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Abstract

Let L be an arrangement of n lines in the Euclidean plane. The k-level of L consists of all
vertices v of the arrangement which have exactly k lines of L passing below v. The complexity
(the maximum size) of the k-level in a line arrangement has been widely studied. In 1998
Dey proved an upper bound of O(n · (k+1)1/3). Due to the correspondence between lines in
the plane and great-circles on the sphere, the asymptotic bounds carry over to arrangements
of great-circles on the sphere, where the k-level denotes the vertices at distance k to a marked
cell, the south pole.

We prove an upper bound of O((k + 1)2) on the expected complexity of the (≤ k)-level
in great-circle arrangements if the south pole is chosen uniformly at random among all cells.

We also consider arrangements of great (d − 1)-spheres on the d-sphere Sd which are
orthogonal to a set of random points on Sd. In this model, we prove that the expected
complexity of the k-level is of order Θ((k + 1)d−1).

In both scenarios, our bounds are independent of n, showing that the distribution of
arrangements under our sampling methods differs significantly from other methods studied
in the literature, where the bounds do depend on n.
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1 Introduction

Let L be an arrangement of n lines in the Euclidean plane. The vertices of L are the intersection
points of lines of L. Throughout this article we consider arrangements to be simple, i.e., no three
lines intersect in a common vertex. Moreover, we assume that no line is vertical. The k-level of L
consists of all vertices v which have exactly k lines of L below v. The (≤ k)-level of L consists
of all vertices v which have at most k lines of L below v. We denote the k-level by Vk(L) and
its size by fk(L). Moreover, by fk(n) we denote the maximum of fk(L) over all arrangements L
of n lines, and by f(n) = fb(n−2)/2c(n) the maximum size of the middle level.

A k-set of a finite point set P in the Euclidean plane is a subset K of k elements of P that
can be separated from P \ K by a line. Paraboloid duality is a bijection P ↔ LP between
point sets and line arrangements (for details on this duality see [O’R94, Chapter 6.5] or [Ede87,
Chapter 1.4]). The number of k-sets of P equals |Vk−1(LP ) ∪ Vn−1−k(LP )|.

In discrete and computational geometry bounds on the number of k-sets of a planar point set,
or equivalently on the size of k-levels of a planar line arrangement have important applications.
The complexity of k-levels was first studied by Lovász [Lov71] and Erdős et al. [ELSS73]. They
bound the size of the k-level by O(n · (k + 1)1/2). Dey [Dey98] used the crossing lemma to
improve the bound to O(n · (k + 1)1/3). In particular, the maximum size f(n) of the middle
level is O(n4/3). Concerning the lower bound on the complexity, Erdős et al. [ELSS73] gave a
construction showing that f(2n) ≥ 2f(n)+cn = Ω(n log n) and conjectured that f(n) ≥ Ω(n1+ε).
An alternative Ω(n log n)-construction was given by Edelsbrunner and Welzl [EW85]. The current

best lower bound fk(n) ≥ n · eΩ(
√

log k) was obtained by Nivasch [Niv08] improving the constant
on a bound of the same asymptotic by Tóth [Tót01]. The complexity of the (≤ k)-level in
arrangements of lines is better understood. Specifically, Alon and Györi [AG86] prove a tight
upper bound of (k + 1)(n − k/2 − 1) for its size. For further information, we recommend the
survey by Wagner [Wag07].

1.1 Generalized Zone Theorem

In order to define “zones”, let us introduce the notion of “distances”. For x and x′ being a
vertex, edge, line, or cell of an arrangement L of lines in R2 we let their distance distL(x, x′) be
the minimum number of lines of L intersected by the interior of a curve connecting a point of x
with a point of x′. Pause to note that the k-level of L is precisely the set of vertices which are
at distance k to the bottom cell.

The (≤ j)-zone Z≤j(`,L) of a line ` in an arrangement L is defined as the set of vertices,
edges, and cells from L which have distance at most j from `. See Figure 1(a) for an illustration.

