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t. An oriented hyperplane is a hyperplane with designated good and bad sides.The infeasibility of a 
ell in an arrangement ~A of oriented hyperplanes is the number ofhyperplanes with this 
ell on the bad side. With MinInf( ~A) we denote the minimuminfeasibility of a 
ell in the arrangement. A subset of hyperplanes of ~A is 
alled aninfeasible subsystem if every 
ell in the indu
ed subarrangement has positive infeasibility.With MaxDis( ~A) we denote the maximal number of disjoint infeasible subsystems of ~A.For every arrangement ~A of oriented hyperplanesMinInf( ~A) �MaxDis( ~A):In this paper we investigate bounds for the ratio of the LHS over the RHS in the aboveinequality. The main 
ontribution is a detailed dis
ussion of the problem in the 
ase d = 2,i.e., for 2-dimensional arrangements. We prove that MinInf( ~A) � 2 �MaxDis( ~A), in this
ase. An example shows that the fa
tor 2 is best possible. If an arrangement ~A of nlines 
ontains a 
ell of infeasibility n, then the fa
tor 
an be improved to 3=2, whi
h isagain best possible. We also 
onsider the problem for arrangements of pseudolines in theEu
lidean plane and show that the fa
tor of 2 suÆ
es in this more general situation.Mathemati
s Subje
t Classi�
ations (2000). 52C30, 52C35, 05D99.Key Words. Arrangements, infeasibility, pseudoline, triangular 
ip.1 Introdu
tionLet Mx < b be a system of n linear inequalities in d variables. Thinkof (M; b) as an arrangement AM of aÆne hyperplanes in Rd . From thetwo halfspa
es de�ned by a hyperplane (mi; x) = bi we 
all the halfspa
e(mi; x) < bi the good side and the halfspa
e (mi; x) > bi the bad side of thehyperplane. The infeasibility of a point x 2 Rd is the number of inequalitiesviolated by x, i.e., the number of hyperplanes with x on the bad side. Wedenote the infeasibility of x by Inf(x). Given a 
ell 
 in AM then Inf(x) =Inf(y) for all x; y 2 
, therefore, we 
an de�ne the infeasibility of 
ell 
 asthe infeasibility of any point in 
. A 
ell 
 whi
h is on the good side of allhyperplanes, i.e., Inf(
) = 0, it is 
alled feasible. An arrangement is 
alledfeasible if it 
ontains a feasible 
ell and infeasible otherwise.September 24. 2001 1



Let ~A be an arrangement of oriented hyperplanes, i.e., of hyperplaneswith designated good and bad sides. The 
ells of minimum infeasibility of ~Aare of some interest. These 
ells 
an be made feasible by removing or revert-ing the least number of inequalities. We de�ne the minimum infeasibilityMinInf( ~A) as the minimum of Inf(
) over all 
ells 
 of ~A.A subarrangement of ~A is a subset ~B of the hyperplanes of ~A, with thesame orientations. We denote by MaxDis( ~A) the maximum number ofdisjoint infeasible subarrangements of ~A. Given a 
ell 
 of ~A, a point x 2 
and disjoint infeasible subarrangements ~B1; : : : ; ~Bk we note that ea
h ~Bi
ontributes at least one to the infeasibility of x in ~A. From this observationwe obtain the following inequality.Proposition 1. For every arrangement ~A of oriented hyperplanesMinInf( ~A) �MaxDis( ~A):In this paper we investigate bounds for the ratio of the LHS over theRHS in the above inequality. The existen
e of su
h a ratio follows fromHelly's Theorem, see Proposition 4.The main 
ontribution of the paper is a detailed dis
ussion of the problemin the 
ase d = 2, i.e., for 2-dimensional arrangements. We prove thatMinInf( ~A) � 2 �MaxDis( ~A), in this 
ase. An example shows that thefa
tor 2 is best possible. If an arrangement ~A of n lines 
ontains a 
ell ofinfeasibility n, then the fa
tor 
an be improved to 3=2, whi
h is again bestpossible. Finally, we 
onsider the problem for arrangements of pseudolinesin the Eu
lidean plane. A 
ompletely independent proof is required to showthat the fa
tor of 2 suÆ
es in this more general situation.The problem of investigating the gap in Proposition 1 
ame to our atten-tion through a question posed by Komei Fukuda at the Monte Verit�a Con-feren
e on Dis
rete and Computational Geometry 1998. Fukuda remarkedthat he was led to the problem by the observation that some well studiedgraph problems 
an be viewed as problems about minimum infeasibility of
ertain arrangements. We brie
y dis
uss two su
h instan
es.The Maximum A
y
li
 Subgraph problem asks for the minimum numberof ar
s of a dire
ted graph D = (V;A) whose removal makes the grapha
y
li
 (see e.g. [4℄). Asso
iate a variable xv with vertex v and an inequalityxu � xv � 1 with ea
h ar
 (u; v). The Maximum A
y
li
 Subgraph problemis the problem of determining Inf( ~A) for the 
orresponding arrangement.A minimal infeasible subarrangement 
orresponds to a simple 
y
le, hen
e,Proposition 1 translates to the lower bound given by a maximum 
olle
tionof disjoint 
y
les. 2



