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Abstract. An oriented hyperplane is a hyperplane with designated good and bad sides.
The infeasibility of a cell in an arrangement A of oriented hyperplanes is the number of
hyperplanes with this cell on the bad side. With MININF(A) we denote the minimum
infeasibility of a cell in the arrangement. A subset of hyperplanes of A is called an
infeasible subsystem if every cell in the induced subarrangement has positive infeasibility.
With MaxDis(A) we denote the maximal number of disjoint infeasible subsystems of A.
For every arrangement A of oriented hyperplanes

-

MININF(A) > MaxDis(A).

In this paper we investigate bounds for the ratio of the LHS over the RHS in the above
inequality. The main contribution is a detailed discussion of the problem in the case d = 2,
i.e., for 2-dimensional arrangements. We prove that MININF(A) < 2- MaXDi1s(4), in this
case. An example shows that the factor 2 is best possible. If an arrangement Aofn
lines contains a cell of infeasibility n, then the factor can be improved to 3/2, which is
again best possible. We also consider the problem for arrangements of pseudolines in the
Euclidean plane and show that the factor of 2 suffices in this more general situation.
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1 Introduction

Let Mx < b be a system of n linear inequalities in d variables. Think
of (M,b) as an arrangement Ajy; of affine hyperplanes in R?. From the
two halfspaces defined by a hyperplane (m;,x) = b; we call the halfspace
(my;, z) < b; the good side and the halfspace (m;,z) > b; the bad side of the
hyperplane. The infeasibility of a point 2 € R? is the number of inequalities
violated by z, i.e., the number of hyperplanes with x on the bad side. We
denote the infeasibility of z by INF(z). Given a cell ¢ in Ajs then INF(z) =
INF(y) for all z,y € ¢, therefore, we can define the infeasibility of cell ¢ as
the infeasibility of any point in ¢. A cell ¢ which is on the good side of all
hyperplanes, i.e., INF(¢) = 0, it is called feasible. An arrangement is called
feasible if it contains a feasible cell and infeasible otherwise.
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Let A be an arrangement of oriented hyperplanes, i.e., of hyperplanes
with designated good and bad sides. The cells of minimum infeasibility of A
are of some interest. These cells can be made feasible by removing or revert-
ing the least number of inequalities. We define the minimum infeasibility
MININF(A) as the minimum of INF(¢) over all cells ¢ of A.

A subarrangement of A is a subset B of the hyperplanes of .A with the
same orientations. We denote by MAXDIS(.A) the maximum number of
disjoint infeasible subarrangements of A Given a cell ¢ of A, a point z € ¢
and disjoint infeasible subarrangements Bl, . ,Bk we note that each Bl
contributes at least one to the infeasibility of x in A. From this observation
we obtain the following inequality.

Proposition 1. For every arrangement A of oriented hyperplanes

MININF(A) > MAXDIs(A).

In this paper we investigate bounds for the ratio of the LHS over the
RHS in the above inequality. The existence of such a ratio follows from
Helly’s Theorem, see Proposition 4.

The main contribution of the paper is a detailed discussion of the problem
in the case d = 2, i.e., for 2-dimensional arrangements. We prove that
MININF(A) < 2 - MAXDis(A), in this case. An example shows that the
factor 2 is best possible. If an arrangement A of n lines contains a cell of
infeasibility n, then the factor can be improved to 3/2, which is again best
possible. Finally, we consider the problem for arrangements of pseudolines
in the Euclidean plane. A completely independent proof is required to show
that the factor of 2 suffices in this more general situation.

The problem of investigating the gap in Proposition 1 came to our atten-
tion through a question posed by Komei Fukuda at the Monte Verita Con-
ference on Discrete and Computational Geometry 1998. Fukuda remarked
that he was led to the problem by the observation that some well studied
graph problems can be viewed as problems about minimum infeasibility of
certain arrangements. We briefly discuss two such instances.

The Mazimum Acyclic Subgraph problem asks for the minimum number
of arcs of a directed graph D = (V, A) whose removal makes the graph
acyclic (see e.g. [4]). Associate a variable z, with vertex v and an inequality
Xy — %y > 1 with each arc (u,v). The Maximum Acyclic Subgraph problem
is the problem of determining INF(.,I) for the corresponding arrangement.
A minimal infeasible subarrangement corresponds to a simple cycle, hence,
Proposition 1 translates to the lower bound given by a maximum collection
of disjoint cycles.