For arrangements of hyperplanes in Rd the (≤ j)-zone is defined similarly. The classical zone
theorem provides bounds for the complexity of the zone ((≤ 0)-zone) of a hyperplane (cf. [ESS91]
and [Mat02, Chapter 6.4]). A generalization with bounds for the complexity of the (≤ j)-zone
appears as an exercise in Matoušek’s book [Mat02, Exercise 6.4.2]. In the proof of Theorem 2
we use a variant of the 2-dimensional case (Proposition 1). For the sake of completeness and to
provide explicit constants, we include the proof of Proposition 1 in Section 3.

Proposition 1. Let L be a simple arrangement of n lines in R2 and ` ∈ L. The (≤ j)-zone of `
contains at most 2e · (j + 1)n vertices strictly above `.
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Figure 1: (a) The higher order zones of a line `. (b) The correspondence between great-circles on the
unit sphere and lines in a plane. Using the center of the sphere as the center of projection points on the
sphere are projected to the points in the plane.

1.2 Arrangements of Great-Circles

Let Π be a plane in 3-space which does not contain the origin and let S2 be a sphere in 3-space
centered at the origin. The central projection ΨΠ yields a bijection between arrangements of
great circles on S2 and arrangements of lines in Π. Figure 1(b) gives an illustration.

The correspondence ΨΠ preserves interesting properties, e.g. simplicity of the arrangements.
If ΨΠ(C) = L and L has no parallel lines, then ΨΠ induces a bijection between pairs of antipodal
vertices of C and vertices of L.

As in the planar case, we define the distance between points x, y of S2 with respect to a
great-circle arrangement C as the minimum number of circles of C intersected by the interior of
a curve connecting x with y. The k-level ((≤ k)-level resp.) of C is the set of all the vertices of C
at distance k (distance at most k resp.) from the south pole. The (≤ j)-zone of a great-circle
in S2 is defined similar to the (≤ j)-zone of a line in R2.

Let Π1 and Π2 be two parallel planes in 3-space with the origin between them and let Ψ1

and Ψ2 be the respective central projections. For a great-circle arrangement C we consider
L1 = Ψ1(C) and L2 = Ψ2(C). A vertex v from the k-level of C maps to a vertex of the k-
level in one of L1, L2 and to a vertex of the (n − k − 2)-level in the other. Hence, bounds for
the maximum size of the k-level of line arrangements carry over to the k-level of great-circle
arrangements except for a multiplicative factor of 2.

The (≤ j)-zone of a great-circle C in C projects to a (≤ j)-zone of a line in each of L1

and L2. Hence, the complexity of a (≤ j)-zone in C is upper bounded by two times the maximum
complexity of a (≤ j)-zone in a line arrangement. Proposition 1 implies that the (≤ j)-zone of a
great-circle C in an arrangement of n great-circles contains at most 4e · (j + 1)n vertices in each
of the two open hemispheres bounded by C.

1.3 Higher Dimensions

The problem of determining the complexity of the k-level admits a natural extension to higher
dimensions. We consider arrangements in Rd of hyperplanes to be simple, meaning that no d+ 1
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hyperplanes intersect in a common point. Moreover, we assume that no hyperplane is parallel
to the xd-axis. The k-level of A consists of all vertices (i.e. intersection points of d hyperplanes)
which have exactly k hyperplanes of A below them (with respect to the d-th coordinate). We

denote the k-level by Vk(A) and its size by fk(A). Moreover, by f
(d)
k (n) we denote the maximum

of fk(A) among all arrangements A of n hyperplanes in Rd.
As in the planar case, there remains a gap between lower and upper bounds;

Ω(nbd/2ckdd/2e−1) ≤ f (d)
k (n) ≤ O(nbd/2ckdd/2e−cd),

here cd > 0 is a small positive constant only depending on d. Details and references can be found
in Chapter 11 of Matoušek’s book [Mat02]. In dimensions 3 and 4 improved bounds have been

established. For example, for d = 3, it is known that f
(3)
k (n) ≤ O(n(k + 1)3/2) (see [SST01]).

For the middle level in dimension d ≥ 2 an improved lower bound f (d)(n) ≥ nd−1 · eΩ(
√

logn) is
known (see [Tót01] and [Niv08]).

