
Using SAT to study plane Hamiltonian
substructures in simple drawings∗†

Helena Bergold1, Stefan Felsner2, Meghana M. Reddy3, and
Manfred Scheucher2

1 Department of Computer Science, Freie Universität Berlin, Germany,
firstname.lastname@fu-berlin.de

2 Institut für Mathematik, Technische Universität Berlin, Germany,
lastname@math.tu-berlin.de

3 Department of Computer Science, ETH Zürich, Switzerland,
meghana.mreddy@inf.ethz.ch

Abstract
In a simple drawing of a complete graph, all edges are drawn as simple curves and every pair of
edges intersects in at most one point which is either a common vertex or a proper crossing. Simple
drawings generalize straight-line drawings in a similar vein as abstract order types generalize point
sets. They have been studied for many years and have become a source for many open problems
and conjectures.

We provide a SAT framework which allows enumerating simple drawings with specified properties
or to decide that no such drawing exists. Using this framework we look at open problems on classes
of simple drawings. Based on the data, we provide new strengthenings and modifications of existing
conjectures. Some of these problems concern non-crossing substructures in simple drawings. The
most prominent example may be the conjecture by Rafla (1988), which asserts that every simple
drawing of the complete graph Kn contains a plane Hamiltonian cycle. Today, however, only the
existence of plane paths of logarithmic size and plane matchings of size Ω(

√
n) is known (Suk and

Zeng 2022; Aichholzer et al. 2022). Here we present a proof for the existence of plane Hamiltonian
subgraphs with 2n− 3 edges in convex drawings which are a rich subclass of simple drawings. Our
proof comes with a polynomial time algorithm.

1 Introduction

In a simple drawing of a graph in the plane (resp. on the sphere), the vertices are mapped
to distinct points, and edges are drawn as simple curves that connect the corresponding
endpoints but do not contain other vertices. Moreover, every pair of edges intersects in at
most one point, which is either a common vertex or a proper crossing (no touching), and no
three edges cross at a common point. Figure 1 shows the obstructions to simple drawings.
Throughout this article, we will only consider simple drawings of the complete graph Kn.

Problems related to simple drawings have attracted a lot of attention. One of the reasons
is that simple drawings are closely related to interesting classes of drawings such as crossing-
minimal drawings or straight-line drawings, a.k.a. geometric drawings. The focus of this
article will be on the class of convex drawings, which was recently introduced by Arroyo
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Figure 1 The five obstructions to simple drawings.

et al. [5]. Convex drawings are nested between simple drawings and geometric drawings,
and a large subclass of convex drawings is in correspondence with acyclic oriented matroids
of rank 3. For further aspects of the convexity hierarchy we refer the interested reader to
[5, 4, 6].

The notion of convexity is based on the triangles of a drawing, i.e., the subdrawings
induced by three vertices. Since the edges of a triangle do not cross in simple drawings, a
triangle partitions the plane (resp. sphere) into exactly two connected components. The
closures of these components are the two sides of the triangle. A side S of a triangle is convex
if every edge that has its two vertices in S is completely drawn inside S. A simple drawing
of the Kn is convex if every triangle has a convex side.

To study forced and forbidden substructures in general simple drawings and subclasses
such as convex drawings, we develop a Python program which generates a Boolean formula
in conjunctive normal form (CNF) that is satisfiable if and only if there exists a simple
drawing of Kn (for a specified value of n) with prescribed properties. Moreover, the
solutions of these instances are in one-to-one correspondence with non-isomorphic simple
drawings with the prescribed properties. We then use the state of the art SAT solvers
PicoSAT [7] and CaDiCaL [8] to decide whether a solution exists and to enumerate the
solutions. Unsatisfiability results can be verified using the independent proof checking tool
DRAT-trim [21].