The Lucchesi- Younger Theorem for directed graphs is a MINMAX result
which can be interpreted as a situation in which equality in Proposition 1
holds (for proofs see [7, 6, 2]). Let D = (V, A) be a directed graph with a
2-connected underlying graph Gp. A dicut of D is a set B of arcs which
is a cut (X,Y) for Gp such that all arcs of B are oriented from X to Y.
The Lucchesi-Younger Theorem states that the minimum number of arcs
of D that have to be reversed to make D strongly connected equals the
maximum number of disjoint dicuts of D. For the translation provide a
variable z, for each arc of D, now consider the flow constraint for each
vertex v € V, i.e., Zaein(v) Tg— Eanut(v) o = 0, and positivity inequalities
o > 1. The theorem is equivalent to MININF(A) = MAXDIs(A) when A is
the arrangement induced by the inequalities on the (|A| — |V|)-dimensional
affine space defined by the flow constraints.

2 Introductory Observations and Examples

In this section we collect some general observations about infeasibility in
arrangements of oriented hyperplanes. For the sake of simplicity we assume
throughout the paper that the arrangements we consider are ‘in general
position’. By this we mean that the intersection of every set of d hyperplanes
of the arrangement is a point and no point is contained in more than d of the
hyperplanes. Our results (except Theorem 11) hold without this assumption,
but the proofs would be broadened by additional details.
Without proof we state the following two observations.

Observation 2. An infeasible arrangement in R contains at least d + 1
hyperplanes.

Observation 3. An arrangement in R consisting of d + 1 hyperplanes is
infeasible iff its (unique) bounded cell has infeasibility d + 1.

An infeasible arrangement in R? consisting of d + 1 hyperplanes is called
a infeasible base arrangement.

Lemma 1. Every infeasible arrangement contains an infeasible base ar-
rangement.

Proof. Let A be an infeasible arrangement. Suppose that A contains no
infeasible base arrangement. This means that for each set of d + 1 good
halfspaces there is a point being contained in all of them. Helly’s Theorem



implies the existence of a point z which is contained in all the good halfs-
paces. By definition this point and, hence, his cell has infeasibility 0. This
means that A is feasible, contradiction. 0

Proposition 4. For every arrangement A in R?
MININF(A) < (d + 1) - MAXDis(A).

Proof. Recursively remove infeasible base arrangements from A until the
arrangement becomes feasible. This is possible by Lemma 1. Let z be a
point in the feasible cell. The removal of each infeasible base arrangements
has decreased the infeasibility of z by at most d-+1. Therefore, MININF(A) <
MININF(z) < (d + 1) - # removed subarrangements < (d + 1) - MAXD1s(A).

O

We turn to a lower bound construction. Choose n points uniformly at
random from the unit sphere in R¢. With each point consider the tangent
hyperplane and let the bad halfspace of the hyperplane be the side containing
the sphere. The infeasibility of a point x in the interior of the sphere is n.
Along every ray starting at x the infeasibility is monotonically decreasing.
Therefore, every cell of minimum infeasibility is an unbounded cell. The
infeasibility of an unbounded cell of the arrangement equals the number of
random points on the averted hemisphere. By construction this number
will be approximately n/2. Since a infeasible subsystem consists of d + 1
halfspaces, there are at most n/(d 4+ 1) of them. On the basis of this idea
there is a rigorous proof for the next proposition.

Proposition 5. For every e > 0 there are arrangements A in R? with
MININF(A) > (% — e) - MAXDis(A).

As a warmup we consider the very simple case of 1-dimensional arrange-
ments. A hyperplane in dimension d = 1 is just a point p in R and its
halfspaces are the two open intervals | — oo,p [ and | p,00]. A cell of an
arrangement corresponds to an (open) interval. An infeasible base arrange-
ment consists of two points with disjoint good halfspaces, see Figure* 1.

Let A be a 1-dimensional arrangement. Since we are only interested
in the infeasibility of the cells of ./f, we disregard the exact position of the
points (hyperplanes) and restrict the attention to their ordering and the

*In figures we mark the good side of a hyperplane with a flag.
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Figure 1: An infeasible base arrangement in one dimension, cells are labeled
with their infeasibility.

orientation information, i.e., whether the left or the right side is the good
one. From A construct a {4+, —}-sequence containing n signs: Scan the
points from left to right. If the bad side is to the right of the point write a
plus-sign, otherwise, write a minus-sign. Infeasible base arrangements of A
are in one-to-one correspondence to the +— subsequences of this sequence.
A +— subsequence of consecutive signs will be called tight subarrangement.

