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Abstract. Schnyder labelings are known to have close links to order dimension and
drawings of planar graphs. It was observed by Ezra Miller that geodesic embeddings of
planar graphs are another class of combinatorial or geometric objects closely linked to
Schnyder labelings. We aim to contribute to a better understanding of the connections
between these objects. In this article we prove

e a characterization of 3-connected planar graphs as those graphs admitting rigid
geodesic embeddings,

e a bijection between Schnyder labelings and rigid geodesic embeddings,

e a strong version of the Brightwell-Trotter theorem.

Mathematics Subject Classifications (2000). 05C10, 68R10, 06A07.

1 The Players of the Game

1.1 Planar Maps

A planar map M is a simple planar graph G together with a fixed planar
embedding of G in the plane. A suspension M? of M is obtained by selecting
three different vertices ai,a9,as in clockwise order from the outer face of M
and adding a half-edge that reaches into the outer face to each of these special
vertices. The closure M7 of a suspension M7 of M is obtained by adding a new
vertex v, this new vertex is used as second endpoint of each of the half-edges
of M°.

1.2 Schnyder Labelings and Woods

We review definitions and some properties of Schnyder labelings and Schnyder
woods for 3-connected planar maps. Originally, these objects have been intro-
duced for planar triangulation [7] and [8]. A comprehensive treatment for the
case of 3-connected planar maps can be found in [4]. This includes the proof for
the existence of these objects and results related to drawings of planar graphs.

Let M7 be the suspension of a 3-connected planar map. A Schnyder labeling
with respect to a1, as, a3 is a labeling of the angles of M with the labels 1,2, 3
(alternatively: red, green, blue) satisfying three rules. Throughout we assume
a cyclic structure on the labels so that ¢+ + 1 and ¢ — 1 is always defined.
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(A1) The two angles at the half-edge of the special vertex a; have labels i + 1
and ¢ — 1 in clockwise order.

(A2) Rule of vertices: The labels of the angles at each vertex form, in clockwise
order, a nonempty interval of 1’s, a nonempty interval of 2’s and a nonempty
interval of 3’s.

(A3) Rule of faces: The labels of the angles at each interior face form, in
clockwise order, a nonempty interval of 1’s, a nonempty interval of 2’s
and a nonempty interval of 3’s. At the outer face the same is true in
counterclockwise order.
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Figure 1: Rule of vertices and rule of faces

Lemma 1. Let G be a plane graph with a Schnyder labeling, then the four
angles of each edge contain all three labels 1,2,3. Thus every edge has one of
the two types shown in Figure 2.
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Figure 2: The two types of labeling for an edge.

A proof of the lemma is given in the appendix. There it is also shown that
in a Schnyder labeling all interior angles at the special vertex a; are labeled .

Let M7 be the suspension of a 3-connected planar map. A Schnyder wood*
rooted at a1, a9, as is an orientation and labeling of the edges of M? with the
labels 1, 2, 3 satisfying the following rules.

(W1) Every edge e is oriented by one or two opposite directions. The directions
of edges are labeled such that if e is bioriented the two directions have
distinct labels.

(W2) The half-edge at a; is directed outwards and labeled i.

(W3) Every vertex v has outdegree one in each label. The edges ey, ey, e3 leaving
v in labels 1,2,3 occur in clockwise order. Each edge entering v in label 1
enters v in the clockwise sector from e;;1 to e; 1. See Figure 3.

(W4) There is no interior face whose boundary is a directed cycle in one label.

*Schnyder wood is more suggestive than triorientation.



A Schnyder labeling of the angles of a plane graph induces a Schnyder wood.
If an edge has different angular labels 7 and j at one of its ends, we direct the
edge from this end towards the other and give this direction the third label k.
Conversely, a Schnyder wood induces a Schnyder labeling. The proof of the
following theorem is placed back into the appendix.

Theorem 1. Let M7 be the suspension of a 3-connected planar map. The
above correspondence is a bijection between the Schnyder labelings (azioms
A1,A2,A3) and Schnyder woods (axioms W1,..,W4) of M°.

Henceforth, we bend terminology and reuse the term Schnyder labeling to
denote a Schnyder angle labeling together with a compatible Schnyder wood.