In order to encode a simple drawing of the complete graph in terms of a CNF, it is
important to note that combinatorial properties such as pairs of crossings are fully determined
by the rotation system. For a given simple drawing D and a vertex v of D, the cyclic order
πv of incident edges in counterclockwise order around v is called the rotation of v in D. The
collection of rotations of all vertices is called the rotation system of D. More specifically, the
rotation system captures the combinatorial properties of a simple drawing on the sphere –
the choice of the outer cell when stereographically projecting the drawing onto a plane has
no effect on the rotation system.

Πo
4 :

π1 : 2 3 4
π2 : 1 3 4
π3 : 1 2 4
π4 : 1 3 2

Πo
5,1 :

π1 : 2 3 4 5
π2 : 1 3 4 5
π3 : 1 4 2 5
π4 : 1 5 3 2
π5 : 1 4 2 3

Πo
5,2 :

π1 : 2 3 4 5
π2 : 1 3 5 4
π3 : 1 4 2 5
π4 : 1 5 3 2
π5 : 1 2 4 3

Figure 2 The three obstructions Πo
4, Πo

5,1, and Πo
5,2 for rotation systems.

The SAT encoding uses Boolean variables and clauses to encode the rotations of vertices.
To assert that the prescribed permutations for the vertices (which we refer to as pre-rotation
system) can be realized by a simple drawing, we use Boolean formulas to forbid obstructions.
A computational result of Ábrego et al. [2] together with a result of Kynčl [14, Theorem
1.1] characterizes drawability in terms of induced 4- and 5-tuples: A pre-rotation system on
n elements is drawable if and only if it does not contain Πo

4, Πo
5,1 and Πo

5,2 (Figure 2) as
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a subconfiguration. To encode convex drawings, we use of result by Arroyo et al. [5] that
characterizes convex drawings in terms of 5-tuples: A simple drawing is convex if and only if
it does not contain Πoc

5,1 or Πoc
5,2 (depicted in Figure 3) as a subconfiguration.

Πoc
5,1 :

π1 : 2 3 4 5
π2 : 1 3 4 5
π3 : 1 2 4 5
π4 : 1 2 5 3
π5 : 1 2 4 3

2

5
3

1

4

13

2

5 4

Πoc
5,2 :

π1 : 2 3 4 5
π2 : 1 3 5 4
π3 : 1 2 4 5
π4 : 1 2 5 3
π5 : 1 4 2 3

Figure 3 The two obstructions Πoc
5,1 and Πoc

5,2 for convex drawings.

We discuss questions regarding plane substructures in drawings of the complete graph.
In particular we focus on variants of Rafla’s conjecture [17], which asserts that every simple
drawing of the complete graph contains a plane Hamiltonian cycle.

I Conjecture 1.1 ([17]). Every simple drawing of Kn contains a plane Hamiltonian cycle.

Rafla verified the conjecture for n ≤ 7. Later Ábrego et al. [2] did a complete enumeration
of all rotation systems for n ≤ 9 and verified the conjecture for n ≤ 9. Furthermore the
conjecture was proven for some particular subclasses such as geometric, monotone and
cylindrical drawings. With the SAT framework we are able to verify Conjecture 1.1 for all
n ≤ 10.

Recently, Suk and Zeng [20] and Aichholzer et al. [3] independently showed that simple
drawings contain a plane path of length (logn)1−o(1). Suk and Zeng also showed that
every simple drawing of Kn contains a plane copy of every tree on (logn)1/4−o(1) vertices.
Aichholzer et al. moreover showed the existence of a plane matching of size Ω(n1/2), which
improves older bounds from a series of papers [15, 16, 9, 19, 11, 10, 18].

Fulek and Ruiz–Vargas [11, Lemma 2.1] showed that every simple drawing of Kn contains
a plane subdrawing with 2n− 3 edges. Note that this bound is best-possible because every
plane subgraph of the straight-line drawing of Kn on a point set in convex position (see
Figure 4(left)) is outerplanar and thus has at most 2n−3 edges. In general, it is NP-complete
to determine the size of the largest plane subdrawing [12]. Based on the data for small n,
we conjecture that indeed every simple drawing contains a plane Hamiltonian subgraph on
2n− 3 edges. We verified this conjecture for n ≤ 8.