Observation 6. A 1-dimensional infeasible arrangement contains a tight
subarrangement.

Observation 7. The bounded cell of a tight subarrangement of./f 18 not a
cell of minimal infeasibility in A.

Observation 7 is proven by considering the infeasibility of one of the two
cells adjacent to the cell between the points of the tight subarrangement.
From this observation it follows that removing a tight subarrangement from
A decreases the infeasibility of the arrangement by one.

Given an infeasible arrangement ./f, recursively remove tight subarrange-
ments, as long as possible. When the procedure stops the arrangement is
feasible (Observation 6). This shows

Proposition 8. For every I-dimensional arrangement A

-,

MININF(A) = MAXDIs(A).

3 Arrangements of Lines

In this section we discuss arrangements of lines in 2-dimensional space. With
every line we assume that a good and a bad halfplane are specified. An
infeasible base arrangement is shown in Figure 2.

It is easy to give a more explicit example for the lower bound of Propo-
sition 5 in dimension two. Consider the arrangement of lines supported
by the edges of a regular n-gon with orientations such that all halfspaces
containing the n-gon are bad. In the even case small perturbations are re-

—

quired to avoid parallel lines. It is easy to see that MAXD1s(A) = |n/3] and

-,

MININF(A) = [(n —1)/2]. An example with n = 5 is shown in Figure 3.
The main result of this section is the following theorem.



Figure 2: An infeasible base arrangement in R?, cells are labeled with their
infeasibility.

— —.

Figure 3: Arrangement with MAXDIS(A) =1 and MININF(A) = 2

Theorem 9. For every arrangement A of oriented lines

—

MININF(A) < 2- MAXDIS(A).

This bound is best possible.
There is a class of arrangements which allows to prove a smaller factor.

Theorem 10. For every arrangement A of oriented lines with a cell which
is on the bad side of every line

MININF(A) < [(3/2) - MAXDIs(A)].

This bound is best possible.

3.1 Proof of Theorem 9

The proof is based on a recursive removal of infeasible base arrangements.
The goal is to find a subarrangement whose removal decreases the infeasibil-
ity of the remaining arrangement by at most two, we call such a infeasible
base subarrangement a tight subarrangement.



For a cell ¢ of minimum infeasibility let A(c) be the arrangement formed
by all lines having ¢ on their bad side. Let z(c) be the cell in the arrangement
A(c) containing c¢. With d. we denote be the minimal distance between a
point from cell ¢ (including its boundary) and a line of A(c). The minimal
distance d. is greater than 0, since the boundary of ¢ is not contained in
A(c). Note that d, is achieved at a corner of ¢. Among all cells of minimum
infeasibility choose the cell ¢ which minimizes d.. Let p be the corner of ¢
and [ be the line of A(c) such that d. = dist(p,l). With the following two
lemmas we show that line [ and the two lines [y, /s crossing at p form a tight
subarrangement. Figure 4 illustrates the situation.

Figure 4: The construction: The large 7-gon is z(c) and the fasciated region
is the triangle of the subarrangement [, 11, 5.

Lemma 2. The subarrangement l,1q,ls is infeasible.

Proof. Lines I; and [s divide the plane into four open unbounded sectors.
Let R be the sector which is on the good side of both lines, sector R is
opposite to the sector containing ¢, see Figure 5. Since d. = dist(p,l) the
point p is the closest point to [ in cell ¢. Therefore, line [ has to cross region
R and the subsystem formed by the three lines is infeasible. 0

Lemma 3. Removing the subarrangement I, 11,1y decreases the infeasibility
of the remaining arrangement by at most two.



Figure 5: The relative positions of [1,[lo and [.

Proof. We have to show that there is no cell in the triangular cell formed
by [,11,ls which is of minimal infeasibility.

Suppose ¢ is a cell with minimal infeasibility contained in the triangular
region of I,11,ls. Define A(¢) as above. Then [ belongs to A(¢) and we
get dz < dist(¢,l) < d.. Since we have chosen ¢ as the cell of minimal
infeasibility minimizing d., the existence of such a cell ¢ is impossible.

Since removing a tight subarrangement decreases the infeasibility of

=

every cell of minimal infeasibility by at most two we get MININF(A) <
2 - #removed subarrangements < 2 - MAXDIS(./T). This completes the proof
of the inequality of Theorem 9.

To complete the proof of Theorem 9 we need a construction showing
that the factor 2 is best possible. Such a construction will be given in

Subsection 4.2.

