Next let us show that a <σ b. Because of |Ã↓| = k − 1, we know that

Ã↓ \ B↓ 6= ∅. Let a′ ∈ Ã \ B. If a||a′ in P , then a′ ∈ A \ B and with
a = minσ A it follows that a <σ a′. Together with a′ <σ b we get a <σ b. If
a and a′ are comparable, then a′ < a in P . Now assume for contradiction
that b <σ a. Then we have a′ <σ b <σ a, with b || a′, a and a′ < a in P . This
means that σ is a separating linear extension. But since σ is contained in
the realizer σ, σ of P , this is a contradiction.

We have shown that a <σ b. We knew already that maxσ(Ã↓△B↓) = b,
and because a is the only element in A↓ \ Ã↓, we can conclude that
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maxσ(A↓△B↓) = b. Also, since a||b in P we now know that a >σ b. Be-
cause a = maxσ A and B↓ \ A↓ = {b}, we have maxσ(A↓△B↓) = a.

Let us now consider the class CD,I defined by D = A△B and I = A ∩B.
The elements a and b lie in different components of P [D], because B\A = {b}
and a||b in P . So we may assume that a ∈ α and b ∈ β, where α and β are
different elements from the set K of components of P [D]. As before, set
d = |K|.

Observe that |A↓∪B↓| = |A↓∪{b}| = k +1. Now choose a subset K ⊂ K
with α, β /∈ K. For the corresponding downset (XK ∪ I)↓ = A↓

K we have
A↓

K ⊆ A↓∪B↓. Since a, b /∈ A↓
K , we can apply the induction hypothesis to A↓

K .
We can also apply it to the set (b∪ I)↓. It holds that maxσ(AK△(b∪ I)) = b,
so we have A↓

K < (b ∪ I)↓ in L by induction. Let Xc
K ∪ I = BK , then we

have (b ∪ I)↓ ⊆ B↓
K , and thus A↓

K < B↓
K in L by transitivity. Analogously,

maxσ(AK△(a ∪ I) = a holds, so we have A↓
K < (a ∪ I)↓ in L by induction

and thus A↓
K < (a ∪ I)↓ < (Xc

K ∪ I)↓ = B↓
K in L.

It follows that A↓
K is down in L and L for every K ⊂ K with α, β /∈ K.

Thus (A↓
K , B↓

K) cannot yield a reversal between L and L, and neither can
(B↓

K , A↓
K). There are 2d−2 possibilities to choose K. Thus we have exhibited

2 · 2d−2 pairs in CD,I which do not contribute a reversal between L and L.
From the fact we remarked after Theorem 17 it follows that all other pairs
in CD,I have to contribute reversals.

Consequently, all subsets K of K containing exactly one of the two com-
ponents α and β need to contribute a reversal, or equivalently, all A↓

K which
contain exactly one of the two elements a, b need to be down in exactly one of
the two linear extensions. In particular, our set A↓ needs to be down relative
to CD,I in exactly one of the two linear extensions.

It turns out that A↓ cannot be down in L: For (I ∪ a)↓ ⊂ A↓, we have
maxσ(B△(I ∪ a)) = a, so we have B↓ < (I ∪ a)↓ in L by induction and thus
B↓ < A↓ in L by transitivity. Hence it follows that A↓ < B↓ in L. This
proves our claim that A↓ has to sit in the slot between Ã↓ and B↓ in Lk. △

Because maxσ(A△B) = b ∈ B, and A↓ < B↓ in L as shown in the
claim, we now know that A↓ is in σ-revlex order with B↓ in Lk. Since the
slot after Ã↓ is the lowest possible position for A↓ in Lk, it follows from the
transitivity of the σ-revlex order that A↓ is in σ-revlex order in Lk with all
sets of smaller cardinality. By reversing the roles of L and L, we obtain

that A↓ is in σ-revlex order in L
k

with all sets of smaller cardinality. Next
we show that all pairs of sets with equal cardinality k are in σ-revlex order
in Lk.

Let A↓
i , A↓

j ∈ DP be two downsets of the same cardinality k. If they are
inserted into different slots in L, they are in σ-revlex order by transitivity. If
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they belong into the same slot, this means that they have the same largest
(k − 1)-subset Ã↓ in L. So their symmetric difference contains only two el-
ements, say, A↓

i△A↓
j = {ai, aj}. We have ai = A↓

i \ Ã↓ = minσ Ai = maxσ Ai

and aj = A↓
j \ Ã↓ = minσ Aj = maxσ Aj . Note that ai and aj have to be in-

comparable in P , and assume that ai <σ aj , thus aj <σ ai. Then for the pair

{A↓
j , a

↓
i } we know maxσ(A↓

j△a↓
i ) = ai. Hence by induction, A↓

j < a↓
i < A↓

i

in L. But since the equivalence class containing (A↓
i , A

↓
j ) needs to contribute

22−2 = 1 reversal between L and L, and this can only be the pair {A↓
i , A

↓
j},

we know that we must have A↓
i < A↓

j in L. Because of maxσ Ai△Aj = aj,

this means that A↓
i and A↓

j are in revlex order in L.