The Lu

hesi-Younger Theorem for dire
ted graphs is a MinMax resultwhi
h 
an be interpreted as a situation in whi
h equality in Proposition 1holds (for proofs see [7, 6, 2℄). Let D = (V;A) be a dire
ted graph with a2-
onne
ted underlying graph GD. A di
ut of D is a set B of ar
s whi
his a 
ut (X;Y ) for GD su
h that all ar
s of B are oriented from X to Y .The Lu

hesi-Younger Theorem states that the minimum number of ar
sof D that have to be reversed to make D strongly 
onne
ted equals themaximum number of disjoint di
uts of D. For the translation provide avariable xa for ea
h ar
 of D, now 
onsider the 
ow 
onstraint for ea
hvertex v 2 V , i.e.,Pa2in(v) xa�Pa2out(v) xa = 0, and positivity inequalitiesxa � 1. The theorem is equivalent to MinInf( ~A) =MaxDis( ~A) when ~A isthe arrangement indu
ed by the inequalities on the (jAj � jV j)-dimensionalaÆne spa
e de�ned by the 
ow 
onstraints.2 Introdu
tory Observations and ExamplesIn this se
tion we 
olle
t some general observations about infeasibility inarrangements of oriented hyperplanes. For the sake of simpli
ity we assumethroughout the paper that the arrangements we 
onsider are `in generalposition'. By this we mean that the interse
tion of every set of d hyperplanesof the arrangement is a point and no point is 
ontained in more than d of thehyperplanes. Our results (ex
ept Theorem 11) hold without this assumption,but the proofs would be broadened by additional details.Without proof we state the following two observations.Observation 2. An infeasible arrangement in Rd 
ontains at least d + 1hyperplanes.Observation 3. An arrangement in Rd 
onsisting of d + 1 hyperplanes isinfeasible i� its (unique) bounded 
ell has infeasibility d+ 1.An infeasible arrangement in Rd 
onsisting of d+1 hyperplanes is 
alleda infeasible base arrangement.Lemma 1. Every infeasible arrangement 
ontains an infeasible base ar-rangement.Proof. Let ~A be an infeasible arrangement. Suppose that ~A 
ontains noinfeasible base arrangement. This means that for ea
h set of d + 1 goodhalfspa
es there is a point being 
ontained in all of them. Helly's Theorem3



implies the existen
e of a point x whi
h is 
ontained in all the good halfs-pa
es. By de�nition this point and, hen
e, his 
ell has infeasibility 0. Thismeans that ~A is feasible, 
ontradi
tion.Proposition 4. For every arrangement ~A in RdMinInf( ~A) � (d+ 1) �MaxDis( ~A):Proof. Re
ursively remove infeasible base arrangements from ~A until thearrangement be
omes feasible. This is possible by Lemma 1. Let x be apoint in the feasible 
ell. The removal of ea
h infeasible base arrangementshas de
reased the infeasibility of x by at most d+1. Therefore,MinInf( ~A) �MinInf(x) � (d+1) �# removed subarrangements � (d+1) �MaxDis( ~A).We turn to a lower bound 
onstru
tion. Choose n points uniformly atrandom from the unit sphere in Rd . With ea
h point 
onsider the tangenthyperplane and let the bad halfspa
e of the hyperplane be the side 
ontainingthe sphere. The infeasibility of a point x in the interior of the sphere is n.Along every ray starting at x the infeasibility is monotoni
ally de
reasing.Therefore, every 
ell of minimum infeasibility is an unbounded 
ell. Theinfeasibility of an unbounded 
ell of the arrangement equals the number ofrandom points on the averted hemisphere. By 
onstru
tion this numberwill be approximately n=2. Sin
e a infeasible subsystem 
onsists of d + 1halfspa
es, there are at most n=(d + 1) of them. On the basis of this ideathere is a rigorous proof for the next proposition.Proposition 5. For every � > 0 there are arrangements ~A in Rd withMinInf( ~A) � �d+ 12 � �� �MaxDis( ~A):As a warmup we 
onsider the very simple 
ase of 1-dimensional arrange-ments. A hyperplane in dimension d = 1 is just a point p in R and itshalfspa
es are the two open intervals ℄ � 1; p [ and ℄ p;1[. A 
ell of anarrangement 
orresponds to an (open) interval. An infeasible base arrange-ment 
onsists of two points with disjoint good halfspa
es, see Figure� 1.Let ~A be a 1-dimensional arrangement. Sin
e we are only interestedin the infeasibility of the 
ells of ~A, we disregard the exa
t position of thepoints (hyperplanes) and restri
t the attention to their ordering and the�In �gures we mark the good side of a hyperplane with a 
ag.4