Remark. The idea of this proof generalizes to higher dimensions. An anal-
ogous distance argument allows to detect an infeasible base subarrangement
whose removal decreases the infeasibility of every minimal infeasible cell by
at most d. This improves the factor of Proposition 4 and gives: For every
arrangement Ain R4

-,

MININF(A) < d - MAXDIS(A).

3.2 Proof of Theorem 10

Recall that now we deal with line-arrangements with one cell being on the
bad side of every line. In this case all cells of minimal infeasibility are
unbounded and we restrict the attention to those cells which intersect the
circle at infinity.

We encode the infeasibility of all unbounded cells with a {+1,—1}-
sequence of length n: Let k& be the minimum infeasibility of the arrangement



and let z be a point with infeasibility £ on the circle at infinity. Let y be
the antipodal point of z. Note that the infeasibility of y is n — k. Traversing
the lines at infinity clockwise from z to y we write +1, if z is on the good
side of a line, and we write —1 if z is on the bad side.

The infeasibility of every unbounded cell ¢ is encoded by this sequence.
Let the unbounded cells be numbered 0,1, ... ,2n—1 in clockwise order, such
that cell 0 contains z. If ¢ is the i-th cell with ¢ < n, then the infeasibility of
c is k plus the sum of the first 7 numbers of the sequence. Otherwise, if i > n,
use its antipodal cell ¢* to calculate the infeasibility as INF(c) = n—INF(c*).

By the choice of z as a point of minimal infeasibility (and thereby y as
a point of maximal infeasibility) the resulting sequence has a total sum of
n — 2k and the property that every prefix and postfix has a non-negative
sum.

The next lemma describes how the sequence represents infeasible base
subarrangements. We abbreviate +1 and —1 with 4+ and —.

Lemma 4. Infeasible base arrangements are represented in the +,— se-
quence by + — + or — + — subsequences.

Proof. Fix an infeasible base arrangement. Then z is either contained in
one of its regions with infeasibility 1 or infeasibility 2. Constructing the
sequences transforms the base arrangement to + — + in case of z lying in a
region of infeasibility 1 and — + — otherwise.

Conversely, let + — 4+ be a subsequence of the sequence. With respect to
z there are only two possibilities for the relative position of its three lines.
The induced orientation of + — + leads to the two configurations show in
Figure 6. The left configurations in fact is an infeasible base arrangement.
The right configuration is not possible, since no point lies in all three bad
halfplanes. The same reasoning applies to — + — subsequences. 0

To complete the proof of Theorem 10 we need a combinatorial lemma
about decompositions of sequences of plus- and minus-signs.

Lemma 5. Let S be a {+, —}-sequence containing n — k plus-signs and k
minus-signs with the property that every prefiz and postfix of S has a non-
negative sum. Then S contains at least LL;IJ disjoint subsequences of the

form + —+ or — + —.

Proof. We abstract the string S to a a zig-zag path with steps (1,1) and
(1,—1) starting at (0,%k) and ending at (n,n — k), always staying in the
y-interval [k,n — k], see Figure 7.
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Figure 7: The zig-zag path for the string + - ++ -+ ——++ + — ++.

A level of S is the set of symbols corresponding to a step in the zig-zag
path with y-coordinates between 7 and i 4+ 1, for some 7. Note that each
level contains either zero or an odd number of symbols.

We prove the lemma by induction on the length of the string. If the
string contains only one symbol it is + and thus

2-0+1
|
We distinguish several reducing operations on the sequence.

#disjoint alternating triples =0 = [

1. There is a level which contains exactly one symbol:

This symbol must be +. Removing it leads to a shorter valid string

with the same number of negative entries. By induction this shorter

sequence contains LL;IJ disjoint alternating triples.

2. There is a level which contains exactly three symbols:

These three symbols form the substring + —+. Removing them leaves
a shorter valid string with £ — 1 negative symbols. By induction

[2(k_31)+1J 2k;_1J-

#disjoint alternating triples > +1> L

10



3. There is a level containing at least six symbols:

The first six symbols of this level form the substring + — + — +—,
which consists of two alternating triples. Removing all six symbols
leaves a shorter valid string with £ — 3 negative symbols. Thus

2k+1J-

2(k—3)+1
#disjoint alternating triples > [%J +2= L 3

4. If non of the above cases holds, then every level contains exactly five
symbols.

e If there is only one level, then n = 5, £k = 2 and the first three
symbols form a substring + — +. Hence,