We call the intersection of Sd with a central hyperplane in Rd+1 a great-(d− 1)-sphere of Sd.
Similar to the planar case, arrangements of hyperplanes in Rd are in correspondence with ar-
rangements of great-(d − 1)-spheres on the unit sphere Sd (embedded in Rd+1). The terms
“distance” and “k-level” generalize in a natural way.

2 Our Results

In the first part of this paper we consider arrangements of great-circles on the sphere and in-
vestigate the average complexity of the k-level when the southpole is chosen uniformly at ran-
dom among the cells. This question was raised by Barba, Pilz, and Schnider while sharing a
pizza [BPS19, Question 4.2].

In Section 4 we prove the following bound on the average complexity.

Theorem 2. Let C be a simple arrangement of great-circles. The expected size of the (≤ k)-level
is at most 16e · (k+ 2)2 when the southpole is chosen uniformly at random among the cells of C.

Note that for k ≥ n/4 the bound is meaningless, since it exceeds the number of vertices of
the arrangement. Our proof works for k < n/3 which is needed for Lemma 5. It is remarkable
that the bound is independent of the number n of great-circles in the arrangement.

In the second part, we investigate arrangements of randomly chosen great-circles. Here we
propose the following model of randomness. On S2 we have the duality between points and great-
circles (each antipodal pair of points defines the normal vector of the plane containing a great-
circle). Since we can choose points uniformly at random from S2, we get random arrangements
of great-circles. The duality generalizes to higher dimensions so that we can talk about random
arrangements on Sd for a fixed dimension d ≥ 2. Using the duality between antipodal pairs of
points on Sd and great-(d− 1)-spheres, we prove the following bound on the expected size of the
k-level in this random model (the proof can be found in Section 5). Again the bound does not
depend on the size of the arrangement.

Theorem 3. Let d ≥ 2 be fixed. In an arrangement of n great-(d− 1)-spheres chosen uniformly
at random on the unit sphere Sd (embedded in Rd+1), the expected size of the k-level is of order
Θ((k + 1)d−1) for all k ≤ n/2.
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3 Proof of Proposition 1

As hinted in Matoušek’s book [Mat02, Exercise 6.4.2], we use the method of Clarkson and Shor
[CS89] to prove Proposition 1.

Let L be an arrangement of n lines in R2 and let ` ∈ L be a fixed line. For any j =
0, 1, . . . , n − 1 denote by V≤j the set of vertices of L contained in the (≤ j)-zone Z≤j(`,L) of `
and lying strictly above `. In other words, v ∈ V≤j if there is a simple path Pv in the halfplane `+

from v to ` whose interior has at most j intersections with lines from L.
Let R be a random sample of lines from L where ` ∈ R and each line `′ 6= ` independently

belongs to R with probability p := 1
j+1 . The probability that a vertex v ∈ V≤j is present in the

induced subarrangement L(R) and appears at distance 0 from ` is at least ( 1
j+1 )2 · (1 − 1

j+1 )r,
where 0 ≤ r ≤ j denotes the distance of v from ` in L. Figure 2 gives an illustration. Note that(

1− 1

j + 1

)r
≥
(

1− 1

j + 1

)j
=

(
j

j + 1

)j
=

(
1 +

1

j

)−j
≥ 1/e.

`

v

Pv

Figure 2: A path Pv witnessing that v belongs to the (≤ j)-zone of ` for all j ≥ 2.

Let X be the number of vertices in the 0-zone of ` in L(R) that lie strictly above `. For the
expectation of this random variable we have

E(X) ≥ 1

e

(
1

j + 1

)2

· |V≤j |.

An inductive argument, as used to show the classical zone theorem (see [GHW13, page 136]),
shows there are at most 2n − 3 vertices lying strictly above ` in the zone. Hence, we have
X ≤ 2 · |R| and

E(X) ≤ 2 · E(|R|) = 2np.

The above inequalities imply

|V≤j | ≤ e · (j + 1)2 · 2 · n · p = 2 · e · (j + 1) · n.

This concludes the proof of the theorem.

4 Proof of Theorem 2

For the proof of Theorem 2, we fix a great-circle C from C and denote the two closed hemispheres
bounded by C on S2 as C+ and C−. As an intermediate step, we bound the size of the set
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F≤k(C+) of pairs (F, v), where F is a cell of C− touching C and v is a vertex of C+ whose distance
to F is at most k. The main ingredient to the proof of the theorem is to show |F≤k(C+)| ≤
8e · (k + 1)2n. We begin with auxiliary considerations.