1 2 1Figure 1: An infeasible base arrangement in one dimension, 
ells are labeledwith their infeasibility.orientation information, i.e., whether the left or the right side is the goodone. From ~A 
onstru
t a f+;�g-sequen
e 
ontaining n signs: S
an thepoints from left to right. If the bad side is to the right of the point write aplus-sign, otherwise, write a minus-sign. Infeasible base arrangements of ~Aare in one-to-one 
orresponden
e to the +� subsequen
es of this sequen
e.A +� subsequen
e of 
onse
utive signs will be 
alled tight subarrangement.Observation 6. A 1-dimensional infeasible arrangement 
ontains a tightsubarrangement.Observation 7. The bounded 
ell of a tight subarrangement of ~A is not a
ell of minimal infeasibility in ~A.Observation 7 is proven by 
onsidering the infeasibility of one of the two
ells adja
ent to the 
ell between the points of the tight subarrangement.From this observation it follows that removing a tight subarrangement from~A de
reases the infeasibility of the arrangement by one.Given an infeasible arrangement ~A, re
ursively remove tight subarrange-ments, as long as possible. When the pro
edure stops the arrangement isfeasible (Observation 6). This showsProposition 8. For every 1-dimensional arrangement ~AMinInf( ~A) =MaxDis( ~A):3 Arrangements of LinesIn this se
tion we dis
uss arrangements of lines in 2-dimensional spa
e. Withevery line we assume that a good and a bad halfplane are spe
i�ed. Aninfeasible base arrangement is shown in Figure 2.It is easy to give a more expli
it example for the lower bound of Propo-sition 5 in dimension two. Consider the arrangement of lines supportedby the edges of a regular n-gon with orientations su
h that all halfspa
es
ontaining the n-gon are bad. In the even 
ase small perturbations are re-quired to avoid parallel lines. It is easy to see thatMaxDis( ~A) = bn=3
 andMinInf( ~A) = b(n� 1)=2
. An example with n = 5 is shown in Figure 3.The main result of this se
tion is the following theorem.5



1 21 12 23Figure 2: An infeasible base arrangement in R2 , 
ells are labeled with theirinfeasibility.
33 3 544 2 3344 42

2 2 2
Figure 3: Arrangement with MaxDis( ~A) = 1 and MinInf( ~A) = 2Theorem 9. For every arrangement ~A of oriented linesMinInf( ~A) � 2 �MaxDis( ~A):This bound is best possible.There is a 
lass of arrangements whi
h allows to prove a smaller fa
tor.Theorem 10. For every arrangement ~A of oriented lines with a 
ell whi
his on the bad side of every lineMinInf( ~A) � d(3=2) �MaxDis( ~A)e:This bound is best possible.3.1 Proof of Theorem 9The proof is based on a re
ursive removal of infeasible base arrangements.The goal is to �nd a subarrangement whose removal de
reases the infeasibil-ity of the remaining arrangement by at most two, we 
all su
h a infeasiblebase subarrangement a tight subarrangement.6



For a 
ell 
 of minimum infeasibility let A(
) be the arrangement formedby all lines having 
 on their bad side. Let z(
) be the 
ell in the arrangementA(
) 
ontaining 
. With d
 we denote be the minimal distan
e between apoint from 
ell 
 (in
luding its boundary) and a line of ~A(
). The minimaldistan
e d
 is greater than 0, sin
e the boundary of 
 is not 
ontained in~A(
). Note that d
 is a
hieved at a 
orner of 
. Among all 
ells of minimuminfeasibility 
hoose the 
ell 
 whi
h minimizes d
. Let p be the 
orner of 
and l be the line of A(
) su
h that d
 = dist(p; l). With the following twolemmas we show that line l and the two lines l1; l2 
rossing at p form a tightsubarrangement. Figure 4 illustrates the situation.
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Figure 4: The 
onstru
tion: The large 7-gon is z(
) and the fas
iated regionis the triangle of the subarrangement l; l1; l2.Lemma 2. The subarrangement l; l1; l2 is infeasible.Proof. Lines l1 and l2 divide the plane into four open unbounded se
tors.Let R be the se
tor whi
h is on the good side of both lines, se
tor R isopposite to the se
tor 
ontaining 
, see Figure 5. Sin
e d
 = dist(p; l) thepoint p is the 
losest point to l in 
ell 
. Therefore, line l has to 
ross regionR and the subsystem formed by the three lines is infeasible.Lemma 3. Removing the subarrangement l; l1; l2 de
reases the infeasibilityof the remaining arrangement by at most two.7
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Figure 5: The relative positions of l1; l2 and l.Proof. We have to show that there is no 
ell in the triangular 
ell formedby l; l1; l2 whi
h is of minimal infeasibility.Suppose �
 is a 
ell with minimal infeasibility 
ontained in the triangularregion of l; l1; l2. De�ne ~A(�
) as above. Then l belongs to ~A(�
) and weget d�
 � dist(�
; l) < d
. Sin
e we have 
hosen 
 as the 
ell of minimalinfeasibility minimizing d
, the existen
e of su
h a 
ell �
 is impossible.Sin
e removing a tight subarrangement de
reases the infeasibility ofevery 
ell of minimal infeasibility by at most two we get MinInf( ~A) �2 �#removed subarrangements � 2 �MaxDis( ~A). This 
ompletes the proofof the inequality of Theorem 9.To 
omplete the proof of Theorem 9 we need a 
onstru
tion showingthat the fa
tor 2 is best possible. Su
h a 
onstru
tion will be given inSubse
tion 4.2.Remark. The idea of this proof generalizes to higher dimensions. An anal-ogous distan
e argument allows to dete
t an infeasible base subarrangementwhose removal de
reases the infeasibility of every minimal infeasible 
ell byat most d. This improves the fa
tor of Proposition 4 and gives: For everyarrangement ~A in Rd MinInf( ~A) � d �MaxDis( ~A):3.2 Proof of Theorem 10Re
all that now we deal with line-arrangements with one 
ell being on thebad side of every line. In this 
ase all 
ells of minimal infeasibility areunbounded and we restri
t the attention to those 
ells whi
h interse
t the
ir
le at in�nity.We en
ode the infeasibility of all unbounded 
ells with a f+1;�1g-sequen
e of length n: Let k be the minimum infeasibility of the arrangement8



