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hberei
h Mathematik und Informatik,Takustr. 9, 14195 Berlin, GermanyE-mail: felsner�inf.fu-berlin.deAbstra
t. S
hnyder labelings are known to have 
lose links to order dimension anddrawings of planar graphs. It was observed by Ezra Miller that geodesi
 embeddings ofplanar graphs are another 
lass of 
ombinatorial or geometri
 obje
ts 
losely linked toS
hnyder labelings. We aim to 
ontribute to a better understanding of the 
onne
tionsbetween these obje
ts. In this arti
le we prove� a 
hara
terization of 3-
onne
ted planar graphs as those graphs admitting rigidgeodesi
 embeddings,� a bije
tion between S
hnyder labelings and rigid geodesi
 embeddings,� a strong version of the Brightwell-Trotter theorem.Mathemati
s Subje
t Classi�
ations (2000). 05C10, 68R10, 06A07.1 The Players of the Game1.1 Planar MapsA planar map M is a simple planar graph G together with a �xed planarembedding of G in the plane. A suspension M� of M is obtained by sele
tingthree di�erent verti
es a1; a2; a3 in 
lo
kwise order from the outer fa
e of Mand adding a half-edge that rea
hes into the outer fa
e to ea
h of these spe
ialverti
es. The 
losureM�1 of a suspensionM� ofM is obtained by adding a newvertex v1, this new vertex is used as se
ond endpoint of ea
h of the half-edgesof M�.1.2 S
hnyder Labelings and WoodsWe review de�nitions and some properties of S
hnyder labelings and S
hnyderwoods for 3-
onne
ted planar maps. Originally, these obje
ts have been intro-du
ed for planar triangulation [7℄ and [8℄. A 
omprehensive treatment for the
ase of 3-
onne
ted planar maps 
an be found in [4℄. This in
ludes the proof forthe existen
e of these obje
ts and results related to drawings of planar graphs.LetM� be the suspension of a 3-
onne
ted planar map. A S
hnyder labelingwith respe
t to a1; a2; a3 is a labeling of the angles of M� with the labels 1; 2; 3(alternatively: red, green, blue) satisfying three rules. Throughout we assumea 
y
li
 stru
ture on the labels so that i+ 1 and i� 1 is always de�ned.31. Juni 2002 1



(A1) The two angles at the half-edge of the spe
ial vertex ai have labels i+ 1and i� 1 in 
lo
kwise order.(A2) Rule of verti
es: The labels of the angles at ea
h vertex form, in 
lo
kwiseorder, a nonempty interval of 1's, a nonempty interval of 2's and a nonemptyinterval of 3's.(A3) Rule of fa
es: The labels of the angles at ea
h interior fa
e form, in
lo
kwise order, a nonempty interval of 1's, a nonempty interval of 2'sand a nonempty interval of 3's. At the outer fa
e the same is true in
ounter
lo
kwise order.
1 33321 31 1 1 23Figure 1: Rule of verti
es and rule of fa
esLemma 1. Let G be a plane graph with a S
hnyder labeling, then the fourangles of ea
h edge 
ontain all three labels 1,2,3. Thus every edge has one ofthe two types shown in Figure 2.ii i � 1i + 1 ii+ 1 i � 1iFigure 2: The two types of labeling for an edge.A proof of the lemma is given in the appendix. There it is also shown thatin a S
hnyder labeling all interior angles at the spe
ial vertex ai are labeled i.Let M� be the suspension of a 3-
onne
ted planar map. A S
hnyder wood�rooted at a1; a2; a3 is an orientation and labeling of the edges of M� with thelabels 1; 2; 3 satisfying the following rules.(W1) Every edge e is oriented by one or two opposite dire
tions. The dire
tionsof edges are labeled su
h that if e is bioriented the two dire
tions havedistin
t labels.(W2) The half-edge at ai is dire
ted outwards and labeled i.(W3) Every vertex v has outdegree one in ea
h label. The edges e1; e2; e3 leavingv in labels 1,2,3 o

ur in 
lo
kwise order. Ea
h edge entering v in label ienters v in the 
lo
kwise se
tor from ei+1 to ei�1. See Figure 3.(W4) There is no interior fa
e whose boundary is a dire
ted 
y
le in one label.�S
hnyder wood is more suggestive than triorientation.2