#disjoint alternating triples =1 = Li;_lJ

e If there are at least two levels, then consider the 10 symbols of
height & and k£ + 1. This substring has the shape of one of the 6 cases
shown in Figure 8. The figure indicates how the first nine symbols of
each string can be decomposed into three disjoint alternating triples.
Removing the ten symbols leaves a valid string with £ — 4 negative
symbols. Thus

2(k—4)+1 2k +1
#disjoint alternating triples > [QJ +3> L + J

3

(]

Since, by construction the parameter k£ was the infeasibility of the ar-

rangement, the lemma gives MAXDIs(A) > L%MININF(/()-F%J. This implies
f%MAXDIS(ff)] > MININF(A), i.e., the formula stated in the theorem.

The tightness of the factor 3/2 is shown via the arrangement of the n-

gon. Consider the arrangement of lines supported by the edges of a regular

(6r + 5)-gon oriented so that all halfspaces containing the polygon are bad.
Then MAXDIS(A) = 2r + 1 and MININF = 3r + 2 = [3MaxDis(A)].

4 Arrangements of Pseudolines

A pseudoline is a curve in R?> whose removal from the plane leaves two
unbounded connected components. In other words a pseudoline is a simple

11



ALV VARV AV

+1+to—1+1—2—3+3—3+2+ +1—1+1+2—3+3—3—2+2+
+1—1+1—3+3+2—2+2—3+ +1+2—3—1+t1+3—3—2+2+
+ite—2—1+1—3+3t2—3+ +1—1tite—2—3+3t2—3+

Figure 8: The six possible patterns of two levels, each of 5 symbols

curve which goes to infinity on both sides. An arrangement of pseudolines is
a family of pseudolines with the property that each pair of pseudolines has a
unique point of intersection, where the two pseudolines cross. Arrangements
of pseudolines are a natural generalization of arrangements of straight lines,
they have been studied in a wide variety of contexts. Griinbaum [5] is a nice
little monograph collecting results and many problems about arrangements
of both straight-lines and pseudolines. A more recent overview is given by
Goodman [3].

Let A be an arrangement of pseudolines. Choose an orientation for each
pseudoline, or equivalently, assign a good and a bad side to each pseudoline.
For the oriented arrangement A there are natural notions of infeasibility for
points, cells and subarrangements. Hence, questions regarding the relation
between MININF(A) and MAXD1s(A) can be asked in this more general
setting. Let us review the results for 2-dimensional arrangements of lines
and see what can be adapted to pseudolines. The validity of Propositions 1
in the new context is obvious. The upper bound of Proposition 4, i.e.,
MININF(A) < 3 - MAXD1s(A), holds, because of an analog of Helly’s The-
orem for pseudo-halfspaces. What about pseudoline analogs of Theorems
9 and 107 In the case of Theorem 10 the answer is easy. The proof given
in Subsection 3.2 is completely combinatorial, it makes no use of straight-
ness. Therefore, the result remains valid in the setting of arrangements of
pseudolines:

Theorem 11. For every arrangement A of pairwise crossing oriented pseu-

12



dolines with a cell which is on the bad side of every pseudoline

—

MININF(A) < [(3/2) - MaxDis(A)].
This bound is best possible.

The statement of this theorem gets false without the assumption that the
pseudolines are pairwise crossing. There are sets A of n pairwise parallel

-, -,

oriented pseudolines such that MININF(A) = n — 1 and MAXDIS(A) =
In/2].

The proof of Theorem 9 in Subsection 3.1 makes use of a metric argu-
ment. Therefore, the question whether the factor of 2 remains valid for ar-
rangements of pseudolines cannot be answered on the basis of the old proof.
The main result of this section is a proof of the following generalization of
Theorem 9.

Theorem 12. For every arrangement A of oriented pseudolines

—

MININF(A) < 2 - MAXDIS(A).

This bound is best possible.

In the next subsection we collect preparing facts about arrangements of
pseudolines. Along the way we learn some combinatorics of cyclic arrange-
ments and use this to produce the lower bound example for Theorem 9.
Subsection 4.3 contains the main body of the proof for Theorem 12.

4.1 Basic Facts

Given an arrangement A of pseudolines, choose a unbounded cell é and
imagine that ¢ contains the northpole. The complementary cell ¢ is the
unbounded cell separated from ¢ by all the pseudolines of the arrangement.
Label the pseudolines so that traversing the circle at infinity counterclock-
wise from ¢ to ¢ they are met in the order 1,2,...,n. This results in a
marked arrangement of pseudolines.

