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Abstract. Which plane graphs admit a straight line representation such that
all faces have the shape of a triangle? In previous work we have studied neces-
sary and sufficient conditions based on flat angle assignments, i.e., selections of
angles of the graph that have size π in the representation. A flat angle assign-
ment that fullfills these conditions is called good. The complexity for checking
whether a graph has a good flat angle assignment remains unknown.

In this paper we deal with extensions of good flat angle assignments. We
show that if G has a good flat angle assignment and G+ is obtained via a pla-
nar Henneberg step of type 2, then G+ also admits a good flat angle assign-
ment. A similar result holds for certain combinations of Henneberg type 1 steps
followed by a type 2 step. As a consequence we obtain a large class of pseudo-
triangulations that admit drawings such that all faces have the shape of a triangle.
In particular, every 3-connected, plane generic circuit admits a good flat angle
assignment.

1 Introduction
In this paper we study a representation of planar graphs in the classical setting,
i.e., vertices are presented as points in the Euclidean plane and edges as straight
line segments. We are interested in the class of planar graphs that admit a repre-
sentation in which all faces are triangles. Note that in such a representation each
face f has exactly deg(f)− 3 incident vertices that have an angle of size π in f .
Conversely each vertex has at most one angle of size π. In [2] we have studied
necessary and sufficient conditions based on flat angle assignments, i.e., selec-
tions of angles of the graph that have size π in the representation. Flat angle
assignments that fullfill these conditions are called good. The complexity for
checking whether a graph has a good flat angle assignment remains unknown.
∗The full version of this paper can be found online [1]
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Figure 1: (a) A pseudo-triangulation that does not induce an SLTR, (b) a Laman graph
that has an SLTR but can not be constructed using only the two steps we give in Section 2,
(c) a planar Laman graph that has no SLTR for this embedding, (d) a planar Laman graph
that has no SLTR.

A pseudo-triangle is a simple polygon with precisely three convex angles,
all other vertices of the polygon admit a concave angle at the interior of the
polygon. A pseudo-triangulation (PT) is a planar graph with a drawing such
that all faces are pseudo-triangles. An example of a PT is given in Fig. 1 (a).

A pseudo-triangulation is pointed if each vertex has an angle of size > π.
A pointed pseudotriangulation with n vertices must have exactly 2n− 3 edges.
Indeed pointed pseudotriangulations have the Laman property: they have 2n−3
edges, and subgraphs induced by k vertices have at most 2k − 3 edges. Laman
graphs, and hence also pointed pseudotriangulations, are minimally rigid graphs.
A detailed survey on pseudo-triangulations has been given by Rote et al. [8].

Pseudotriangulations induce an assignment of big angles to vertices. This
assignment is closely related to a flat angle assignment.

A Straight Line Triangle Representation (SLTR) of a graph G is a plane
drawing of G such that all edges are straight line segments and all faces are
triangles (e.g. Fig. 1 (b)). Throughout this paper G = (V,E) will be a plane,
internally 3-connected graph. Three vertices which are the corners of the outer
face in an SLT Representation of the graph are given and we call these vertices
suspensions. A plane graphG with suspensions s1, s2, s3 is said to be internally
3-connected when the addition of a new vertex v∞ in the outer face, that is made
adjacent to the three suspension vertices, yields a 3-connected plane graph.

A flat angle assignment (FAA) of a graph is a mapping from a subset U of
the non-suspension vertices to faces such that, the vertex is incident to the face
and,
[Cv] Every vertex of U is assigned to at most one face,
[Cf ] For every face f , precisely |f | − 3 vertices are assigned to f .

An FAA is called good (GFAA) when it induces an SLTR. In [2] we have
shown that an FAA is good if and only if it induces a contact family of pseu-
dosegments Σ which has the following property:
[CP ] Every subset S of Σ with |S| ≥ 2 has at least three free points.

Informally, pseudosegments arise from merging the edges that are incident
to an assigned angle of a vertex, the vertex will be an interior point of the pseu-
dosegment. Since a vertex is assigned at most once, the pseudosegments do not
cross. The pseudosegments will be stretched to straight line segments to obtain
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an SLTR. Let p be an endpoint of a pseudosegment in S ⊆ Σ. If p is a suspen-
sion vertex, then p is a free point for S. When p is not a suspension then it is a
free point for S if: p is incident to the unbounded region of S, it has at least one
neighbor not in S and it is not an interior point for a pseudosegment in S.