A S
hnyder labeling of the angles of a plane graph indu
es a S
hnyder wood.If an edge has di�erent angular labels i and j at one of its ends, we dire
t theedge from this end towards the other and give this dire
tion the third label k.Conversely, a S
hnyder wood indu
es a S
hnyder labeling. The proof of thefollowing theorem is pla
ed ba
k into the appendix.Theorem 1. Let M� be the suspension of a 3-
onne
ted planar map. Theabove 
orresponden
e is a bije
tion between the S
hnyder labelings (axiomsA1,A2,A3) and S
hnyder woods (axioms W1,..,W4) of M�.Hen
eforth, we bend terminology and reuse the term S
hnyder labeling todenote a S
hnyder angle labeling together with a 
ompatible S
hnyder wood.Let G be a planar graph with a S
hnyder labeling. With Ti we denote thedigraph indu
ed by the edges having a dire
tion labeled i and oriented in thisdire
tion. Sin
e every inner vertex has outdegree one in Ti every v is the startingvertex of a unique i-path Pi(v) in Ti. In the remainder of this subse
tion wereview results from [4℄. The digraph Ti is a
y
li
 and, even more, Ti is a treewith root ai.
23 32 2 2

1 31
Figure 3: Edge orientations and labels at a vertex.The orientation Ti[T�1i�1[T�1i+1 is also a
y
li
 (disregarding bidire
ted edgesin labels i � 1 and i + 1). It follows that for i 6= j the paths Pi(v) and Pj(v)have v as the only 
ommon vertex. Therefore, P1(v); P2(v); P3(v) divide G intothree regions R1(v), R2(v) and R3(v), where Ri(v) denotes the region boundedby and in
luding the two paths Pi�1(v) and Pi+1(v), see Fig. 4.

P3(v) P2(v)R3(v)v P1(v)R2(v) a2a3
a1
R1(v)Figure 4: The three regions of a vertexLemma 2. For any two verti
es u and v of a S
hnyder labeled graph3



� there are i and j with Ri(u) � Ri(v) and Rj(v) � Rj(u),� Ri(u) � Ri(v) i� u 2 Ri(v).The region ve
tor of a vertex v is the ve
tor (v1; v2; v3) de�ned byvi = The number of fa
es of M 
ontained in region Ri(v):Given three non-
ollinear points �1, �2 and �3 in the plane. These points andthe region ve
tors 
an be used to de�ne an embedding of M in the plane. Avertex v is mapped to the point� : v ! v1�1 + v2�2 + v3�3;An edge fu; vg is mapped by � to the line segment 
onne
ting �(u) and �(u).Theorem 2. The drawing �(M) of a 3-
onne
ted plane map is 
onvex, i.e.,the boundary of every fa
e is a 
onvex polygon.1.3 Geodesi
 EmbeddingsWith the notation in this part we widely follow Miller [6℄. Consider ZZ3 (or IN3)as subsets of IR3 and the dominan
e order on these sets, i.e, with u = (u1; u2; u3)and v = (v1; v2; v3) we have u dominates v, in symbols u � v if ui � vi fori = 1; 2; 3. Use u_v and u^v to denote the join (
omponent-wise maximum)and meet (
omponent-wise minimum) of u; v 2 IR3.Let V � IN3 � IR3 be an anti
hain, i.e., a set of pairwise in
omparableelements. The �lter generated by V in IR3 is the sethVi = f� 2 IR3 j � � v for some v 2 Vg:The boundary SV of hVi is the orthogonal surfa
e generated by V. Orthogonalproje
tion onto the plane x+ y + z = 0 yields a pi
ture of SV in the plane. Thispi
ture is a rhombi
 tiling of the plane, see Figure 5.