and let x be a point with infeasibility k on the 
ir
le at in�nity. Let y bethe antipodal point of x. Note that the infeasibility of y is n�k. Traversingthe lines at in�nity 
lo
kwise from x to y we write +1, if x is on the goodside of a line, and we write �1 if x is on the bad side.The infeasibility of every unbounded 
ell 
 is en
oded by this sequen
e.Let the unbounded 
ells be numbered 0; 1; : : : ; 2n�1 in 
lo
kwise order, su
hthat 
ell 0 
ontains x. If 
 is the i-th 
ell with i � n, then the infeasibility of
 is k plus the sum of the �rst i numbers of the sequen
e. Otherwise, if i > n,use its antipodal 
ell 
� to 
al
ulate the infeasibility as Inf(
) = n�Inf(
�).By the 
hoi
e of x as a point of minimal infeasibility (and thereby y asa point of maximal infeasibility) the resulting sequen
e has a total sum ofn � 2k and the property that every pre�x and post�x has a non-negativesum.The next lemma des
ribes how the sequen
e represents infeasible basesubarrangements. We abbreviate +1 and �1 with + and �.Lemma 4. Infeasible base arrangements are represented in the +;� se-quen
e by +�+ or �+� subsequen
es.Proof. Fix an infeasible base arrangement. Then x is either 
ontained inone of its regions with infeasibility 1 or infeasibility 2. Constru
ting thesequen
es transforms the base arrangement to +�+ in 
ase of x lying in aregion of infeasibility 1 and �+� otherwise.Conversely, let +�+ be a subsequen
e of the sequen
e. With respe
t tox there are only two possibilities for the relative position of its three lines.The indu
ed orientation of + � + leads to the two 
on�gurations show inFigure 6. The left 
on�gurations in fa
t is an infeasible base arrangement.The right 
on�guration is not possible, sin
e no point lies in all three badhalfplanes. The same reasoning applies to �+� subsequen
es.To 
omplete the proof of Theorem 10 we need a 
ombinatorial lemmaabout de
ompositions of sequen
es of plus- and minus-signs.Lemma 5. Let S be a f+;�g-sequen
e 
ontaining n � k plus-signs and kminus-signs with the property that every pre�x and post�x of S has a non-negative sum. Then S 
ontains at least b2k+13 
 disjoint subsequen
es of theform +�+ or �+�.Proof. We abstra
t the string S to a a zig-zag path with steps (1; 1) and(1;�1) starting at (0; k) and ending at (n; n � k), always staying in they-interval [k; n� k℄, see Figure 7. 9



x + �+y
x + �+yFigure 6: The two arrangements de�ned by +�+.

kn� k
Figure 7: The zig-zag path for the string +�++�+��+++�++.A level of S is the set of symbols 
orresponding to a step in the zig-zagpath with y-
oordinates between i and i + 1, for some i. Note that ea
hlevel 
ontains either zero or an odd number of symbols.We prove the lemma by indu
tion on the length of the string. If thestring 
ontains only one symbol it is + and thus#disjoint alternating triples = 0 = j2 � 0 + 13 k:We distinguish several redu
ing operations on the sequen
e.1. There is a level whi
h 
ontains exa
tly one symbol:This symbol must be +. Removing it leads to a shorter valid stringwith the same number of negative entries. By indu
tion this shortersequen
e 
ontains b2k+13 
 disjoint alternating triples.2. There is a level whi
h 
ontains exa
tly three symbols:These three symbols form the substring +�+. Removing them leavesa shorter valid string with k � 1 negative symbols. By indu
tion#disjoint alternating triples � j2(k � 1) + 13 k+ 1 � j2k + 13 k:10