On the set of all (combinatorially different) marked arrangements of n
pseudolines consider a graph G, whose edges correspond to triangular flips,
see Figure 9. To be precise, the pair (./f, g) is an edge of G, iff there are
three pseudolines 7 < j < k in A such that:

e There is a triangular cell bounded by the tree pseudolines i, j, k.

e The northpole is separated from the crossing of pseudolines 7 and k by
pseudoline j.

13



flip

Figure 9: A flip at the shaded triangular cell.

e Arrangement B is equivalent to the arrangement obtained from A by
pulling pseudoline 5 below the crossing of ¢ and k.

Various aspects of the graph G,, have been studied [1, 10]. We will need the
following properties of G,.

(1) There is a unique arrangement C of n pseudolines, so that the indegree
of C in G, is zero. The arrangement C is the cyclic arrangement, it will
be studied in more detail in the next subsection.

(2) G, is the diagram of a ranked poset. (This poset is the “higher Bruhat
order” B(n,2) introduced in [8] and further studied in [10].)

The general idea for the proof of Theorem 12 is as follows. In a first step
we show the factor of 2 for all orientations of the cyclic arrangement. This
is done in Subsection 4.2. To prove the same factor for a marked oriented
arrangement A consider a path C = Ag, A1, ..., A, = A in G,, which starts
in the cyclic arrangement C and ends in the unoriented version A of A. The
existence of such a path follows from the two properties of G, mentioned
above, the original source for the connectivity of G, is Ringel [9].

Let ./E be the orientation of A; where line j is oriented as in A. The

— —

idea for the inductive proof is to show that MININF(A;) < 2 - MAXDIS(A;)

implies MININF(A;41) < 2 - MAXDIS(A;41). Actually the proof given in
Subsection 4.3 is a bit more complicated.

4.2 Cyclic Arrangements

The marked cyclic arrangement C of n lines is characterized by the property
that for any three lines ¢ < j < k the crossing of ¢ and k is separated from
the northpole by line j. A straight-line realization of this arrangement can
be obtained by choosing n different tangents to the parabola y = z2, the

14



special north-cell ¢ is the cell containing the parabola. Figures 11 and 12
show cyclic arrangements.

An orientation of the cyclic arrangement, i.e., an assignment of good and
bad sides to all lines, can be encoded by a sequence S of 4+ and — signs.
Take the lines in the order of their labels and write a + if the northern side
is bad and — if the northern side is good. Figure 10 illustrates the following
observation.

+

+

Figure 10: Infeasible base arrangement in a cyclic arrangement.

Observation 13. Let C be an oriented cyclic arrangement. Infeasible base
arrangements of C correspond one-to-one to the + — + subsequences in the
sequence S of the orientation.

Given the sequence S of an orientation of C we want to calculate the
infeasibility of a cell ¢. The infeasibility of the north-cell ¢ equals the number
of plus-signs in S. The infeasibility of a cell ¢ different from the north-cell
is obtained by reverting in S the signs of all the lines above ¢ and then
counting the number of plus-signs.

Associate with every cell ¢ of the cyclic arrangement C of n lines associate
the set of lines above c, i.e., the set of those lines separating ¢ from the
northpole. This gives a bijective mapping from the cells of C to intervals
[i,...,7] with 1 < i < j < n, together with (. Figure 11 exemplifies the
correspondence.

We are ready, now, to provide the lower bound example for Theorems 9
and 12.

Proposition 14. There is an orientation 4 of the cyclic arrangement C

— —

with 4k + 1 lines, such that MAXDIS(C) = k and MININF(C) = 2k.

Proof. Consider the orientation C of the cyclic arrangement corresponding
to the sequence +[— 4+ —+]* of length 4k + 1. Figure 12 shows an example
with k& = 2.

15



1,2 4,5

3,4,5

1,2,3,4 2,3,4,5

Figure 11: Cyclic arrangement, n = 5, cells are labeled by lines above them.

There are only 2k + 1 plus-signs in the sequence and every + — + sub-
sequence requires two, therefore, there can be at most k disjoint + — +
subsequences. Obviously, there are as many and MAXDIS((? ) =k.

Reverting the signs in an interval of S can decrease the number of plus-
signs by at most one. Therefore, the infeasibility of every cell in that ar-

rangement is at least 2k. 0

Cyclic arrangements can be realized as straight-line arrangements, there-
fore, the statement of the next proposition is a consequence of Theorem 9.
Here we give a new proof which has the virtue of being purely combinatorial.