Figure 5: An orthogonal surfa
e and its generator set VIf u; v 2 V and u_v 2 SV then SV 
ontains the union of the two linesegments joining u and v to u_v; we refer to su
h ar
s as elbow geodesi
s in SV .4



The orthogonal ar
 of v 2 V in dire
tion of the standard basis ve
tor ei is theinterse
tion of the ray v + �ei, � � 0, with SV . Clearly every ve
tor v 2 V hasexa
tly three orthogonal ar
s, one parallel to ea
h 
oordinate axis, althoughsome orthogonal ar
s may be unbounded while others are bounded. Observethat u_v must share two 
oordinates with at least one (and perhaps both) ofu and v, so every elbow geodesi
 
ontains at least one orthogonal ar
.Making 
ompatible 
hoi
es of elbow geodesi
s 
ontaining all orthogonal raysyields a planar map. A plane drawing M ,! SV is a geodesi
 embedding in SV ,if the following two axioms are satis�ed:(Vertex axiom) There is a bije
tion between the verti
es of M and V.(Elbow geodesi
 axiom) Every edge of M is an elbow geodesi
 in SV , and everybounded orthogonal ar
 in SV is part of an edge of M .An anti
hain V in ZZ3 is 
alled axial if it 
ontains exa
tly three unbounded or-thogonal ar
s. Clearly every �nite anti
hain 
ontains at least three unboundedorthogonal ar
s, one in ea
h dire
tion. An axial geodesi
 embedding of a sus-pended map M� is a geodesi
 embedding M ,! SV su
h that the three halfedges of M� map onto the three unbounded orthogonal rays of SV .Theorem 3. Let M� ,! SV be an axial geodesi
 embedding, then the 
losureM�1 is 3-
onne
ted and the embedding indu
es a S
hnyder labeling of M�. Con-versely, every S
hnyder labeling of a map M� yields an axial geodesi
 embeddingof M�.Proof. Given the embedding M� ,! SV , the S
hnyder labeling of the angles ofM� is the labeling by the three di�erent shades in the tiling �gure. The vertexand fa
e rules are easily veri�ed. Alternatively, 
olor the edges by the dire
tionof the orthogonal ar
s they 
ontain, see Figure 6.
vuw 2 3 2 32 3
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Figure 6: The S
hnyder labeling indu
ed by a geodesi
 embedding.3-
onne
tedness is obtained from the existen
e of three internally disjointpath between any two verti
es u and v (Menger's theorem). Su
h path 
an be
onstru
ted by 
onsidering the path Pi(w) for w = u; v and i = 1; 2; 3 togetherwith the three edges in
ident to v1. 5



Given a S
hnyder labeling of M� embed every vertex v in IN3 at its regionve
tor (v1; v2; v3). Sin
e v1 + v2 + v3 = f � 1 is independent of v (it is thenumber of bounded fa
es of M) this maps the vertex set of M to an anti
hainin IN3. If e = fu; vg is an edge of M and x 62 e a vertex, then for some i edgee is 
ontained in region Ri(x). This implies Ri(u) � Ri(x) and Ri(v) � Ri(x)hen
e, ui � xi and vi � xi. Together with x1 + x2 + x3 = f � 1 this showsthat with e = fu; vg the join u_v and hen
e the elbow geodesi
 [u; v℄ is on thesurfa
e SV . In this 
onstru
tion the orthogonal ar
 of v in dire
tion ei is usedby the edge whi
h leaves v in 
olor i.1.4 Order DimensionThe dimension of an order P is the least k su
h that P admits an order pre-serving embedding in INk equipped with the dominan
e order. For more onorder dimension see [9℄, [10℄, [3℄ or [4℄. With a graph G = (V;E) asso
iate itsin
iden
e order P (G) on ground set V [E and with relations v < e i� vertex vis one of the endverti
es of e. S
hnyder's 
elebrated theorem [7℄. 
hara
terizesplanar graphs in terms of order dimension.Theorem 4. A Graph G is planar if and only if the dimension of the in
iden
eorder P (G) is at most 3.Theorem 3 is not a dire
t 
onsequen
e of S
hnyder's Theorem. At �rst, inan embedding of P (G) in IN3 the edges need not fall onto the orthogonal surfa
eSV generated by the verti
es. Even if we push the edges down to the join oftheir in
ident verti
es to ful�ll this 
ondition, the property that the orthogonalar
s of the verti
es are used by the 
onne
ting elbow geodesi
s 
an fail. Anexample 
an be found in Figure 6 of [6℄.Conversely, it might seem that Theorem 3 yields a proof of S
hnyder's theo-rem. At least we have shown that if we embed edge e = fu; vg at u_v then bothverti
es u and v are dominated by the edge. However, referring to Figure 6,we �nd that u_v also happens to dominate w, therefore, we 
an only 
laim tohave embedded some extension of P (G) whi
h is not even the in
iden
e orderof a graph.To over
omes this diÆ
ulty we demand an additional property from elbowgeodesi
s, this property 
alled rigidity was proposed by Miller [6℄. The main
ontribution of this paper is to show how S
hnyder labelings 
an be used toobtain rigid geodesi
 embeddings of 3-
onne
ted planar maps. As a 
onsequen
ethis leads to a strong version of a theorem by Brightwell and Trotter. TheBrightwell{Trotter Theorem (see [3℄ or [9℄) is the following generalization ofS
hnyder's Theorem.Theorem 5. The in
iden
e order of verti
es, edges and bounded fa
es of aplanar map has dimension at most 3.An elbow geodesi
 