Consider a family I of half-intervals in R, it consists of left-intervals of the form (−∞, a]
and right-intervals [b,∞). A subset J of k half-intervals from I is a k-clique if there is a point
p ∈ R that lies in all the half-intervals of J but not in any half-interval of I \ J . Similarly, a
(≤ k)-clique is defined as a clique of size at most k.

Lemma 4. Any family I of half-intervals in R contains at most 2k + 1 different (≤ k)-cliques.

Proof. For p ∈ R, let l(p) be the number of left-intervals and r(p) the number of right-intervals
containing p. A point p certifies a (≤ k)-clique if and only if l(p) + r(p) ≤ k. From the
monotonicity of the functions l and r it follows that if (l(p1), r(p1)) = (l(p2), r(p2)) for two
points p1 and p2, then they are contained in the same sub-interval. Thus, they certify the same
clique. In other words, when we move from one sub-interval to its right sub-interval, either l
is decreased by 1 or r is increased by 1. We proceed to bound the number of sub-intervals
corresponding to (l, r)-pairs whose sum is at most k.

Let I1 be the leftmost sub-interval such that its (l, r)-pair (l1, r1) satisfies l1 + r1 ≤ k, and
let I2 be the rightmost sub-interval such that its (l, r)-pair (l2, r2) satisfies l2 + r2 ≤ k. The
number of sub-intervals between I1 and I2 (including them) is l1− l2 + r2− r1 + 1 because of the
monotonicity of l- and r-values. This number is at most 2k+ 1 because l2, r1 ≥ 0 and l1, r2 ≤ k.
Now, the definition of I1 and I2 implies that the number of (≤ k)-cliques is most 2k + 1.

The next lemma is a corresponding result for half-circles on the circle S1.

Lemma 5. Any family H of n half-circles in S1 with n > 3k contains at most 2k + 1 different
(≤ k)-cliques.

Proof. For this proof, we embed S1 as the unit-circle in R2, which is centered at the origin o.
We consider the set X of all points from S1, which are contained in at most k of the half-circles
of H, and distinguish the following two cases.

Case 1: The origin o is not contained in the convex hull of X. There is a line separating o
from X and rotational symmetry allows us to assume that X is contained in the half-plane
Π+ = {(x, y) ∈ R2 : y > 0}. For each half-circle C ∈ H, the central projection of C ∩ Π+ to the
line y = 1 is a half-interval. Since (≤ k)-cliques of H and (≤ k)-cliques of the half-intervals are
in bijection we get from Lemma 4 that H has at most 2k + 1 different (≤ k)-cliques.

Case 2: The origin o is contained in the convex hull of X. By Carathéodory’s theorem, we
can find three points p1, p2, p3 such that o lies in the convex hull of p1, p2, p3. Since each of the n
half-circles from H contains at least one of these three points, and each of these three points lies
on at most k half-circles, we have n ≤ 3k, which contradicts the assumption that n > 3k.

For a fixed vertex v ∈ C+ \ C, let BC+(v) be the set of cells F such that (F, v) ∈ F≤k(C+),
in particular dist(F, v) ≤ k.

Claim. |BC+(v)| ≤ 2k − 1.

Proof. Consider a great-circle D 6= C from C. For a point x ∈ C, we say that (v, x) is D-
separated if every path from v to x in C+ intersects D. The set of all D-separated points forms
a half-circle HD on C. Let H be the set of these half-circles, i.e., H = {HD : D ∈ C, D 6= C}.
See Figure 3.

We claim that there is a bijection between BC+(v) and the (≤ k− 1)-cliques in H. Indeed, if
the intersection of the half-circles of a clique K, viewed as a subset of C, is IK , then IK is the
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Figure 3: An illustration of the cyclic half-circles H.

interval of C which is reachable from v by crossing the circles corresponding to the half-circles
of K. If F is a cell from C− at distance i ≤ k from v, then C and a subset of i−1 additional circles
have to be crossed to reach v from F , i.e., there is a (≤ k − 1)-clique in H whose intersection is
F ∩ C. The number of (≤ k − 1)-cliques in H is at most 2k − 1 by Lemma 5.