3. There is a level 
ontaining at least six symbols:The �rst six symbols of this level form the substring + � + � +�,whi
h 
onsists of two alternating triples. Removing all six symbolsleaves a shorter valid string with k � 3 negative symbols. Thus#disjoint alternating triples � j2(k � 3) + 13 k+ 2 = j2k + 13 k:4. If non of the above 
ases holds, then every level 
ontains exa
tly �vesymbols.� If there is only one level, then n = 5, k = 2 and the �rst threesymbols form a substring +�+. Hen
e,#disjoint alternating triples = 1 = j2 � 2 + 13 k:� If there are at least two levels, then 
onsider the 10 symbols ofheight k and k+ 1. This substring has the shape of one of the 6 
asesshown in Figure 8. The �gure indi
ates how the �rst nine symbols ofea
h string 
an be de
omposed into three disjoint alternating triples.Removing the ten symbols leaves a valid string with k � 4 negativesymbols. Thus#disjoint alternating triples � j2(k � 4) + 13 k+ 3 � j2k + 13 k:Sin
e, by 
onstru
tion the parameter k was the infeasibility of the ar-rangement, the lemma givesMaxDis( ~A) � b23MinInf( ~A)+ 13
. This impliesd32MaxDis( ~A)e �MinInf( ~A), i.e., the formula stated in the theorem.The tightness of the fa
tor 3/2 is shown via the arrangement of the n-gon. Consider the arrangement of lines supported by the edges of a regular(6r + 5)-gon oriented so that all halfspa
es 
ontaining the polygon are bad.Then MaxDis( ~A) = 2r + 1 and MinInf = 3r + 2 = d32MaxDis( ~A)e.4 Arrangements of PseudolinesA pseudoline is a 
urve in R2 whose removal from the plane leaves twounbounded 
onne
ted 
omponents. In other words a pseudoline is a simple11



�1 �3+1+2 +1�2�3+3 +2+ +1�1+1+2�3+3�3�2+2++3�3�2�3�1+1 +1 +3+2 +2 + +1+2�3�1+1 �3�2+2+�3 �3 +1 +2�1�2+2+1 +1 +3+2 + �1+1+2�2�3+3 �3+Figure 8: The six possible patterns of two levels, ea
h of 5 symbols
urve whi
h goes to in�nity on both sides. An arrangement of pseudolines isa family of pseudolines with the property that ea
h pair of pseudolines has aunique point of interse
tion, where the two pseudolines 
ross. Arrangementsof pseudolines are a natural generalization of arrangements of straight lines,they have been studied in a wide variety of 
ontexts. Gr�unbaum [5℄ is a ni
elittle monograph 
olle
ting results and many problems about arrangementsof both straight-lines and pseudolines. A more re
ent overview is given byGoodman [3℄.Let A be an arrangement of pseudolines. Choose an orientation for ea
hpseudoline, or equivalently, assign a good and a bad side to ea
h pseudoline.For the oriented arrangement ~A there are natural notions of infeasibility forpoints, 
ells and subarrangements. Hen
e, questions regarding the relationbetween MinInf( ~A) and MaxDis( ~A) 
an be asked in this more generalsetting. Let us review the results for 2-dimensional arrangements of linesand see what 
an be adapted to pseudolines. The validity of Propositions 1in the new 
ontext is obvious. The upper bound of Proposition 4, i.e.,MinInf( ~A) � 3 �MaxDis( ~A), holds, be
ause of an analog of Helly's The-orem for pseudo-halfspa
es. What about pseudoline analogs of Theorems9 and 10? In the 
ase of Theorem 10 the answer is easy. The proof givenin Subse
tion 3.2 is 
ompletely 
ombinatorial, it makes no use of straight-ness. Therefore, the result remains valid in the setting of arrangements ofpseudolines:Theorem 11. For every arrangement ~A of pairwise 
rossing oriented pseu-12



dolines with a 
ell whi
h is on the bad side of every pseudolineMinInf( ~A) � d(3=2) �MaxDis( ~A)e:This bound is best possible.The statement of this theorem gets false without the assumption that thepseudolines are pairwise 
rossing. There are sets ~A of n pairwise paralleloriented pseudolines su
h that MinInf( ~A) = n � 1 and MaxDis( ~A) =bn=2
.The proof of Theorem 9 in Subse
tion 3.1 makes use of a metri
 argu-ment. Therefore, the question whether the fa
tor of 2 remains valid for ar-rangements of pseudolines 
annot be answered on the basis of the old proof.The main result of this se
tion is a proof of the following generalization ofTheorem 9.Theorem 12. For every arrangement ~A of oriented pseudolinesMinInf( ~A) � 2 �MaxDis( ~A):This bound is best possible.In the next subse
tion we 
olle
t preparing fa
ts about arrangements ofpseudolines. Along the way we learn some 
ombinatori
s of 
y
li
 arrange-ments and use this to produ
e the lower bound example for Theorem 9.Subse
tion 4.3 
ontains the main body of the proof for Theorem 12.4.1 Basi
 Fa
tsGiven an arrangement A of pseudolines, 
hoose a unbounded 
ell 
̂ andimagine that 
̂ 
ontains the northpole. The 
omplementary 
ell �
 is theunbounded 
ell separated from 
̂ by all the pseudolines of the arrangement.Label the pseudolines so that traversing the 
ir
le at in�nity 
ounter
lo
k-wise from 
̂ to �
 they are met in the order 1; 2; : : : ; n. This results in amarked arrangement of pseudolines.On the set of all (
ombinatorially di�erent) marked arrangements of npseudolines 
onsider a graph Gn whose edges 
orrespond to triangular 
ips,see Figure 9. To be pre
ise, the pair ( ~A; ~B) is an edge of Gn i� there arethree pseudolines i < j < k in ~A su
h that:� There is a triangular 
ell bounded by the tree pseudolines i; j; k.� The northpole is separated from the 
rossing of pseudolines i and k bypseudoline j. 13