Let G be a planar graph with a Schnyder labeling. With 7; we denote the
digraph induced by the edges having a direction labeled 7 and oriented in this
direction. Since every inner vertex has outdegree one in T; every v is the starting
vertex of a unique i-path Pj(v) in T;. In the remainder of this subsection we
review results from [4]. The digraph T; is acyclic and, even more, T; is a tree
with root a;.

Figure 3: Edge orientations and labels at a vertex.

The orientation T; UTf_l1 UTZ;_I1 is also acyclic (disregarding bidirected edges
in labels ¢ — 1 and i + 1). It follows that for ¢ # j the paths P;(v) and P;(v)
have v as the only common vertex. Therefore, P, (v), P2(v), P3(v) divide G into
three regions Ry (v), Ro(v) and R3(v), where R;(v) denotes the region bounded
by and including the two paths P;_i(v) and P;41(v), see Fig. 4.
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Figure 4: The three regions of a vertex

Lemma 2. For any two vertices u and v of a Schnyder labeled graph



o there are i and j with R;(u) C R;(v) and Rj(v) C Rj(u),
e R;(u) C R;i(v) iff u € Ri(v).

The region vector of a vertex v is the vector (vy,vs,v3) defined by
v; = The number of faces of M contained in region R;(v).

Given three non-collinear points a1, o and a3 in the plane. These points and
the region vectors can be used to define an embedding of M in the plane. A
vertex v is mapped to the point

Qv — via) + vaan + v3a,
An edge {u,v} is mapped by pu to the line segment connecting p(u) and p(u).

Theorem 2. The drawing p(M) of a 3-connected plane map is convez, i.e.,
the boundary of every face is a convex polygon.

1.3 Geodesic Embeddings

With the notation in this part we widely follow Miller [6]. Consider Z?* (or IN®)
as subsets of IR® and the dominance order on these sets, i.e, with u = (uy, ug, u3)
and v = (v1,v9,v3) we have u dominates v, in symbols u > v if u; > v; for
i =1,2,3. Use uVov and uAv to denote the join (component-wise maximum)
and meet (component-wise minimum) of u,v € IR?.

Let V C IN?> C IR? be an antichain, i.e., a set of pairwise incomparable
elements. The filter generated by V in IR? is the set

(V) ={a € R* | a > v for some v € V}.

The boundary Sy of (V) is the orthogonal surface generated by V. Orthogonal
projection onto the plane z + y + z = 0 yields a picture of Sy in the plane. This
picture is a rhombic tiling of the plane, see Figure 5.

[/

%
h
%

%

%
b
[

([

i

Figure 5: An orthogonal surface and its generator set V

If u,v € V and uVvVv € Sy then Sy contains the union of the two line
segments joining u and v to uVv; we refer to such arcs as elbow geodesics in Sy.



The orthogonal arc of v € V in direction of the standard basis vector e; is the
intersection of the ray v + Ae;, A > 0, with Sy. Clearly every vector v € V has
exactly three orthogonal arcs, one parallel to each coordinate axis, although
some orthogonal arcs may be unbounded while others are bounded. Observe
that Vv must share two coordinates with at least one (and perhaps both) of
u and v, so every elbow geodesic contains at least one orthogonal arc.

Making compatible choices of elbow geodesics containing all orthogonal rays
yields a planar map. A plane drawing M — Sy is a geodesic embedding in Sy,
if the following two axioms are satisfied:

(Vertex axiom) There is a bijection between the vertices of M and V.

(Elbow geodesic axiom) Every edge of M is an elbow geodesic in Sy, and every
bounded orthogonal arc in Sy is part of an edge of M.

An antichain V in Z? is called azial if it contains exactly three unbounded or-
thogonal arcs. Clearly every finite antichain contains at least three unbounded
orthogonal arcs, one in each direction. An azial geodesic embedding of a sus-
pended map M7 is a geodesic embedding M — Sy, such that the three half
edges of M? map onto the three unbounded orthogonal rays of Sy.

Theorem 3. Let M? — Sy be an azial geodesic embedding, then the closure
MG, is 3-connected and the embedding induces a Schnyder labeling of M?. Con-
versely, every Schnyder labeling of a map M? yields an azial geodesic embedding

of M°.

Proof. Given the embedding M? — Sy, the Schnyder labeling of the angles of
M? is the labeling by the three different shades in the tiling figure. The vertex
and face rules are easily verified. Alternatively, color the edges by the direction
of the orthogonal arcs they contain, see Figure 6.