Claim. |F≤k(C+)| ≤ 8e · (k + 1)2n.

Proof. In the case of k = 0, vertex v must be one of the 2n− 2 vertices on C and F is one of the
two cells of C− which is adjacent to v. Hence, |F≤0(C+)| ≤ 4n ≤ 8e · (k + 1)2n.

Let k ≥ 1 and note that if (F, v) ∈ F≤k(C+) then v belongs to the (≤ k − 1)-zone of C and
F ∈ BC+(v). As already noted in Section 1.2, the (≤ k − 1)-zone of C contains at most 4e · kn
vertices of C+ \ C and 2n − 2 vertices on C. From the above claim we have |BC+(v)| ≤ 2k − 1
for any v ∈ C+ \ C. For the vertices v on C, there are only 2k + 2 cells of C− touching C with
distance at most k to v. Hence we conclude that |F≤k(C+)| ≤ 4e·kn·(2k−1)+(2n−2)·(2k+2) ≤
8e · (k + 1)2n.

Since C was chosen arbitrarily among all great-circles from C and C+ was chosen arbitrarily
among the two hemispheres of C, the upper bound from the above claim holds for any induced
hemisphere of C. For the union F≤k of the F≤k(C+) over all the 2n choices of the hemisphere C+,
we have

|F≤k| ≤
∑

C+ hemisphere

|F≤k(C+)| ≤ 16e(k + 1)2n2.

Proof of Theorem 2. The (≤ k)-level with the southpole chosen in cell F consists of the vertices
at distance at most k from F . Thus, the expected complexity of the (≤ k)-level when choosing F
uniformly at random equals |F≤k| divided by the number of cells. Since the number of cells in
an arrangement of n great-circles is 2

(
n
2

)
+ 2 and |F≤k| ≤ 16e(k + 1)2n2, we can conclude the

statement from

16e · (k + 1)2 · n2

2
(
n
2

)
+ 2

≤ 16e · (k + 1)2 · n

n− 1
≤ 16e · (k + 2)2 · k + 1

k + 2
· n

n− 1︸ ︷︷ ︸
≤1

.

5 Proof of Theorem 3

Let C be a simple arrangement of n great-(d − 1)-spheres on the unit sphere Sd = {x ∈ Rd+1 :
‖x‖ = 1} with center o = (0, . . . , 0) in Rd+1. For a vertex v of the arrangement, let φC(v)
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denote the number of great-(d − 1)-spheres of C that are crossed by the geodesic arc from v to
the south-pole s = (0, . . . , 0,−1) of the sphere. The set of vertices v of C with φC(v) = k is
denoted Vk(C).

When C is projected to a d-dimensional plane H with the origin o as center of projection,
we obtain an arrangement A of hyperplanes in Rd. Moreover, if the south pole s is projected to
a point “at infinity” of H, say to (0, . . . , 0,−∞), then, for every point p in Sd, the circle in Sd
containing the geodesic arc from p to s is projected to the “vertical” line through p, i.e., the line
p+ (0, . . . , 0, λ). The geodesic is projected to one of the two rays starting from p on this line. In
particular, all vertices v of C with φC(v) = k are projected to vertices of A either at level k or
n− k − d.

Let C be an arrangement of randomly chosen great-(d − 1)-spheres and let B be a subset
of size d in C. Note that with probability 1, the random great-sphere-arrangement is simple,
i.e., no great-sphere contains the south-pole and no more than d great-spheres intersect in a
common point. Choose p′ as one of the two intersection points of the great-(d− 1)-spheres in B.
Now consider the arrangement C′ = C − B and note that (C′, p′) can be viewed as a random
arrangement of great-(d − 1)-spheres together with a random point on Sd. Hence, to estimate
the expected size of Vk(C), we can estimate the probability that φC′(p

′) = k. This is the purpose
of the following lemma.