Proposition 15. Given an orientation c of the cyclic arrangement with

MAXDIS(C) = k, then there is a cell ¢ with INF(c) < 2k.

Proof. The orientation C is encoded by a sequence S with no more then k
disjoint + — + subsequences. We have to show that there is an interval such
that reverting the signs of this interval results in a sequence with at most
2k plus-signs.

Define the span of a subset T of signs of S as the length of the shortest
interval containing all the signs of T'. The span a family of k& disjoint + — +
subsequences of S is the sum of the spans of its k triples.

Let F be a family of k disjoint + — + triples of § such that the span
of F' if minimal among all such families. In S color the 3k signs from the
triples in F' red and all the remaining signs blue. Since, the blue signs are
not allowed to contain an additional + — + subsequence, the induced blue
sequence is described by the regular expression [—]*[+]*[—]*.

For the reversal we choose the smallest interval containing all the blue
plus-signs. Let S’ be the sequence after reversal of the signs in this interval.

16



+

— —

Figure 12: Cyclic arrangement with MAXDIS(C) = 2 and MININF(C) = 4.

In S’ there is no blue plus-sign. Let T be one of the &k red + — + triples of
F and let T” be the corresponding triple in S’. We claim that T" contains at
most two plus-signs. Since all plus-signs of S are red the claim immediately
yields an upper bound of 2k for the number of plus-signs in S’, which proves
the proposition.

Suppose T is a triple in F' violating the claim. This means, that the
middle symbol, the —, of T" has been reversed, while the other two symbols
remained unchanged. By the choice of the interval for reversal we find that
the first and the last blue plus-sign together with the — from 7" form a +—+
subsequence T* in S. The span of T* is less then the span of T. Therefore,
F —T 4T~ is a family of £ disjoint 4+ — + subsequences and span less then
the span of F', contradiction. 0

Remark. The notion of a cyclic arrangement is not restricted to the plane.
Let C, be the orientation of such an arrangement given by alternating se-
quence of plus- and minus-signs. In even dimension d it can be shown that
MININF(C) > %MAXDIS(C_') — 4. This is a slight improvement over the
lower bound of Proposition 5. In odd dimensions the gain is smaller. Com-
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pared to Proposition 5 C has the advantage of providing a deterministic
construction for the factor (d + 1)/2 and saving the e.

4.3 Proof of Theorem 12

By the sketchy outline of the proof given on page 14 it is sufficient to prove
the claim: If.A and B are related by a trmngular flip as in Figure 9 the in-
equality for A implies the inequality for B. In the course of the argument we
need induction, so we assume the the inequality MININF(A) < 2MAXDIS(A)
holds for A and also for all arrangements with fewer lines than A

Given that the implication holds for every pair of flip-adjacent arrange-
ments we can apply this to all pairs of a path C = AgA;...A, = A connecting
the cyclic arrangement with A. The proof of the above claim follows.

Let ¢ be the triangular cell in A which is flipped to get B and let T be
the triple of pseudolines bounding c. We distinguish three cases:

e Cell ¢ is on the good side of the three pseudolines of 7" in /f, abusing
terminology we characterize this case by saying T' is feasible.

e The subsystem induced by T is infeasible, i.e., ¢ is on the bad side of
all three pseudolines in A .

e The subsystem induced by T in A is neither feasible nor infeasible,
then we call it neutral.

First consider the case that subsystem induced by T is neutral. Since rota-
tions and careful local deformations do not affect the combinatorial nature
the flip is described by th left to right arrow or by the right to left arrow
in Figure 13. in either case after performing the flip the subsystem remains
neutral. Since MININF(A) and MININF(B) are both at most i — 2, this value
is not affected by the flip. Moreover, a subsystem of A is infeasible iff it is
infeasible in B. Therefore, MAXDIS(A) = MAXDIs(B) and the inequality
MININF(E) < 2. MaxDi1s(B) follows from the corresponding inequality for
A.

Next suppose that the subsystem induced by T is feasible, i.e., in A cell
c is on the good side of the lines in T'. Let B* be the arrangement obtained
from B by deleting the three pseudolines of T'. Recall that by induction

MININF(B*) < 2 - MaxDis(B*).
Since T is an infeasible base system of B we have

—

MAxD1S(B*) + 1 < MaxDis(B).
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Figure 13: A neutral flip.