flip

Figure 9: A 
ip at the shaded triangular 
ell.� Arrangement ~B is equivalent to the arrangement obtained from ~A bypulling pseudoline j below the 
rossing of i and k.Various aspe
ts of the graph Gn have been studied [1, 10℄. We will need thefollowing properties of Gn.(1) There is a unique arrangement C of n pseudolines, so that the indegreeof C in Gn is zero. The arrangement C is the 
y
li
 arrangement, it willbe studied in more detail in the next subse
tion.(2) Gn is the diagram of a ranked poset. (This poset is the \higher Bruhatorder" B(n; 2) introdu
ed in [8℄ and further studied in [10℄.)The general idea for the proof of Theorem 12 is as follows. In a �rst stepwe show the fa
tor of 2 for all orientations of the 
y
li
 arrangement. Thisis done in Subse
tion 4.2. To prove the same fa
tor for a marked orientedarrangement ~A 
onsider a path C = A0;A1; : : : ;Ar = A in Gn, whi
h startsin the 
y
li
 arrangement C and ends in the unoriented version A of ~A. Theexisten
e of su
h a path follows from the two properties of Gn mentionedabove, the original sour
e for the 
onne
tivity of Gn is Ringel [9℄.Let ~Ai be the orientation of Ai where line j is oriented as in ~A. Theidea for the indu
tive proof is to show that MinInf( ~Ai) � 2 �MaxDis( ~Ai)implies MinInf( ~Ai+1) � 2 �MaxDis( ~Ai+1). A
tually the proof given inSubse
tion 4.3 is a bit more 
ompli
ated.4.2 Cy
li
 ArrangementsThe marked 
y
li
 arrangement C of n lines is 
hara
terized by the propertythat for any three lines i < j < k the 
rossing of i and k is separated fromthe northpole by line j. A straight-line realization of this arrangement 
anbe obtained by 
hoosing n di�erent tangents to the parabola y = x2, the14