onne
ting verti
es u and v is SV is rigid if u and v arethe only verti
es in V whi
h are dominated by u_v. A geodesi
 embedding of amap M in a surfa
e SV is 
alled rigid if all the edges of M are mapped to rigidelbow geodesi
s. 6



Let M ,! SV be a rigid geodesi
 embedding. By the above remarks thisyields an embedding of the vertex-edge in
iden
e order of M in IN3.The following result (Proposition 2.4 from Miller [6℄) shows that in this
ase even the full in
iden
e order of verti
es, edges and bounded fa
es of M isembedded in IN3.Proposition 1. Let M� ,! SV be a rigid embedding, and F a bounded regionof M . If �F is the join of the verti
es of F , then w 2 F , w � �F .Proof. The embedding M� ,! SV indu
es a S
hnyder labeling of M� (Theo-rem 3). Asso
iated to a vertex v there are three spe
ial paths Pi(v). The ver-ti
es visited by path Pi are stri
tly in
reasing in 
oordinate i and non-in
reasing(weakly de
reasing) in 
oordinates i� 1 and i+1. Suppose fa
e F is 
ontainedin region Ri(v). For w 2 Ri(v) let w0 be the last vertex of Pi(w) in Ri(v).From w0 2 Pi�1(v)[Pi+1(v) follows vi � w0i � wi. Hen
e, for every v there is a
oordinate i su
h that vi � [�F ℄i. This proves that �F = Vw2F w is one of themaxima of the surfa
e SV .Let XF = fv 2 V : v � �F g. Sin
e �F 2 SV every w 2 XF is on one ofthe des
ents from �F , i.e., there is an i with wi = [�F ℄i. Let [XF ℄i = fw 2XF : wi = [�F ℄ig, ea
h [XF ℄i indu
es a path in M . The three path are joinedtogether by three additional edges to form a simple 
y
le, the boundary of fa
eF . Therefore, XF is the set of verti
es of F .With this proposition we immediately obtain a proof of the Brightwell Trot-ter theorem. A
tually, the result implied by Proposition 1 is stronger than theoriginal. In our embedding all verti
es, edges and fa
es sit in a single surfa
e.An alternative way of stating this is: For every in
ident pair v 2 F there is a
oordinate i su
h that vi = (�F )i.1.5 Rigid Geodesi
 EmbeddingsA ni
e property of rigid embeddings is that they uniquely determine a pla-nar map. A �xed planar map, however, 
an be determined by di�erent rigidembeddings. Figure 7 shows an example.Consider two rigid geodesi
 embeddings to be 
ombinatorially equivalentif they indu
e the same S
hnyder labeled planar graph. In geometri
 termsthis equivalen
e 
an be stated as follows: Two rigid surfa
es SV and SW areequivalent if there is a bije
tion � : V ! W su
h that an elbow geodesi
 [v; w℄in SV 
ontains a pie
e of the orthogonal ray v + �ei i� [�(v); �(w)℄ is an elbowgeodesi
 in SW 
ontaining a pie
e of the orthogonal ray �(v) + �ei.The following theorem is a spe
ial 
ase of our main Theorem 9. The restri
-tion to planar triangulations allows a short proof.Theorem 6. Let M� be a suspended planar triangulation. There is a bije
tionbetween equivalen
e 
lasses of rigid geodesi
 embeddings and S
hnyder labelingsof M�.Proof. By our de�nition of equivalen
e for rigid surfa
es the map from rigidgeodesi
 embeddings to S
hnyder labelings is inje
tive. It remains to show that7