Figure 6: The Schnyder labeling induced by a geodesic embedding.

3-connectedness is obtained from the existence of three internally disjoint
path between any two vertices u and v (Menger’s theorem). Such path can be
constructed by considering the path P;(w) for w = u,v and i = 1, 2,3 together
with the three edges incident to v.



Given a Schnyder labeling of M? embed every vertex v in IN? at its region
vector (v1,v9,v3). Since vy + vy +v3 = f — 1 is independent of v (it is the
number of bounded faces of M) this maps the vertex set of M to an antichain
in IN3. If e = {u,v} is an edge of M and = ¢ e a vertex, then for some i edge
e is contained in region R;(x). This implies R;(u) C R;(z) and R;(v) C R;(x)
hence, u; < z; and v; < x;. Together with xy + o + z3 = f — 1 this shows
that with e = {u, v} the join uVv and hence the elbow geodesic [u,v] is on the
surface Sy. In this construction the orthogonal arc of v in direction e; is used
by the edge which leaves v in color 3. 0

1.4 Order Dimension

The dimension of an order P is the least k£ such that P admits an order pre-
serving embedding in IN* equipped with the dominance order. For more on
order dimension see [9], [10], [3] or [4]. With a graph G = (V, E) associate its
incidence order P(G) on ground set V' U E and with relations v < e iff vertex v
is one of the endvertices of e. Schnyder’s celebrated theorem [7]. characterizes
planar graphs in terms of order dimension.

Theorem 4. A Graph G is planar if and only if the dimension of the incidence
order P(G) is at most 3.

Theorem 3 is not a direct consequence of Schnyder’s Theorem. At first, in
an embedding of P(G) in IN? the edges need not fall onto the orthogonal surface
Sy generated by the vertices. Even if we push the edges down to the join of
their incident vertices to fulfill this condition, the property that the orthogonal
arcs of the vertices are used by the connecting elbow geodesics can fail. An
example can be found in Figure 6 of [6].

Conversely, it might seem that Theorem 3 yields a proof of Schnyder’s theo-
rem. At least we have shown that if we embed edge e = {u, v} at uVv then both
vertices u and v are dominated by the edge. However, referring to Figure 6,
we find that uVov also happens to dominate w, therefore, we can only claim to
have embedded some extension of P(G) which is not even the incidence order
of a graph.

To overcomes this difficulty we demand an additional property from elbow
geodesics, this property called rigidity was proposed by Miller [6]. The main
contribution of this paper is to show how Schnyder labelings can be used to
obtain rigid geodesic embeddings of 3-connected planar maps. As a consequence
this leads to a strong version of a theorem by Brightwell and Trotter. The
Brightwell-Trotter Theorem (see [3] or [9]) is the following generalization of
Schnyder’s Theorem.

Theorem 5. The incidence order of vertices, edges and bounded faces of a
planar map has dimension at most 3.

An elbow geodesic connecting vertices u and v is Sy is rigid if u and v are
the only vertices in V which are dominated by uVv. A geodesic embedding of a
map M in a surface Sy is called rigid if all the edges of M are mapped to rigid
elbow geodesics.



Let M — Sy be a rigid geodesic embedding. By the above remarks this
yields an embedding of the vertex-edge incidence order of M in IN?.

The following result (Proposition 2.4 from Miller [6]) shows that in this
case even the full incidence order of vertices, edges and bounded faces of M is
embedded in IN?.

Proposition 1. Let M7 — Sy be a rigid embedding, and F a bounded region
of M. If ap is the join of the vertices of F', then w € F & w < ap.

Proof. The embedding M? < Sy induces a Schnyder labeling of M7 (Theo-
rem 3). Associated to a vertex v there are three special paths P;(v). The ver-
tices visited by path P; are strictly increasing in coordinate ¢ and non-increasing
(weakly decreasing) in coordinates i — 1 and 7 + 1. Suppose face F' is contained
in region R;(v). For w € R;(v) let w' be the last vertex of P;j(w) in R;(v).
From w' € P;_1(v) U P41 (v) follows v; > w) > w;. Hence, for every v there is a
coordinate i such that v; > [ar];. This proves that ap = A, cpw is one of the
maxima of the surface Sy.