The drawback of this characterization is that we are not aware of an efficient
way to test whether a given graph has an FAA that is good.

A combinatorial pseudo-triangulation (CPT) is an assignment of the labels
big and small to the angles around each vertex. Each vertex has at most one
angle labeled big and each inner face has precisely three incident angles labeled
small, the outer face has all angles labeled big. For an interior angle labeled
big, let the incident vertex be assigned to the incident face, and a vertex is not
assigned if it has no angle labeled big. Three vertices of the outer face are chosen
to be the suspensions, the other vertices are assigned to the outer face. Hence a
CPT induces an FAA and the similarly an FAA induces a CPT.

A CPT does not always induce a PT, Orden et al. have shown that the gener-
alized Laman condition is necessary and sufficient for a CPT to induce a PT [7].

Lemma 1.1 (Generalized Laman Condition). Let G be the graph of a pseudo-
triangulation of a planar point set in general position. Every subset of x not
assigned vertices plus y assigned vertices ofG, with x+y ≥ 2 spans a subgraph
with at most 3x+ 2y − 3 edges.

Proposition 1.2. A GFAA of an internally 3-connected plane graph satisfies the
generalized Laman Condition.

An FAA that is not good may also satisfy the generalized Laman Condition
(e.g. Fig. 1 (a)), therefore this condition is necessary but not sufficient. Every
Laman graph can be constructed from an edge by Henneberg steps [6, 9]. A
graph G = (V,E), with |E| = 2|V | − 3 that has an SLTR, has a CPT that
induces a PT by Prop. 1.2 and by the result of Haas et al. it must be a Laman
graph. Therefore it must have a Henneberg construction. In the next section we
will investigate how to use this construction such that a GFAA can be extended
along the steps.

2 Construction Steps
It has been shown that planar Laman graphs admit a planar Henneberg con-
struction [5]. Since we consider plane graphs (with a given set of suspension
vertices), we consider the Henneberg steps in a plane setting. Recall that the
graph must be internally 3-connected.

Henneberg Type 2 Step
Given a graph G and a GFAA ψ of G. A Henneberg Type 2 step (HEN2) subdi-
vides an edge uv and connects the new vertex x to a third vertex w (see Fig. 2).
The face f , incident to uv and w is splitted into fu (the face incident to u) and
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fv . The other face incident to uv is denoted with fx. The resulting graph is
denoted G+. We will construct an assignment ψ+ for G+ and proof that ψ+ is
a GFAA.

There are three vertices not assigned to f under ψ, we will call them corners
of f . We consider two cases, firstly fu is incident to all corners of f , secondly,
fu is incident to precisely two corners of f . Note that if w is a corner of f it will
be a corner for both fu and fv . The vertices different from u, v, w, x, that are
assigned to f under ψ, will be assigned in the trivial way under ψ+, i.e., such a
vertex is assigned to fu resp. fv , if in G+ it is incident to fu resp. fv .

Case 1: fu is incident to all corners of f . If u or w is assigned to f under ψ,
it is assigned to fu under ψ+. The vertex v is assigned to fx and x to fu
under ψ+.

Case 2: fu is incident to precisely two corners of f . If u or w is assigned to f
under ψ, it is assigned to fu under ψ+, if v was assigned to f it is assigned
to fv under ψ+ and x is assigned to fx.

This yields an assignment ψ+ for G+.
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Figure 2: Updating the assignment after a HEN2 step. The white vertex and
dashed edge represent the step.

Theorem 2.1. Given a 3-connected, plane graph G with a GFAA ψ. Let G+ be
the result of a HEN2 step applied to G and let ψ+ be the updated assignment.
Then ψ+ is a GFAA and G+ admits an SLTR.

Proof. It is easy to see that ψ+ satisfies Cv and Cf and hence is an FAA.
We consider the induced families of pseudosegments, Σ and Σ+ of ψ and

ψ+ respectively. Since ψ is a Good FAA, we know that every subset S of Σ
has at least three free points or S has cardinality at most one. Let S ⊆ Σ+

of cardinality at least two, and for every pseudosegment p of Σ+ which is not
a pseudosegment of Σ consider p ∈ S and show that S has at least three free
points by using that there is an equivalent set under Σ which has at least three
free points.