Figure 7: A planar map with two 
ombinatorially di�erent rigid embeddingsevery S
hnyder labeling of M� is indu
ed by some rigid geodesi
 embedding.From the proof of Theorem 3 it follows that every S
hnyder labeling is indu
edby some geodesi
 embedding. We thus only have to take 
are of rigidity.Claim 1. No elbow geodesi
 representing a interior edge 
ontains two orthog-onal ar
s.This follows from 
ounting. We need three trees 
overing all edges and ea
h ofthe three outer edges is 
ontained in two of the trees.Claim 2. Every elbow geodesi
 is rigid.Let [u; v℄ be an elbow geodesi
 using an orthogonal ray leaving u. The followingargument is illustrated in Figure 8. If [u; v℄ is non-rigid, then there is some ww u v
Figure 8: A non-rigid edgebelow u_v. On the surfa
e the only dire
tion where it goes down from u_v is onthe plane pat
h des
ending to v. Therefore, v and w both sit on this same planepat
h and are 
onne
ted by a zig-zag path 
onsisting only of orthogonal ar
s.By the elbow geodesi
 axiom these ar
s are 
ontained in edges, in 
ontradi
tionto Claim 1.Brehm [2℄ has studied the stru
ture of all S
hnyder labelings of a suspendedtriangulated map. De�ne A � B for S
hnyder labelings A and B if the twolabelings di�er only lo
ally around a triangle as shown in Figure 9.Let P(M�) be the transitive 
losure of the � relation on the set of allS
hnyder labelings of a suspended planar triangulation M�. The main result8