Let Xp = {v eV :v < ar} Since ap € Sy every w € Xp is on one of
the descents from ap, i.e., there is an i with w; = [ap];. Let [Xp|; = {w €
Xp : w; = [ap);}, each [XF]; induces a path in M. The three path are joined
together by three additional edges to form a simple cycle, the boundary of face
F. Therefore, X is the set of vertices of F'. O

With this proposition we immediately obtain a proof of the Brightwell Trot-
ter theorem. Actually, the result implied by Proposition 1 is stronger than the
original. In our embedding all vertices, edges and faces sit in a single surface.
An alternative way of stating this is: For every incident pair v € F' there is a
coordinate 7 such that v; = (ap);.

1.5 Rigid Geodesic Embeddings

A nice property of rigid embeddings is that they uniquely determine a pla-
nar map. A fixed planar map, however, can be determined by different rigid
embeddings. Figure 7 shows an example.

Consider two rigid geodesic embeddings to be combinatorially equivalent
if they induce the same Schnyder labeled planar graph. In geometric terms
this equivalence can be stated as follows: Two rigid surfaces Sy and Sy are
equivalent if there is a bijection 7 : YV — W such that an elbow geodesic [v, w]
in Sy contains a piece of the orthogonal ray v + Ae; iff [7(v), 7(w)] is an elbow
geodesic in Sy containing a piece of the orthogonal ray m(v) + Ae;.

The following theorem is a special case of our main Theorem 9. The restric-
tion to planar triangulations allows a short proof.

Theorem 6. Let M? be a suspended planar triangulation. There is a bijection
between equivalence classes of rigid geodesic embeddings and Schnyder labelings
of M°.

Proof. By our definition of equivalence for rigid surfaces the map from rigid
geodesic embeddings to Schnyder labelings is injective. It remains to show that



Figure 7: A planar map with two combinatorially different rigid embeddings

every Schnyder labeling of M? is induced by some rigid geodesic embedding.
From the proof of Theorem 3 it follows that every Schnyder labeling is induced
by some geodesic embedding. We thus only have to take care of rigidity.

Claim 1. No elbow geodesic representing a interior edge contains two orthog-
onal arcs.

This follows from counting. We need three trees covering all edges and each of
the three outer edges is contained in two of the trees.

Claim 2. Every elbow geodesic is rigid.

Let [u,v] be an elbow geodesic using an orthogonal ray leaving u. The following
argument is illustrated in Figure 8. If [u,v] is non-rigid, then there is some w

Figure 8: A non-rigid edge

below uVv. On the surface the only direction where it goes down from uVo is on
the plane patch descending to v. Therefore, v and w both sit on this same plane
patch and are connected by a zig-zag path consisting only of orthogonal arcs.
By the elbow geodesic axiom these arcs are contained in edges, in contradiction
to Claim 1. 0

Brehm [2] has studied the structure of all Schnyder labelings of a suspended
triangulated map. Define A < B for Schnyder labelings A and B if the two
labelings differ only locally around a triangle as shown in Figure 9.

Let P(M?) be the transitive closure of the < relation on the set of all
Schnyder labelings of a suspended planar triangulation M?. The main result



Figure 9: A flip from labeling A to labeling B.

of Brehm, which carries over to equivalence classes of rigid embeddings, is the
following.

Theorem 7. If M7 is a /-connected suspended planar triangulation then P(M?)
is a distributive lattice.

2 A Construction for Rigid Embeddings

For planar triangulations the existence of rigid embeddings immediately follows
from Theorem 6 together with the existence of Schnyder labelings. In this
section we show the existence of a rigid embeddings for every 3-connected planar
map.

The idea is to use Schnyder labelings and modify the definition for the
regions of a vertex. To begin with we define the lifted i-path P;(v) of vertex v
as a sequence of edges.

e The first edge of ﬁl(v) is the edge leaving v in color 3.
Let (z,y) be an i-colored edge of P;(v).
e If y = a; then the path ends.

e If {z,y} is bidirected, such that (y,z) is colored i — 1 and there is an
unidirected edge entering y in color 7 + 1, let (z,y) be the first such edge

in clockwise direction from (z,y) at y. Then P;(v) contains (y, z) and the
edge leaving z in color 1.

e Else, P;(v) contains the edge leaving y in color i.

The definition of P;(v) is illustrated in Figure 10. In the next lemma we collect
some important properties of lifted path.

Lemma 3. The following statements are valid for all u,v € V.