In both cases there are three pseudosegments that have changed, we will only
discuss Case 1 here. Let sx resp. sv be the pseudosegment that has x resp. v as
interior point and let sw the pseudosegment containing the edge vw.

- If sx ∈ S then replace sx by the pseudosegment s′x of Σ that has u and v
as interior points.
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- If sv ∈ S then replace sv by the pseudosegment s′v of Σ that ends in v
and contains all the edges, except vx, of sv .

- If sw ∈ S then delete sw.
Now we have a set S′ ∈ Σ, thus S′ has three free points unless |S′| = 1.

- If sx ∈ S then sx contributes the same free points to S as s′x to S′.
- If sv ∈ S then if v was a free point for S′, x is for S. Hence sv contributes

the same number of free points to S as s′v to S′.
- If sw ∈ S then if |S′| = 1, sw contributes at least one free point to S and

it covers no other points, thus S has three free points, or, if |S′| > 1 then
S′ has at least three free points, adding sw does not cover any of them and
therefore S has at least three free points.

We conclude that in Case 1 every set S of cardinality at least two has at least
three free points. The argumentation for Case 2 is similar and it follows
that ψ+ is a GFAA.

A graph G = (V,E) is a generic circuit if |E| = 2|V | − 2 and subgraphs
induced by k vertices have at most 2k − 3 edges. The generic circuit with the
least number of vertices is K4.

Theorem 2.2. Every 3-connected, plane, generic circuit admits an SLTR.

Proof. A 3-connected, generic circuit can be constructed with HEN2 steps from
K4 (Berg and Jordán [3]) and K4 admits an SLTR. Every plane 3-connected
generic circuit can be constructed with HEN2 steps from K4 such that all inter-
mediate graphs are plane. By Thm. 2.1 we have that every 3-connected, plane
generic circuit admits an SLTR.

Henneberg Combination Step
For connectivity reasons single HEN1 steps are not compatible with SLTRs.

However certain sequences of HEN1 steps followed by a HEN2 step allow for the
extension of a GFAA. Next we will describe such a combination step denoted
HEN1n2.

Let f be a face with n+ 1 vertices. The first HEN1 step stacks a new vertex
v0 over an edge of f . The vertices v0, . . . , vn−1 are introduced by the n HEN1

steps in such a way that v0, . . . , vn−1 is a path and each vertex of f is a neighbor
of some vi. The final HEN2 step subdivides an edge which is incident to some vi
(not vn−1) and connects the new vertex vn to vn−1. Of course the construction
has to maintain planarity.

Theorem 2.3. Given a 3-connected, plane graph G with a GFAA ψ. Let Gn

be the result of a HEN1n2 step applied to G and ψn be the updated assignment.
Then ψn is a GFAA and Gn admits an SLTR.

Due to the lack of space we have left out the algorithm that decides how to
update the assignment, this and the proof of Thm. 2.3 can be found in the full
version.
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3 Conclusion and Open Problems
We have given two construction steps such that a GFAA can be extended along
these steps and the extended assignment is also a GFAA. However, this does not
define the class of Laman graphs that have an SLTR. Therefore the problem: Is
the recognition of graphs that have an SLTR (GFAA) in P ? is still open, even
for graphs in which all non-suspension vertices have to be assigned.

The class of 3-connected quadrangulations is well-defined, e.g. Brinkmann
et al. give a characterization using two expansion steps [4]. Adding a diagonal
edge in the outer face of a plane, 3-connected quadrangulation yields a Laman
graph. One of the expansion steps (denoted P3 in [4]) is a Henneberg Combina-
tion step, hence a GFAA can be extended along this step. It would be interesting
to know if a GFAA could also be extended along the other expansion step (de-
noted P1 in [4]).

Adding an edge in a plane graph that has a GFAA requires only minor
changes to the GFAA of the original graph to obtain a GFAA for the resulting
graph. An interesting question arises: Does every graph that admits an SLTR in
which not every non-suspension vertex admits a straight angle, have a spanning
Laman subgraph that admits an SLTR?
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