We can apply the same argument (only with the roles of L and L reversed)
to show that all pairs of downsets of equal cardinality k are in σ-revlex order
in L. By induction we conclude that L = Lσ and L = Lσ.

3.2 Computing the Linear Extension Diameter

It is NP-complete to compute the linear extension diameter of a general
poset, see [2]. That is, the linear extension diameter of a general poset P
cannot be computed in time polynomial in |P| (unless P = NP). But with
the results of the previous section, the problem is tractable if the poset is a
downset lattice D of a 2-dimensional poset.

In fact, we can construct any diametral pair of linear extensions of D
in time polynomial in |D|. To see this, we use a well-known fact about
distributive lattices: From a downset lattice D one can obtain P with D = DP

as the poset induced by the join irreducible elements of D. Finding a minimal
realizer σ, σ of the 2-dimensional poset P amounts to finding a transitive
orientation of its incomparability graph (cf. e.g. [9]). This can be done in
time linear in |P| [8]. Then σ, σ is a diametral pair of linear extensions of P .
With the definition of the σ-revlex order we can compute Lσ and Lσ, and
this is a diametral pair of linear extensions of D by Theorem 17. We know
by Theorem 19 that all diametral pairs arise this way. The linear extension
diameter of D can now be computed by just checking for all pairs of elements
of D whether they form a reversal between Lσ and Lσ.

In this subsection we show that we can in fact do much better: For a
2-dimensional poset P , we can compute the linear extension diameter of DP

in time polynomial in |P|. Note that in general, P can have exponentially
many downsets, so |DP | is exponentially larger than |P|.

For the proofs of this subsection, we mainly consider antichains instead
of downsets, again using the canonical bijection between them. It is known
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that the antichains of a 2-dimensional poset can be counted in polynomial
time, see [13] or [9]. We give a proof in the lemma below since the methods
we use for the following theorem rely on the same ideas.

Lemma 20. Let P be a 2-dimensional poset. Denote by A(P) the set of

antichains of P and let a(P) = |A(P)|. Then a(P) can be computed in

time O(|P|2).

Proof. Let σ = x1x2 . . . xn be a non-separating linear extension of P . Denote
by A(xi) the set of antichains of P which contain xi as σ-largest element,
and let a(xi) = |A(xi)|. We will use a dynamic programming approach to
compute a(xi) for all i.

To start with, we have a(x1) = 1. Now suppose we have computed a(xj)
for all j < i. The main observation is that for any A ∈ A(xj) with j < i
and xi||xj , the set xi ∪ A is again an antichain. This holds because any
xk ∈ A with xk < xi would yield a contradiction to σ being non-separating.
Therefore we have

a(xi) = 1 +
∑

j<i, xi||xj

a(xj),

where the 1 accounts for the antichain {xi}. Consequently, we obtain the
number of all antichains of P as a(P) = 1 +

∑

i a(xi), where the 1 accounts
for the empty set.

With the above formula, the evaluation of a(xi) can be done in linear
time for each i. Thus a(P) can be computed in quadratic time.

Theorem 21. The linear extension diameter of the downset lattice DP of a

2-dimensional poset P can be computed in time O(|P|5).

Proof. From Corollary 18, we know that led(DP) equals a quarter of the
number of pairs (A,B) of antichains of P such that P [A△B] has at least
two connected components. For a pair (A,B) of antichains of P , we set
D = A△B and I = A ∩ B.

We will count four different classes of pairs of antichains. Let α be the
number of all ordered pairs of antichains of P . Let β be the number of pairs
(A,B) with D = ∅, and γ the number of pairs with |D| = 1. Finally, let
δ be the number of pairs such that |D| > 1 and P [D] is connected. Then
led(DP) = 1

4
(α − β − γ − δ).

We have α = a(P)2. The pairs we count for β are just the pairs (A,A),
so β = a(P).

For the following, let σ = x1x2 . . . xn be a non-separating linear extension
of P . We denote by [xi, xk] the set {xi, xi+1, . . . , xk}, and by (xi, xk) the set
{xi+1, . . . , xk−1}. We use analogous notions for “half-open intervals” of σ.
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To obtain γ, we count the pairs (A,A − x), where A is a non-empty
antichain in P , and x is an element of A. Thus we want to count each A
exactly |A| times. We want to refine the ideas of the proof of Lemma 20
to keep track of the sizes of the antichains. Hence we define vectors s(xi),
where sr(xi) is the number of antichains of cardinality r in A(xi).