(1) The lifted path P;(v) is simple, it starts in v and ends in a;.

(2) The lifted path P;(v) and the unlifted path Pii1(v) are internally disjoint.
(3) Two path P;(u) and P;(v) never cross.

Proof. Property (1) readily follows from the fact that T; U szrl1 is acyclic.

Assume that vertex x is common to P;(v) and Pi;1(v). Going from v to =
along Pj(v) and back on the reverse of P,y;(v) gives a cycle in T; U szrll The
contradiction proves (2).



Figure 10: A partial Schnyder labeling and the induced lifted 2-paths.

For property (3) consider two paths P;(u) and P;(v) meeting in vertex z. If
they both continue with the edge leaving z in color 4, then they both contain
132(:16) and there is no crossing at or after . Otherwise, one of the paths, say
P;(u) contains an i + 1 colored edge e entering z. By definition Pj(u) enters z
along the edge which follows e in counterclockwise direction at z. Hence, the

path P;(u) stays on the same side of P;(v) and there is no crossing at z. A
Let R;(v) be the region bounded by the unlifted path P;_; (v) and the lifted
path P;y1(v) including the two paths, we call R;(v) the lifted i-region of v.

Lemma 4. For any vertices u and v of a Schnyder labeled graph and every i

__ The lemma shows that the inclusion order with respect to the lifted i-regions
R; is an extension of the inclusion order of the i-regions R;. A comparison of
the lifted and unlifted 1-regions of the two black vertices in Figure 10 shows
that it is a proper extension.

We now define three orders on the vertices of a planar Schnyder labeled graph.
The relation S; is defined such that « — v in S; iff either

(a) Ri(u) C Ri(v), or

(b) Ri(w) Z Ry(v), Ri(v) € Ri(u) and Riy1(u) C Ry (v).

The open interior RY(v) of region R;(v), is R;(v)\ (P;—1(v)UP;41(v)). Note that
with this notation the condition for u/\—bl v in S; is equivalent to the statement
that v € R (v) and the two paths P;y1(u) and P;_;(v) intersect.
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Lemma 5. The relation S; is acyclic, hence, an order relation.

Proof. Call u — v an a-pair if in S; by part (a) of the definition otherwise
u — v is a b-pair. The a-relation and the b-relation are containment relations,
hence acyclic. The a-relation is clearly transitive, we claim that the b-relation
is also transitive. Let u = v % w and let P be the path that joins a; 1 to
v along the reverted P_;(v) and continues along P, 1(v) to a;41. This path
P is crossed in the first part by P11 (u) and in the second part by P_;(w).
Therefore, the two paths P,,1(u) and Pi_;(w) cross in the interior of region
Ri(v). This shows that there is no inclusion between the lifted i-regions of u
and w and furthermore u € RY _;(w) this shows u 5 .

Transitivity and irreflexivity of = and LA implies that a shortest cycle in
S,; contains an a-pair followed by a b-pair. We claim that with u = v L w we
also have u — w, in contradiction to the choice of the cycle.

From u % v 5 w conclude Ri(u) C R;(v) C Rij(w) U Rip1(w). If u € R;(w)
then R;(u) C Ri(v) N Rij(w) C R;(w), hence, u % w. Otherwise there is no
inclusion between R;(u) and R;(w) and u € R{, | (w) which implies u Yow A

Note that the incomparability relation in S; is an equivalence relation: wu
and v are incomparable in S; iff E(u) = E(v) Therefore, S; is a weak-order,
i.e., a series composition of antichains. In particular S; is ranked. For a vertex
v of a Schnyder labeled graph and i = 1, 2,3, let v; = rank(v, S;).

Theorem 8. Let M? be a suspended planar map with a Schnyder labeling.
With v; = rank(v, S;) and v — (v1,v2,v3) define a map from V to a subset V of
IN3. The surface Sy generated by V supports a rigid geodesic embedding of M.
Recall the four properties that have to be verified for the embedding M? — Sy.
(1) There is a bijection between the vertices of M and V.

(2)

(3) Every edge is a rigid geodesic in Sy.
4)

(

Lemma 6. Let e = (u,v) be an edge and x be a vertex not on e, then there is
an i, such that u < x and v < z in S;.

Every edge is an elbow geodesic in Sy .

Every orthogonal arc is part of an edge of M?.