I Conjecture 1.2. Every simple drawing of Kn with n ≥ 3 contains a plane Hamiltonian
subdrawing on 2n− 3 edges.

For the class of convex drawings, we succeeded in proving a strengthened version of the
conjecture where the plane Hamiltonian subgraph contains a spanning star.

1 2 3 4 5

4

5

3

2

1

Figure 4 (left) the perfect convex C5 and (right) the perfect twisted drawing T5.
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I Theorem 1.3. Let D be a convex drawing of Kn with n ≥ 3 and let v? be a vertex of D.
Then D contains a plane Hamiltonian cycle C which does not cross any edge incident to v?.
This Hamiltonian cycle can be computed in O(n2) time.

Proof sketch. We show that convex drawings have a layering structure and reduce the prob-
lem of finding a Hamiltonian cycle to finding a Hamiltonian path for each layer independently.
To simplify the proof and to reduce the number of cases that have to be considered, we make
use of the SAT framework.

For a convex drawing D of the complete graph Kn and a fixed vertex v?, we give an
algorithm that computes a plane Hamiltonian cycle which does not cross edges incident to v?.
We assume that v? = n and that the other vertices are labeled from 1 to n − 1 in cyclic
order around v?. Moreover, by applying suitable stereographic projections, we can assume
that v? belongs to the outer face. We denote vertex v? = n as the star vertex and edges
incident to v? as star edges. We call an edge star-crossing if it crosses a star edge. For the
Hamiltonian cycle we only use edges which are not star-crossing. We particularly focus on
the edges e = {v, v + 1} between consecutive neighbors in the cyclic order around v?, that is,
1 ≤ v < n and v + 1 is considered modulo n− 1. An edge e = {v, v + 1} is called good if it is
not star-crossing. Otherwise, if the edge b = {v, v + 1} crosses a star edge {w, v?}, then we
say that b is a bad edge and w is a witness for b.

If there is at most one bad edge {v, v + 1}, then the n− 2 good edges together with the
two star edges {v, v?} and {v+1, v?} form a Hamiltonian cycle. Hence it remains to deal with
the case of two or more bad edges. Firstly, using the properties of a convex drawing we prove
that every pair of bad edges appears in a nested structure as illustrated in Figure 5 where
for every witness w of a bad edge {v, v + 1}, we have w < v. For this we may have to relabel
the vertices cyclically and choose a different outer face. Next, the nesting property implies
that we can label the bad edges as b1, . . . , bm for some m ≥ 2, such that if bi = {vi, vi + 1},
then 1 < v1 < v2 < . . . < vm = n − 2. Moreover, let wL

i and wR
i be the leftmost and the

rightmost witnesses of the bad edge bi, and by Li = {x ∈ [n − 1] : wR
i+1 < x < wL

i } and
Ri = {x ∈ [n− 1] : vi + 1 ≤ x ≤ vi+1} be the left and the right blocks of vertices between
two consecutive bad edges bi and bi+1; see Figure 5.

To construct the desired plane Hamiltonian cycle of non-star-crossing edges, we begin
with the edge {v?, v1} and then iteratively add a plane path from vi to vi+1 that includes all
previously unvisited vertices from Li−1, all the vertices of Ri and some vertices of Li. When
reaching the vertex vm + 1 = n− 1, we close the plane Hamiltonian path by adding edge
{vm + 1, v?}. Figure 6 illustrates the simple case, where all Li’s are empty.