We can recursively compute s(xi) for i = 1, 2, . . . , n as follows: The first
entry of each s(xi) is 1, counting the antichain {xi}. For the other entries
we have

sr(xi) =
∑

j<i: xj ||xi

sr−1(xj).

Then the number of pairs (A,A − x) equals
∑

r r
∑

i sr(xi). Now γ is twice
this number, since we also need to count the pairs (A − x,A).

The most difficult part is to compute δ, the number of pairs (A,B) of
antichains of P such that |D| > 1 and P [D] is connected. Let us take a look
at the structure of P [D ∪ I], see Figure 3.2.

DI left Iright

Figure 5: P [D ∪ I] for a pair of antichains counted in δ.

We know that P [I] is an antichain and P [D] consists of two antichains,
Max(D) and Min(D), which are both non-empty by definition of δ. We claim
that each element of I is either σ-smaller than all elements of D, or σ-larger
than all elements of D. Indeed, suppose there is an x ∈ I and u, v ∈ D with
u <σ x <σ v. Then since P [D] is connected, we can find u′, v′ ∈ D with
u′ < v′ in P and u′ <σ x <σ v′. But since there are no relations between x
and the elements of D, this means that σ is separating. This contradiction
proves our claim. Thus σ can be partitioned into three intervals, such that
the elements of D are all contained in the middle interval, and I is split up
into two parts: I left, living on the first interval, and Iright, living on the third
interval.

Now define δ(k, ℓ) as the number of pairs counted for δ which fulfill
maxσ Min(D) = xk and maxσ Max(D) = xℓ. In addition, we require that
xℓ = maxσ A ∪ B, which means that Iright is empty. We split up δ(k, ℓ) into
the number δ1(k, ℓ) of pairs for which P [D] has only one maximum and the
number δ2(k, ℓ) of pairs for which it has several.

To compute δ1(k, ℓ), we have to count the number of possibilities to
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choose the antichain Min(D) and the antichain I left. By definition we have
maxσ Min(D) = xk. Suppose that minσ Min(D) = xi as in Figure 3.2.

xk

xℓ

xi

DI left

Figure 6: P [D ∪ I] for a pair of antichains counted in δ1(k, ℓ).

Let us define Pi,k,ℓ as the poset induced by the elements xj ∈ (xi, xk) with
xj < xℓ and {xi, xj , xk} ∈ A(P). Then to choose Min(D), we have to choose
an antichain in Pi,k,ℓ.

Once a set D is fixed, it remains to choose I left to determine a pair of
antichains counted in δ1(k, ℓ). Let P left

i,ℓ be the poset induced by the elements
x ∈ P with x ∈ [x1, xi) and x||xℓ. We claim that the sets which can be
chosen as I left are exactly the antichains of P left

i,ℓ .

By definition, each element x ∈ I left is σ-smaller than xi. We have to
choose x so that it is incomparable to all elements in D. It is clear that
x ∈ [x1, xi) cannot be larger in P than any element in D ⊆ [xi, xℓ]. Now if
we choose x incomparable to xℓ, it cannot be smaller than any element in D,
either. Thus to choose I, we have to choose an antichain in P left

i,ℓ as claimed.
Altogether we have

δ1(k, ℓ) =
∑

xi∈[x1,xk], {xi,xk}∈A(P), xi<xℓ

a(Pi,k,ℓ) · a(P left
i,ℓ ).

It remains to compute δ2(k, ℓ), the number of pairs (A,B) counted in
δ(k, ℓ) for which P [D] has several maxima. We want to cut off the σ-largest
maximum and (possibly) some minima and recursively use values δ2(k

′, ℓ′)
and δ1(k

′, ℓ′) that we have calculated already (cf. Figure 7).

xk

xℓ

xk′

xℓ′

DI left

Figure 7: P [D ∪ I] for a pair of antichains counted in δ2(k, ℓ).

For a pair (A,B) counted in δ2(k, ℓ), the second largest maximum of P [D]
in σ is an element xℓ′ ∈ [x1, xℓ) with xℓ′||xℓ. In general, P [D] is not con-
nected after deletion of xℓ. But since P [D] was connected originally, Min(D)
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contains an element xk′ with xk′ < xℓ and xk′ < xℓ′ . Let xk′ be the σ-
smallest such element. There can be more elements in [xk′ , xk] which are
part of Min(D). With the same reasoning as for δ1(k, ℓ), these form exactly
the antichains in Pk′,k,ℓ. So we have

δ2(k, ℓ) =
∑

xℓ′∈[x1,xℓ), xℓ′ ||xℓ

∑

xk′∈[x1,xℓ′ ), xk′<xℓ′ ,xℓ

(

δ1(k
′, ℓ′) + δ2(k

′, ℓ′)
)

· a(Pk′,k,ℓ).