Lemma 6. Let C be an arrangement of n great-(d− 1)-spheres chosen uniformly at random on
the unit sphere Sd (embedded in Rd+1 and centered at the origin). Let p be an additional point
chosen uniformly at random from Sd, and let A be the geodesic arc from p to the south pole on
Sd. For all k ≤ n/2, the probability qk that exactly k great-(d− 1)-spheres from C intersect A is
in Θ((k + 1)d−1/nd). More precisely, it satisfies

2d−1ρπ(k + 1)d−1(n− k + 1)d−1

(n+ 1)2d−1
≤ qk ≤ min

{
ρπ

n+ 1
,
ρπd(k + 1)d−1

(n+ 1)d

}
,

where ab = a(a+1) · · · (a+b−1) denotes the rising factorial and ρ = ρd = aread−1(Sd−1)
aread(Sd)

=
Γ( d+1

2 )

π1/2Γ( d
2 )

only depends on the dimension d.

Proof. Denote by φ the length of the geodesic arc A on Sd from p to s, i.e., φ is the angle between
the two rays emanating from o towards s and p. Note that – independent from the dimension d
– the three points o, s, and p lie in a 2-dimensional plane which also contains the geodesic arc A.

Point p lies on a (d−1)-sphere C of radius sin(φ) in the d-dimensional hyperplane defined by
the equation xd = − cos(φ). Figure 4 gives an illustration for the case d = 2, where C is a circle.

Π

C

p

o

s

φ

A

Figure 4: Illustrating the definitions of A, C, and Π depending on p.

The probability that a random great-(d − 1)-sphere D intersects the arc A defined by the
random point p is φ/π, since D will intersect the great circle containing A in a random pair of
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antipodal points. Thus, the probability that A is intersected by exactly k great-(d− 1)-spheres
from the random arrangement C is

qk =

∫ π

φ=0

aread−1(Sd−1) sind−1(φ)

aread(Sd)︸ ︷︷ ︸
density at angle φ

·
(
n

k

)
(φ/π)k(1− φ/π)n−k︸ ︷︷ ︸

chosen great-(d−1)-spheres intersect A

dφ.

This can be rewritten as

qk = ρ ·
(
n

k

)
·
∫ π

φ=0

sind−1(φ) · (φ/π)k(1− φ/π)n−kdφ,

where ρ = ρ(d) = aread−1(Sd−1)
aread(Sd)

=
Γ( d+1

2 )

π1/2Γ( d
2 )

is a constant only depending on d. The latter

equation follows from aread(Sd) = 2π
d+1
2 /Γ(d+1

2 ), where Γ(x) is the Euler gamma function (see
e.g. [Wikb]).

In the following we give upper and lower bounds for qk. The Euler beta function B turns out
to be the tool to evaluate the integrals:

B(a+ 1, b+ 1) =

∫ 1

t=0

ta(1− t)bdt =
a! · b!

(a+ b+ 1)!
.

For this identity and more information see for example [Wika].

To show the first upper bound on qk, we bound the integral above as follows: Since sin(φ) ≤ 1
holds for every φ ∈ [0, π], we have

qk ≤ ρ
(
n

k

)∫ π

φ=0

(φ/π)k(1− φ/π)n−kdφ = ρπ

(
n

k

)∫ 1

t=0

tk(1− t)n−kdt

= ρπ

(
n

k

)
B(k + 1, n− k + 1) = ρπ · n!

k!(n− k)!
· k!(n− k)!

(n+ 1)!
= ρπ · 1

n+ 1
.

Towards the second upper bound on qk, we use the fact that sin(φ) ≤ φ holds for every φ ∈ [0, π]:

qk ≤ ρπd−1

(
n

k

)∫ π

φ=0

(φ/π)k+d−1(1− φ/π)n−kdφ

= ρπd
(
n

k

)∫ 1

t=0

tk+d−1(1− t)n−kdt

= ρπd · n!

k!(n− k)!
· (k + d− 1)!(n− k)!