Proof. By symmetry we may assume that e € E(z) From Lemma 4.(3) we
know R;(u) C Ry(z) and R;(v) C Ry(z). If Ry (u) # Ry(z) and Ry (v) # Ri(z)
this implies u — z_and v i)ﬂ\:g, ie,u<zand v <z in Sj.

Now suppose Ri(v) = R;y(z), it follows that there is a bidirected path in
colors 2 and 3 connecting v and z. First assume that v is to the left of z.
The situation is shown in the left part of Figure 11. Clearly v is on Ps(z) as
well as on ﬁ;(zp) From the relative positions of the outgoing edges of v and
z in color 1 it follows that Ry(v) C Ry(z). From e € Ry(z) it follows that

u € P3(z) or (u,v) is unidirected in color 1. Therefore, either P;(z) goes below

u or P3(z) contains u, more formally, either u € P3(x) or u is contained in the

11



Figure 11: The two cases for Ry (v) = R ().

closed region enclosed by Ps(z) and P3(z). In conclusion Ry(u) C Ra(z). From

Ry(v) C Ra(z) and Ra(u) C Ra(z) it follows that u < z and v < z in S,.

The last case is that Ry (v) = Ry (z) and v is to the right of z. This situation
is shown in the right part of Figure 11. The inclusion Rs(v) C R3(z) is obvious
and shows v < z in S3. If u € Py(z) then E;(u) C ﬁ;,(x) whence u < z in
Ss. If u € Py(z) then (u,v) is unidirected in color 1 and there is no inclusion
between Rz(u) and Rz(z). However, we find u in the open interior of Ry (z)

and conclude that R;(u) C Ri(z). Therefore u < x in Ss. A

If v and x are two vertices then there is some u # x such that {u,v} is
an edge. This observation and the lemma allows the conclusion that the map
V — V is injective. Together with a symmetric argument using a neighbor y of
2 this shows that for vertices v # = there are 4 and 7 such that v < z in S; and
z <wvin S}, i.e., V is an antichain in IN®.

Let {u,v} be an edge of M, the lemma implies that u and v are the only
elements of V which are dominated by uVwv. Therefore, uVv and the geodesic
[u,v] are contained in Sy and [u,v] is rigid.

Lemma 7. Every bounded orthogonal arc of Sy is part of an edge of M°.

Proof. The claim is that the orthogonal arc contained in v 4+ Ae; is contained
in [v,w], where (v,w) is the outgoing edge in color 1 at v. Observe that with
w € E(v) and w € E;(v) we have wy < vy and wz < vz. This already implies
vVw = (wy, vg,v3). A

The lemma verified the fourth and last property of rigid embeddings. This
concludes the proof of Theorem 8. 0

The natural mapping from equivalence classes of rigid geodesic embeddings
of a map M? to Schnyder labelings of M? is injective by definition of the
equivalence classes. The proof of Theorem 8, in particular Lemma 7 shows
that the mapping is surjective. This proves the generalization of Theorem 6 to
general 3-connected planar maps:

Theorem 9. Let M? be a suspended planar map. There is a bijection between
equivalence classes of rigid geodesic embeddings and Schnyder labelings of M?.
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3 Concluding Remarks

From the connection with algebra described by Miller [6] there arises inter-
est in a classification of grid surfaces. The bijections given in Theorem 6 and
Theorem 9 translate parts of this problem into the realm of planar maps and
Schnyder labelings. For the case of a planar triangulation M Theorem 7 pro-
vides good insight into the structure of all Schnyder labelings of M. A similar
result holds true in the more general context of 3-connected planar maps. In [5]
the notion of ‘flips” between Schnyder labelings is generalized. Let P(M7) be
the transitive closure of directed flips on the set of all Schnyder labelings of a
suspended planar map M?. In [5] we prove the following structure theorem:

Theorem 10. If M7 is a suspended planar map then P(M?) is a distributive
lattice.

The proof makes use of a beautiful duality for geodesic embeddings. This
duality is obtained by reverting the order on IN?, i.e., exchanging the notions
of above and below and the roles of minima and maxima on a surface §. This
duality gives a nice bijection between the Schnyder labelings of a suspended
planar map and its suspension dual, i.e., the dual obtained by placing a dual
vertex in each of the three parts of the unbounded face and connecting them
pairwise by an edge. Figure 12 shows an example where the primal graph is a
triangulation. Remarkably, the duality even preserves rigidity. This is because
non-rigid edges come in primal-dual pairs.