Recall that for the pairs counted in δ(k, ℓ), we required that Iright is empty.
So to compute δ, we have to weight every pair with the number of possible
choices for Iright. Let Pright

k,ℓ be the poset induced by the elements of P which
are in (xℓ, xn] and incomparable to xk in P . We claim that the sets eligible
for Iright are exactly the antichains of Pright

k,ℓ .

Each element x ∈ Iright has to be incomparable to all elements of D.
Since x ∈ (xℓ, xn], it cannot be smaller than any element in D. If we choose x
incomparable to xk, it cannot be larger than any element of D either: If x > y
for some element y ∈ Min(D), then y has to be σ-smaller than xk, which
makes σ separating. Thus to choose Iright we have to choose an antichain
in Pright

k,ℓ as claimed. Hence we obtain δ as follows:

δ =
∑

k,ℓ

(

δ1(k, ℓ) + δ2(k, ℓ)
)

· a(Pright
k,ℓ ).

What is the overall running time for the computation of led(DP)? From
Lemma 20 we know that the number of antichains of a poset can be computed
in quadratic time. Thus α and β can be determined in quadratic time. To
compute γ, we need to compute sr(xi) for r = 1 . . . n and i = 1 . . . n. For
each value sr(xi), our formula can be evaluated in linear time. Thus it takes
O(n3) to determine γ.

For the computation of δ we first determine in a preprocessing step
the values a(Pi,k,ℓ) for all triples i, k, ℓ. Given such a triple, we can
build Pi,k,ℓ in linear time, and then compute a(Pi,k,ℓ) in quadratic time using
Lemma 20 again. Altogether this can be done in O(n5). Similarly, we can
determine a(P left

k,ℓ ) and a(Pright
k,ℓ ) for all pairs k, ℓ in a preprocessing step tak-

ing time O(n4). Then for each pair k, ℓ, we can compute δ1(k, ℓ) and δ2(k, ℓ)
in linear time. Thus it takes O(n3) to obtain all these values. In the end, we
can put them together in quadratic time to obtain δ.

The overall running time is the maximum over all these separate steps.
We conclude that led(DP) can be computed in time O(n5).

In the previous theorem we showed how to compute led(DP) for
2-dimensional P , but we could not give an explicit formula like the one we
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have for the Boolean lattice. This is possible for the special case where P
is a disjoint union of chains. These lattices DP are also known as the factor
lattices of integers: If P = C1 ∪ . . . ∪ Cw with |Ci| = ℓi, we can associate
each chain with a prime number pi, and then DP is the lattice of all factors
of m =

∏w
i=1 pℓi

i , ordered by divisibility.

Theorem 22. If P = C1 ∪ . . . ∪ Cw with |Ci| = ℓi is a disjoint union of

chains, then the linear extension diameter of DP equals

1

4
·





(

ω
∏

i=1

(ℓi + 1)

)2

−
ω
∑

k=1

(ℓk + 1)ℓk ·
∏

i6=k

(ℓi + 1) −
ω
∏

i=1

(ℓi + 1)



 .

Proof. From Corollary 18 we know that led(DP) equals a quarter of the
number of pairs (A,B) of antichains of P such that P [A△B] has at least
two connected components. So we need to count the pairs of antichains of P
which differ on at least two of the Ci. We will count all pairs of antichains
and substract from it the number of pairs differing on zero or one chain.

To choose one antichain, we have ℓi + 1 choices in each Ci. So P con-
tains exactly

∏ω
i=1(ℓi + 1) antichains, and this is also the number of pairs of

antichains differing on zero chains. The number of all pairs of antichains is
thus (

∏ω
i=1(ℓi + 1))

2
. The number of pairs of antichains which differ on one

chain is the sum over k of all choices of two different elements in chain Ck

and one element from each other chain. This yields the desired formula.

4 Open Problems

It is NP-hard to compute the linear extension diameter of a general poset,
see [2]. For Boolean lattices and for downset lattices of 2-dimensional posets
we can now construct the diametral pairs of linear extensions in polynomial
time. Is this possible for arbitrary distributive lattices?

Question 1. Is it possible to compute the linear extension diameter of an

arbitrary distributive lattice in polynomial time, or even characterize its di-

ametral pairs of linear extensions?

Another question we are interested in asks whether there is a fixed fraction
of the incomparable elements of a poset that can always be reversed between
two linear extensions.

Question 2. Is there a constant c > 0 such that led(P)/inc(P) > c for all

posets P?
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It is also interesting to look at subposets of the Boolean lattice. Consider
for example the subposet of B5 induced by the sets of cardinality 2 and 3. It
turns out that the revlex linear extensions do not form a diametral pair of
linear extensions of this poset.

Question 3. Can we construct the diametral pairs of linear extensions of a

poset induced by two levels of Bn?
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