1 3 2 323 1 12 2 2 1 332113A B
Figure 9: A 
ip from labeling A to labeling B.of Brehm, whi
h 
arries over to equivalen
e 
lasses of rigid embeddings, is thefollowing.Theorem 7. IfM� is a 4-
onne
ted suspended planar triangulation then P(M�)is a distributive latti
e.2 A Constru
tion for Rigid EmbeddingsFor planar triangulations the existen
e of rigid embeddings immediately followsfrom Theorem 6 together with the existen
e of S
hnyder labelings. In thisse
tion we show the existen
e of a rigid embeddings for every 3-
onne
ted planarmap.The idea is to use S
hnyder labelings and modify the de�nition for theregions of a vertex. To begin with we de�ne the lifted i-path ePi(v) of vertex vas a sequen
e of edges.� The �rst edge of ePi(v) is the edge leaving v in 
olor i.Let (x; y) be an i-
olored edge of ePi(v).� If y = ai then the path ends.� If fx; yg is bidire
ted, su
h that (y; x) is 
olored i � 1 and there is anunidire
ted edge entering y in 
olor i + 1, let (z; y) be the �rst su
h edgein 
lo
kwise dire
tion from (x; y) at y. Then ePi(v) 
ontains (y; z) and theedge leaving z in 
olor i.� Else, ePi(v) 
ontains the edge leaving y in 
olor i.The de�nition of ePi(v) is illustrated in Figure 10. In the next lemma we 
olle
tsome important properties of lifted path.Lemma 3. The following statements are valid for all u; v 2 V .(1) The lifted path ePi(v) is simple, it starts in v and ends in ai.(2) The lifted path ePi(v) and the unlifted path Pi+1(v) are internally disjoint.(3) Two path ePi(u) and ePi(v) never 
ross.Proof. Property (1) readily follows from the fa
t that Ti [ T�1i+1 is a
y
li
.Assume that vertex x is 
ommon to ePi(v) and Pi+1(v). Going from v to xalong ePi(v) and ba
k on the reverse of Pi+1(v) gives a 
y
le in Ti [ T�1i+1. The
ontradi
tion proves (2). 9
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3Figure 10: A partial S
hnyder labeling and the indu
ed lifted 2-paths.For property (3) 
onsider two paths ePi(u) and ePi(v) meeting in vertex x. Ifthey both 
ontinue with the edge leaving x in 
olor i, then they both 
ontainePi(x) and there is no 
rossing at or after x. Otherwise, one of the paths, sayePi(u) 
ontains an i+ 1 
olored edge e entering x. By de�nition ePi(u) enters xalong the edge whi
h follows e in 
ounter
lo
kwise dire
tion at x. Hen
e, thepath ePi(u) stays on the same side of ePi(v) and there is no 
rossing at x. 4Let fRi(v) be the region bounded by the unlifted path Pi�1(v) and the liftedpath gPi+1(v) in
luding the two paths, we 
all fRi(v) the lifted i-region of v.Lemma 4. For any verti
es u and v of a S
hnyder labeled graph and every i(1) Ri(v) � fRi(v).(2) Ri(u) = Ri(v) i� fRi(u) = fRi(v).(3) fRi(u) � fRi(v) i� u 2 fRi(v).(4) If Ri(u) � Ri(v) then fRi(u) � fRi(v).The lemma shows that the in
lusion order with respe
t to the lifted i-regionsfRi is an extension of the in
lusion order of the i-regions Ri. A 
omparison ofthe lifted and unlifted 1-regions of the two bla
k verti
es in Figure 10 showsthat it is a proper extension.We now de�ne three orders on the verti
es of a planar S
hnyder labeled graph.The relation Si is de�ned su
h that u! v in Si i� either(a) fRi(u) � fRi(v), or(b) fRi(u) 6� fRi(v), fRi(v) 6� fRi(u) and Ri+1(u) � Ri+1(v).The open interior Roi (v) of region Ri(v), is Ri(v)n(Pi�1(v)[Pi+1(v)). Note thatwith this notation the 
ondition for u b! v in Si is equivalent to the statementthat u 2 Roi+1(v) and the two paths gPi+1(u) and Pi�1(v) interse
t.10