To relate the minimum infeasibility of B and B* consider a cell Cmin Of B
with INF(cmin) = MININF(B). Let ¢’ be the triangular cell of B bounded
by the lines in 7. Since cmin # ¢’ the infeasibility of all points in ¢, can

decrease by at most two upon removal of the three lines of T'. Therefore,
MININF(B) < MININF(B*) + 2.
Combining the inequalities leads to the desired result for B:
MININF(B) < MININF(B*) + 2 < 2 - MAXDi1s(B*) + 2 < 2 - MaxDis(B).

The last case is that the subsystem induced by T is infeasible. Af-
ter the flip the subsystem becomes a feasible subsystem of B. Clearly

MININF(A) > MININF(B). If MAXDis(A) = MAxDis(B) we immediately
obtain the result:

—, — —

MININF(B) < MININF(A) < 2 - MAXDIs(A) = 2 - MAXDIis(B).

— —

The more complex situation is when MAXDI1s(A) — 1 = MAXDIs(B). In
this case the three lines of T' form an infeasible subsystem of A which is
contained in every maximal set of disjoint infeasible subsystems of A. To
deal with this situation we need the following lemma:

Lemma 6. Let A be an oriented arrangement of pseudolines with an in-
feasible triangular cell ¢ whose boundary lines form an infeasible system T
which is contained in every mazimal set of disjoint infeasible subsystems of

./T. Then

(1) every pseudoline g with ¢ on the bad side is contained in every mazimal
set of disjoint infeasible subsystems of A, and

(2) there is no infeasible base system R disjoint from T in A such that c is
contained in the bounded region of R.
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Proof. Let ly,l2,1l3 be the pseudolines of the system T'. Suppose there is a
pseudoline g which has ¢ on the bad side and is not used by some maximal
system of disjoint infeasible subsystems. Up to relabeling the situation is
as shown in Figure 14. Replacing the triple T' = [1,15,13 by g,l2,13 gives a
maximal system of disjoint infeasible subsystems not containing T', a con-
tradiction.

lg ll
g

Figure 14: The infeasible triangular cell ¢ and an extra line g with ¢ on its
bad side.

For the proof of part 2, suppose there is an infeasible base subarrange-
ment R containing c in its bounded region. Let g1, g2, g3 be the pseudolines
of R. We may assume that the arrangement induced by Iy,ls,l3 and ¢; is
again as shown in Figure 14.

Suppose that the crossing of g2 and g3 is on the bad side of [1. In this case
the triples ls, I3, g1 and g2, g3, 11 form two disjoint infeasible subarrangements
from the six lines of T" and R.

If go and g3 cross on the good side of [; then the situation is as described
by Figure 15.

Iy Ly, g0
g1

Figure 15: Lines g1 and go cross on the good side of [;.

Suppose that the crossing of lo and g3 is on the good side of Iy and hence
on the bad side of [3. In this case the triples ls,l3, g3 and [y, g1, g2 form two
disjoint infeasible subarrangements. Otherwise, the crossing of I and g3 is
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on the bad side of /1. In this case the triples l1,l9, g3 and I3, g1, go form two
disjoint infeasible subarrangements.

In all cases we can form two new infeasible base arrangements from the
six lines of T' and R. This contradicts the assumption that T is contained
in every maximal set of disjoint infeasible subsystems of A. O

We now estimate the infeasibility of the the triangular cell ¢ defined by
T in A Let F be a maximal system of disjoint infeasible subsystems in
A. Because of Lemma 6.(2) every subarrangement 7" # T in F contains ¢
in a region of infeasibility at most 2. By Lemma 6.(1) this accounts for all
pseudolines having ¢ on the bad side. Therefore,

—

INF(c) < 2- (MAXDis(A) — 1) +3

Since the infeasibility of cell ¢ is decreased by 3 through the flip, we have

— —

MININF(B) < INF(¢) — 3 < 2- (MaXDis(A) — 1).

— —

This completes the proof for the case where MAxXDI1s(B) = MAxDIs(A) — 1
and, hence, the proof of Theorem 12. 0

Conclusion

We have investigated bounds of the LHS over the RHS in the inequality

—.

MININF(A) > MaXD1s(A).

For the 2-dimensional case we gave tight results both for arrangements of
lines and pseudolines. In d dimensions we have seen that the best possible
factor is between (d+1)/2 and d+ 1. Based on the ideas of this paper these
bounds can be improved to (d + 2)/2 and d. For d = 2 these lower and
upper bounds match, but for higher d there remains a wide gap. It would
be interesting to know on which side of the interval the truth hides.
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