spe
ial north-
ell 
̂ is the 
ell 
ontaining the parabola. Figures 11 and 12show 
y
li
 arrangements.An orientation of the 
y
li
 arrangement, i.e., an assignment of good andbad sides to all lines, 
an be en
oded by a sequen
e S of + and � signs.Take the lines in the order of their labels and write a + if the northern sideis bad and � if the northern side is good. Figure 10 illustrates the followingobservation. +�+Figure 10: Infeasible base arrangement in a 
y
li
 arrangement.Observation 13. Let ~C be an oriented 
y
li
 arrangement. Infeasible basearrangements of ~C 
orrespond one-to-one to the +�+ subsequen
es in thesequen
e S of the orientation.Given the sequen
e S of an orientation of ~C we want to 
al
ulate theinfeasibility of a 
ell 
. The infeasibility of the north-
ell 
̂ equals the numberof plus-signs in S. The infeasibility of a 
ell 
 di�erent from the north-
ellis obtained by reverting in S the signs of all the lines above 
 and then
ounting the number of plus-signs.Asso
iate with every 
ell 
 of the 
y
li
 arrangement C of n lines asso
iatethe set of lines above 
, i.e., the set of those lines separating 
 from thenorthpole. This gives a bije
tive mapping from the 
ells of ~C to intervals[i; : : : ; j℄ with 1 � i � j � n, together with ;. Figure 11 exempli�es the
orresponden
e.We are ready, now, to provide the lower bound example for Theorems 9and 12.Proposition 14. There is an orientation ~C of the 
y
li
 arrangement Cwith 4k + 1 lines, su
h that MaxDis(~C) = k and MinInf(~C) = 2k.Proof. Consider the orientation ~C of the 
y
li
 arrangement 
orrespondingto the sequen
e +[�+�+℄k of length 4k + 1. Figure 12 shows an examplewith k = 2. 15
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Figure 11: Cy
li
 arrangement, n = 5, 
ells are labeled by lines above them.There are only 2k + 1 plus-signs in the sequen
e and every +� + sub-sequen
e requires two, therefore, there 
an be at most k disjoint + � +subsequen
es. Obviously, there are as many and MaxDis(~C) = k.Reverting the signs in an interval of S 
an de
rease the number of plus-signs by at most one. Therefore, the infeasibility of every 
ell in that ar-rangement is at least 2k.Cy
li
 arrangements 
an be realized as straight-line arrangements, there-fore, the statement of the next proposition is a 
onsequen
e of Theorem 9.Here we give a new proof whi
h has the virtue of being purely 
ombinatorial.Proposition 15. Given an orientation ~C of the 
y
li
 arrangement withMaxDis(~C) = k, then there is a 
ell 
 with Inf(
) � 2k.Proof. The orientation ~C is en
oded by a sequen
e S with no more then kdisjoint +�+ subsequen
es. We have to show that there is an interval su
hthat reverting the signs of this interval results in a sequen
e with at most2k plus-signs.De�ne the span of a subset T of signs of S as the length of the shortestinterval 
ontaining all the signs of T . The span a family of k disjoint +�+subsequen
es of S is the sum of the spans of its k triples.Let F be a family of k disjoint + � + triples of S su
h that the spanof F if minimal among all su
h families. In S 
olor the 3k signs from thetriples in F red and all the remaining signs blue. Sin
e, the blue signs arenot allowed to 
ontain an additional + �+ subsequen
e, the indu
ed bluesequen
e is des
ribed by the regular expression [�℄�[+℄�[�℄�.For the reversal we 
hoose the smallest interval 
ontaining all the blueplus-signs. Let S0 be the sequen
e after reversal of the signs in this interval.16
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Figure 12: Cy
li
 arrangement with MaxDis(~C) = 2 and MinInf(~C) = 4.In S0 there is no blue plus-sign. Let T be one of the k red +�+ triples ofF and let T 0 be the 
orresponding triple in S0. We 
laim that T 0 
ontains atmost two plus-signs. Sin
e all plus-signs of S0 are red the 
laim immediatelyyields an upper bound of 2k for the number of plus-signs in S0, whi
h provesthe proposition.Suppose T is a triple in F violating the 
laim. This means, that themiddle symbol, the �, of T has been reversed, while the other two symbolsremained un
hanged. By the 
hoi
e of the interval for reversal we �nd thatthe �rst and the last blue plus-sign together with the � from T form a +�+subsequen
e T � in S. The span of T � is less then the span of T . Therefore,F � T + T � is a family of k disjoint +�+ subsequen
es and span less thenthe span of F , 
ontradi
tion.Remark. The notion of a 
y
li
 arrangement is not restri
ted to the plane.Let Co be the orientation of su
h an arrangement given by alternating se-quen
e of plus- and minus-signs. In even dimension d it 
an be shown thatMinInf(~C) � d+22 MaxDis(~C) � d2 . This is a slight improvement over thelower bound of Proposition 5. In odd dimensions the gain is smaller. Com-17



pared to Proposition 5 ~C has the advantage of providing a deterministi

onstru
tion for the fa
tor (d+ 1)=2 and saving the �.4.3 Proof of Theorem 12By the sket
hy outline of the proof given on page 14 it is suÆ
ient to provethe 
laim: If ~A and ~B are related by a triangular 
ip as in Figure 9 the in-equality for ~A implies the inequality for ~B. In the 
ourse of the argument weneed indu
tion, so we assume the the inequalityMinInf( ~A) � 2MaxDis( ~A)holds for ~A and also for all arrangements with fewer lines than ~A.Given that the impli
ation holds for every pair of 
ip-adja
ent arrange-ments we 
an apply this to all pairs of a path C = A0A1:::Ar = A 
onne
tingthe 
y
li
 arrangement with A. The proof of the above 
laim follows.Let 
 be the triangular 
ell in ~A whi
h is 
ipped to get ~B and let T bethe triple of pseudolines bounding 
. We distinguish three 
ases:� Cell 
 is on the good side of the three pseudolines of T in ~A, abusingterminology we 
hara
terize this 
ase by saying T is feasible.� The subsystem indu
ed by T is infeasible, i.e., 
 is on the bad side ofall three pseudolines in ~A .� The subsystem indu
ed by T in ~A is neither feasible nor infeasible,then we 
all it neutral.First 
onsider the 
ase that subsystem indu
ed by T is neutral. Sin
e rota-tions and 
areful lo
al deformations do not a�e
t the 
ombinatorial naturethe 
ip is des
ribed by th left to right arrow or by the right to left arrowin Figure 13. in either 
ase after performing the 
ip the subsystem remainsneutral. Sin
eMinInf( ~A) andMinInf( ~B) are both at most i�2, this valueis not a�e
ted by the 
ip. Moreover, a subsystem of ~A is infeasible i� it isinfeasible in ~B. Therefore, MaxDis( ~A) = MaxDis( ~B) and the inequalityMinInf( ~B) � 2 �MaxDis( ~B) follows from the 
orresponding inequality for~A. Next suppose that the subsystem indu
ed by T is feasible, i.e., in ~A 
ell
 is on the good side of the lines in T . Let ~B� be the arrangement obtainedfrom ~B by deleting the three pseudolines of T . Re
all that by indu
tionMinInf( ~B�) � 2 �MaxDis( ~B�):Sin
e T is an infeasible base system of ~B we haveMaxDis( ~B�) + 1 �MaxDis( ~B):18
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Figure 13: A neutral 
ip.To relate the minimum infeasibility of ~B and ~B� 
onsider a 
ell 
min of ~Bwith Inf(
min) = MinInf( ~B). Let 
0 be the triangular 
ell of B boundedby the lines in T . Sin
e 
min 6= 
0 the infeasibility of all points in 
min 
ande
rease by at most two upon removal of the three lines of T . Therefore,MinInf( ~B) �MinInf( ~B�) + 2:Combining the inequalities leads to the desired result for ~B:MinInf( ~B) �MinInf( ~B�) + 2 � 2 �MaxDis( ~B�) + 2 � 2 �MaxDis( ~B):The last 
ase is that the subsystem indu
ed by T is infeasible. Af-ter the 
ip the subsystem be
omes a feasible subsystem of ~B. ClearlyMinInf( ~A) � MinInf( ~B). If MaxDis( ~A) = MaxDis( ~B) we immediatelyobtain the result:MinInf( ~B) �MinInf( ~A) � 2 �MaxDis( ~A) = 2 �MaxDis( ~B):The more 
omplex situation is when MaxDis( ~A) � 1 = MaxDis( ~B). Inthis 
ase the three lines of T form an infeasible subsystem of ~A whi
h is
ontained in every maximal set of disjoint infeasible subsystems of ~A. Todeal with this situation we need the following lemma:Lemma 6. Let ~A be an oriented arrangement of pseudolines with an in-feasible triangular 
ell 
 whose boundary lines form an infeasible system Twhi
h is 
ontained in every maximal set of disjoint infeasible subsystems of~A. Then(1) every pseudoline g with 
 on the bad side is 
ontained in every maximalset of disjoint infeasible subsystems of ~A, and(2) there is no infeasible base system R disjoint from T in ~A su
h that 
 is
ontained in the bounded region of R.19