Lemma 5. The relation Si is a
y
li
, hen
e, an order relation.Proof. Call u ! v an a-pair if in Si by part (a) of the de�nition otherwiseu! v is a b-pair. The a-relation and the b-relation are 
ontainment relations,hen
e a
y
li
. The a-relation is 
learly transitive, we 
laim that the b-relationis also transitive. Let u b! v b! w and let P be the path that joins ai�1 tov along the reverted Pi�1(v) and 
ontinues along gPi+1(v) to ai+1. This pathP is 
rossed in the �rst part by gPi+1(u) and in the se
ond part by Pi�1(w).Therefore, the two paths gPi+1(u) and Pi�1(w) 
ross in the interior of regionRi(v). This shows that there is no in
lusion between the lifted i-regions of uand w and furthermore u 2 Roi+1(w) this shows u b! w.Transitivity and irre
exivity of a! and b! implies that a shortest 
y
le inSi 
ontains an a-pair followed by a b-pair. We 
laim that with u a! v b! w wealso have u! w, in 
ontradi
tion to the 
hoi
e of the 
y
le.From u a! v b! w 
on
lude fRi(u) � fRi(v) � fRi(w) [Ri+1(w). If u 2 fRi(w)then fRi(u) � fRi(v) \ fRi(w) � fRi(w), hen
e, u a! w. Otherwise there is noin
lusion between fRi(u) and fRi(w) and u 2 Roi+1(w) whi
h implies u b! w. 4Note that the in
omparability relation in Si is an equivalen
e relation: uand v are in
omparable in Si i� fRi(u) = fRi(v). Therefore, Si is a weak-order,i.e., a series 
omposition of anti
hains. In parti
ular Si is ranked. For a vertexv of a S
hnyder labeled graph and i = 1; 2; 3, let vi = rank(v; Si).Theorem 8. Let M� be a suspended planar map with a S
hnyder labeling.With vi = rank(v; Si) and v ! (v1; v2; v3) de�ne a map from V to a subset V ofIN3. The surfa
e SV generated by V supports a rigid geodesi
 embedding of M�.Re
all the four properties that have to be veri�ed for the embeddingM� ,! SV .(1) There is a bije
tion between the verti
es of M and V.(2) Every edge is an elbow geodesi
 in SV .(3) Every edge is a rigid geodesi
 in SV .(4) Every orthogonal ar
 is part of an edge of M�.Lemma 6. Let e = (u; v) be an edge and x be a vertex not on e, then there isan i, su
h that u < x and v < x in Si.Proof. By symmetry we may assume that e 2 fR1(x). From Lemma 4.(3) weknow fR1(u) � fR1(x) and fR1(v) � fR1(x). If fR1(u) 6= fR1(x) and fR1(v) 6= fR1(x)this implies u a! x and v a! x, i.e., u < x and v < x in S1.Now suppose fR1(v) = fR1(x), it follows that there is a bidire
ted path in
olors 2 and 3 
onne
ting v and x. First assume that v is to the left of x.The situation is shown in the left part of Figure 11. Clearly v is on P3(x) aswell as on fP3(x). From the relative positions of the outgoing edges of v andx in 
olor 1 it follows that fR2(v) � fR2(x). From e 2 fR1(x) it follows thatu 2 P3(x) or (u; v) is unidire
ted in 
olor 1. Therefore, either fP3(x) goes belowu or fP3(x) 
ontains u, more formally, either u 2 P3(x) or u is 
ontained in the11



1 11 32 2 3 11 12 3 32uvR2 x x R3vuFigure 11: The two 
ases for fR1(v) = fR1(x).
losed region en
losed by P3(x) and fP3(x). In 
on
lusion fR2(u) � fR2(x). FromfR2(v) � fR2(x) and fR2(u) � fR2(x) it follows that u < x and v < x in S2.The last 
ase is that fR1(v) = fR1(x) and v is to the right of x. This situationis shown in the right part of Figure 11. The in
lusion fR3(v) � fR3(x) is obviousand shows v < x in S3. If u 2 P2(x) then fR3(u) � fR3(x) when
e u < x inS3. If u 62 P2(x) then (u; v) is unidire
ted in 
olor 1 and there is no in
lusionbetween fR3(u) and fR3(x). However, we �nd u in the open interior of R1(x)and 
on
lude that R1(u) � R1(x). Therefore u < x in S3. 4If v and x are two verti
es then there is some u 6= x su
h that fu; vg isan edge. This observation and the lemma allows the 
on
lusion that the mapV ! V is inje
tive. Together with a symmetri
 argument using a neighbor y ofx this shows that for verti
es v 6= x there are i and j su
h that v < x in Si andx < v in Sj, i.e., V is an anti
hain in IN3.Let fu; vg be an edge of M , the lemma implies that u and v are the onlyelements of V whi
h are dominated by u_v. Therefore, u_v and the geodesi
[u; v℄ are 
ontained in SV and [u; v℄ is rigid.Lemma 7. Every bounded orthogonal ar
 of SV is part of an edge of M�.Proof. The 
laim is that the orthogonal ar
 