(n+ d)!
= ρπd · (k + 1)d−1

(n+ 1)d
.
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To show the lower bound on qk, we split the integral in two parts: Since sin(φ) ≥ 2 · φπ holds for

every φ ∈ [0, π/2] and sin(φ) ≥ 2 · (1− φ
π ) holds for every φ ∈ [π/2, π], we have

qk ≥ 2d−1ρ

(
n

k

)[∫ π/2

φ=0

(φ/π)k+d−1(1− φ/π)n−kdφ+

∫ π

φ=π/2

(φ/π)k(1− φ/π)n−k+d−1dφ

]

≥ 2d−1ρ

(
n

k

)∫ π

φ=0

(φ/π)k+d−1(1− φ/π)n−k+d−1dφ

= 2d−1ρπ

(
n

k

)∫ 1

t=0

tk+d−1(1− t)n−k+d−1dt

= 2d−1ρπ · n!

k!(n− k)!
· (k + d− 1)!(n− k + d− 1)!

(n+ 2d− 1)!

=
2d−1ρπ(k + 1)d−1(n− k + 1)d−1

(n+ 1)2d−1
.

This completes the proof of Lemma 6.

Proof of Theorem 3. Consider an arrangement C of n + d great-(d − 1)-spheres C1, . . . , Cn+d

chosen uniformly and independently at random from Sd. Let p be a vertex of C chosen uniformly
at random from the intersection points of C (i.e., one of the two points of intersection of d
great-(d − 1)-spheres Ci1 , . . . , Cid chosen u.a.r. from C). Note that p is a u.a.r. chosen point
from Sd.

We now apply Lemma 6 with p and Cp := C − {Ci1 , . . . , Cid}. Point p is separated from s by
k great-(d−1)-spheres from Cp with probability qk = Θ(kd−1/nd). Since p is chosen uniformly at

random among the 2
(
n+d
d

)
vertices of C, we obtain the desired bound of Θ(kd−1) for the number

of vertices at distance k from s.

6 Discussion

Theorem 2 is about arrangements of great-circles. All the elements of the proof, however, carry
over to great-pseudocircles whence the result could also be stated for arrangements of great-
pseudocircles. Projective arrangements of lines are obtained by antipodal identification from
arrangements of great-circles. Hence, if you pick a cell u.a.r. in a projective arrangement of
lines (pseudo-lines) the expected number of vertices at distance at most k from the cell is as in
Theorem 2. If the projection ΨΠ is used to project an arrangements C of great-pseudocircles
to an Euclidean arrangement L on Π such that the south-poles coincide, then the k-level of C
corresponds to the union of the k- and the (n− k − 2)-level of L.

With respect to lower bounds we would like to know the answer to:

Question 1. Is there a family of arrangements where the expected size of the middle level is
superlinear when the southpole is chosen uniformly at random?

Recursive constructions from [EW85] and [ELSS73] show that the size of the (n/2− s)-level
can be in Ω(n log n) for any fixed s. Nevertheless computer experiments suggest that if we choose
a random southpole for these examples the expected size of the middle level drops to be linear.

Theorem 3 deals with the average size of the k-level in arrangements of randomly chosen
great-circles. In our model, great-circles are chosen independently and uniformly at random
from the sphere. Since point sets, line arrangements, and great-circle arrangements are in strong
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correspondence, the bound from Theorem 3 also applies to k-sets in point sets and k-levels of
line arrangements from a specific random distribution.

In the context of Erdős–Szekeres-type problems, several articles made use of point sets which
are sampled uniformly at random from a convex shape K [BF87, Val95, BGAS13, BSV20].
The average size of the convex hull (0-level) is well-studied for such sets of points. If K is a
disk, the convex hull has expected size O(n1/3), and if K is a convex polygon with m sides, the
expected size is O(m log n) [HP11, PS85, Ray70, RS63]. Bárány and Steiger have studied the
expected number of all k-sets for point sets that are sampled uniformly at random from a convex
shape and other random point sets, such as a spherically symmetric distribution in Rd [BS94].
However, all their resulting bounds depend on n. In particular, the expected size of the convex
hull is not constant, which is a substantial contrast to our setting. In fact, our setting appears
to be closer to the setting of random order types, for which the expected size of the convex hull
was recently shown to be 4 + o(1) [GW20]. Hence it would be very interesting to obtain bounds
on the average number of k-sets also in this setting. Last but not least, Edelman [Ede92] showed
that the expected number of k-sets of an allowable sequence is of order Θ(

√
kn).
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