Proof. Let l1; l2; l3 be the pseudolines of the system T . Suppose there is apseudoline g whi
h has 
 on the bad side and is not used by some maximalsystem of disjoint infeasible subsystems. Up to relabeling the situation isas shown in Figure 14. Repla
ing the triple T = l1; l2; l3 by g; l2; l3 gives amaximal system of disjoint infeasible subsystems not 
ontaining T , a 
on-tradi
tion. gl1l2l3Figure 14: The infeasible triangular 
ell 
 and an extra line g with 
 on itsbad side.For the proof of part 2, suppose there is an infeasible base subarrange-ment R 
ontaining 
 in its bounded region. Let g1; g2; g3 be the pseudolinesof R. We may assume that the arrangement indu
ed by l1; l2; l3 and g1 isagain as shown in Figure 14.Suppose that the 
rossing of g2 and g3 is on the bad side of l1. In this 
asethe triples l2; l3; g1 and g2; g3; l1 form two disjoint infeasible subarrangementsfrom the six lines of T and R.If g2 and g3 
ross on the good side of l1 then the situation is as des
ribedby Figure 15. l2g3 l3 l1 g2g1
Figure 15: Lines g1 and g2 
ross on the good side of l1.Suppose that the 
rossing of l2 and g3 is on the good side of l1 and hen
eon the bad side of l3. In this 
ase the triples l2; l3; g3 and l1; g1; g2 form twodisjoint infeasible subarrangements. Otherwise, the 
rossing of l2 and g3 is20



on the bad side of l1. In this 
ase the triples l1; l2; g3 and l3; g1; g2 form twodisjoint infeasible subarrangements.In all 
ases we 
an form two new infeasible base arrangements from thesix lines of T and R. This 
ontradi
ts the assumption that T is 
ontainedin every maximal set of disjoint infeasible subsystems of ~A.We now estimate the infeasibility of the the triangular 
ell 
 de�ned byT in ~A. Let F be a maximal system of disjoint infeasible subsystems in~A. Be
ause of Lemma 6.(2) every subarrangement T 0 6= T in F 
ontains 
in a region of infeasibility at most 2. By Lemma 6.(1) this a

ounts for allpseudolines having 
 on the bad side. Therefore,Inf(
) � 2 � (MaxDis( ~A)� 1) + 3Sin
e the infeasibility of 
ell 
 is de
reased by 3 through the 
ip, we haveMinInf( ~B) � Inf(
) � 3 � 2 � (MaxDis( ~A)� 1):This 
ompletes the proof for the 
ase where MaxDis( ~B) =MaxDis( ~A)� 1and, hen
e, the proof of Theorem 12.Con
lusionWe have investigated bounds of the LHS over the RHS in the inequalityMinInf( ~A) �MaxDis( ~A):For the 2-dimensional 
ase we gave tight results both for arrangements oflines and pseudolines. In d dimensions we have seen that the best possiblefa
tor is between (d+1)=2 and d+1. Based on the ideas of this paper thesebounds 
an be improved to (d + 2)=2 and d. For d = 2 these lower andupper bounds mat
h, but for higher d there remains a wide gap. It wouldbe interesting to know on whi
h side of the interval the truth hides.Referen
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