Figure 12: A dual pair of Schnyder labelings for a planar graph and its dual,
on the right side the inducing surface.

Bonichon et. al. [1] investigate the structure of all planar triangulations with
their Schnyder labelings on a given number of vertices. They propose 'colored
flips’ and show that these flips make the set connected.
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Appendix: Schnyder Labelings and Woods

Proof of Lemma 1

The proof is based on double counting and Euler’s formula. Define the degree
d(v) of a vertex v as the number of edges incident with v whose angles at v have
distinct labels. By the rule of vertices d(v) = 3 for every vertex v. Similarly,
the degree d(F') of a face F' is the number of boundary edges of F' whose angles
in F have distinct labels. By the rules of faces d(F') = 3 for every face, in the
case of the outer face the half-edges are counted. Therefore,

S=Y dv)+> d(F)=3n+3f=3|E|+6.
F

The same number S can be obtained by counting the changes of label around
the edges. Each of the half-edges contributes two. Hence, the average contri-
bution of full-edges is 3. Consider the four angles a1, a9, a3, a4 of an edge in
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counterclockwise order. Define €1, €9, €3, €4 S0 that as = a1 + €1, ag = ag + €9,
a4 = a3+ €3 and a; = ay + €4. Form the rules of vertices and faces ¢; € {0, 1},
for all j. The cyclic nature of the linear system implies that Z;Zl e =0
mod 3, hence, either > ;e; = 0 or > ,€; = 3. Since the contribution of an
edge e to the degree sum S is )7, €j(e) we must have >, ¢€j(e) = 3 for every
full-edge e. Up to rotational symmetry this only leaves the two cases shown in

Figure 2. 0

Note that from the exterior labels at special vertices (A1) and the rule for
the outer face we know all the edge labels at outer angles. Every outer angle on
the clockwise outer path from a; to a;4; has label ¢ — 1. The previous lemma
together with rule (A2) applied to vertex a; implies:

Corollary. In a Schnyder labeling all interior angles at the special vertexr a;
are labeled 1.

The equivalence of Schnyder angle labelings and Schnyder woods

Let a Schnyder angle labeling be given. Recall how this induces orientations
and labeling of edges: If an edge has different angular labels ¢ and 5 at one
of its ends, we direct the edge from this end towards the other and give this
direction the third label k.

Lemma 1 shows that this orientation and labeling obeys (W1). There is
an immediate correspondence of (A1) and (W2). Also the two rules of vertices
(A2) and (W3) correspond to each other. If there is an interior face whose
boundary is directed in one label, then we infer that all interior angles of this
face have the same label. Hence, the rule of faces (A3) forces (W4).

For the converse suppose a Schnyder wood is given. If the direction (u,v)
is colored ¢ then we color the angle at u to the left of edge uv with 7 + 1 and
the angle to the right of uv with 4 — 1. If uv is unidirectional we also color the
two adjacent angles at v with color 4. From (W3) it follows that this coloring
is well-defined, i.e., the colors assigned to an angle from its two adjacent edges
coincide.

Again, the correspondence of (A1) and (W2) and of the two rules of vertices
(A2) and (W3) is trivial. To show that the rule of faces (A3) is valid is more
subtle.

We count color changes at vertices, faces and edges. The four angles of a
full-edge are colored as in Figure 2 (by (W1)), therefore, d(e) = 3 for every full-
edge and d(e) = 2 for each of the three half-edges. The contribution of vertices
is ), d(v) = 3n. The degree d(F) of a bounded face F' is the number of color
changes at the angles when we cycle around F. If we cycle clockwise then an
angle colored 4 is always followed by an angle colored i or i + 1. Consequently,
d(F) must be a multiple of 3. Rule (W4) enforces d(F') # 0. For the unbounded
face we have d(F') = 3 anyway.

D dw)+ > dF) = de) — 3n+ Y d(F) =3|E| +6
v F e F

With Euler’s Formula )", d(F) = 3f which is only possible if d(F') = 3 for
every face F.
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We have already seen that the colors go clockwise at bounded faces and
counterclockwise at the outer face. This proves the rule of faces (A3). 0

Figure 13: The example orientation and coloring of edges obeys (W1), (W2)
and (W3) but not (W4). The induced angle labeling is not a Schnyder labeling.
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