In general, however, the Li’s are not empty and the procedure is more involved. The
path from vi to vi+1 consists of a subpath from vi to vi + 1 and a subpath from vi + 1 to vi+1.

wL
i vi + 1vi vi+1 + 1

bi+1

wR
i

bi

wL
i+1 wR

i+1

Li Ri

vi+1

Figure 5 An illustration of nesting of two bad edges, where bad edges are depicted in red.
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Figure 6 Example of a plane Hamiltonian cycle (blue) in the case where Li = ∅ for all i.

For the former path (from vi to vi + 1), we go from vi to wR
i via the previously unvisited

vertices from Li−1 and then one by one with decreasing labels to wL
i . As long as there are

vertices in Li from which we can return to vi + 1 via a non-star-crossing edge, we traverse
these vertices and then return to vi + 1. The latter path (from vi + 1 to vi+1) traverses all
the vertices of Ri and some further vertices of Li, and lies entirely in the region between the
two bad edges bi and bi+1. J

2 Variations

We also studied variations of plane Hamiltonian structures which we briefly mention below.

Extending Hamiltonian cycles

Another way to interpret Theorem 1.3 is the following: given a spanning star in a convex
drawing of Kn, we can extend this star to a plane Hamiltonian subdrawing of size 2n− 3.
As a variant of this formulation, we tested whether the other direction is true, i.e., whether
any given plane Hamiltonian cycle can be extended to a plane subdrawing with 2n− 3 edges.
We verified that such an extension is possible for n ≤ 10.

I Conjecture 2.1. Let D be a convex drawing of Kn. Then every plane Hamiltonian cycle
can be extended to a plane Hamiltonian subgraph on 2n− 3 edges.

Hamiltonian cycles avoiding a matching

Instead of a prescribed spanning star, we can also prescribe a matching and ask whether
there is a Hamiltonian cycle that together with the matching builds a plane Hamiltonian
substructure, i.e., the edges of the matching are not crossed by the Hamiltonian cycle.
Hoffman and Tóth [13] investigated the geometric setting. They showed that for every plane
perfect matching M in a geometric drawing of Kn there exists a plane Hamiltonian cycle
that (possibly contains edges of M but) does not cross any edge from M . We believe that
the same holds for convex drawings as well, and have verfied it for n ≤ 11.

I Conjecture 2.2. For every plane (not necessarily perfect) matching M in a convex drawing
of Kn there exists a plane Hamiltonian cycle that (possibly contains edges of M but) does
not cross any edge from M .

Hamiltonian paths with a prescribed edge

In general, it is not possible to find a Hamiltonian cycle containing a prescribed edge in
simple drawings. Even if we only ask for a Hamiltonian path containing a prescribed edge

EuroCG’23



2:6 Using SAT to study plane Hamiltonian substructures in simple drawings

there is an easy example: consider the edge {1, 5} in the perfect twisted T5 depicted in
Figure 4. However, the relaxation to Hamiltonian paths seems to be true for convex drawings.
We have verified it for n ≤ 11.

I Conjecture 2.3. Let D be a convex drawing of Kn and let e be an edge of D. Then D has
a plane Hamiltonian path containing the edge e.

3 Discussion

We remark that our SAT-based investigation of substructures certainly surpasses the enu-
merative approach from [2]. While their approach required the enumeration and testing of 7
billion rotation systems on 9 vertices, our framework allows us to make investigations for
up to n = 20 vertices with reasonably small resources. For example, most computations for
n = 9 only took about 1 CPU hour and 200MB RAM. Even though exact computation times
are not given in [2], the fact that the database for n ≤ 9 covers about 1TB of disk space
shows that our approach works with significantly less resources. Moreover, an enumerative
approach for n = 10 (e.g. to test the existence of plane Hamiltonian cycles) would not be
possible in reasonable time with contemporary computers because there are way too many
rotation systems to be enumerated and tested.

Using our framework, we also studied uncrossed edges, crossing families, and empty
triangles in simple drawings of the complete graph and believe that SAT-based investigations
can be useful to make advancements in the study of simple drawings.
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