ontained in v + �e1 is 
ontainedin [v; w℄, where (v; w) is the outgoing edge in 
olor 1 at v. Observe that withw 2 fR2(v) and w 2 fR3(v) we have w2 � v2 and w3 � v3. This already impliesv_w = (w1; v2; v3). 4The lemma veri�ed the fourth and last property of rigid embeddings. This
on
ludes the proof of Theorem 8.The natural mapping from equivalen
e 
lasses of rigid geodesi
 embeddingsof a map M� to S
hnyder labelings of M� is inje
tive by de�nition of theequivalen
e 
lasses. The proof of Theorem 8, in parti
ular Lemma 7 showsthat the mapping is surje
tive. This proves the generalization of Theorem 6 togeneral 3-
onne
ted planar maps:Theorem 9. Let M� be a suspended planar map. There is a bije
tion betweenequivalen
e 
lasses of rigid geodesi
 embeddings and S
hnyder labelings of M�.
12



3 Con
luding RemarksFrom the 
onne
tion with algebra des
ribed by Miller [6℄ there arises inter-est in a 
lassi�
ation of grid surfa
es. The bije
tions given in Theorem 6 andTheorem 9 translate parts of this problem into the realm of planar maps andS
hnyder labelings. For the 
ase of a planar triangulation M Theorem 7 pro-vides good insight into the stru
ture of all S
hnyder labelings of M . A similarresult holds true in the more general 
ontext of 3-
onne
ted planar maps. In [5℄the notion of `
ips' between S
hnyder labelings is generalized. Let P(M�) bethe transitive 
losure of dire
ted 
ips on the set of all S
hnyder labelings of asuspended planar map M�. In [5℄ we prove the following stru
ture theorem:Theorem 10. If M� is a suspended planar map then P(M�) is a distributivelatti
e.The proof makes use of a beautiful duality for geodesi
 embeddings. Thisduality is obtained by reverting the order on IN3, i.e., ex
hanging the notionsof above and below and the roles of minima and maxima on a surfa
e S. Thisduality gives a ni
e bije
tion between the S
hnyder labelings of a suspendedplanar map and its suspension dual, i.e., the dual obtained by pla
ing a dualvertex in ea
h of the three parts of the unbounded fa
e and 
onne
ting thempairwise by an edge. Figure 12 shows an example where the primal graph is atriangulation. Remarkably, the duality even preserves rigidity. This is be
ausenon-rigid edges 
ome in primal-dual pairs.

Figure 12: A dual pair of S
hnyder labelings for a planar graph and its dual,on the right side the indu
ing surfa
e.Boni
hon et. al. [1℄ investigate the stru
ture of all planar triangulations withtheir S
hnyder labelings on a given number of verti
es. They propose '
olored
ips' and show that these 
ips make the set 
onne
ted.
13



Referen
es[1℄ N. Boni
hon, B. Le Sa�e
, and M. Mosbah, Wagners theorem on real-izers, in Pro
eedings ICALP '02, P. Widmayer, ed., Le
ture Notes Comput.S
i., Springer-Verlag, 2002.[2℄ E. Brehm, 3-orientations and S
hnyder 3{tree{de
ompositions, Diplomar-beit, Freie Universit�at Berlin, Germany, 2000 .http://www.inf.fu-berlin.de/~felsner/Diplomarbeiten/brehm.ps.gz.[3℄ G. Brightwell and W. T. Trotter, The order dimension of 
onvexpolytopes, SIAM J. Dis
rete Math., 6 (1993), pp. 230{245.[4℄ S. Felsner, Convex drawings of planar graphs and the order dimension of3-polytopes, Order, 18 (2001), pp. 19{37.[5℄ S. Felsner, Latti
e stru
tures from planar graph, 2002. (In preparation.)[6℄ E. Miller, Planar graphs as minimal resolutions of trivariate monomialideals, Do
umenta Math., 7 (2002), pp. 43{90.[7℄ W. S
hnyder, Planar graphs and poset dimension, Order, 5 (1989),pp. 323{343.[8℄ W. S
hnyder, Embedding planar graphs on the grid, in Pro
. 1st ACM-SIAM Sympos. Dis
rete Algorithms, 1990, pp. 138{148.[9℄ W. T. Trotter, Combinatori
s and Partially Ordered Sets: DimensionTheory, Johns Hopkins Series in the Mathemati
al S
ien
es, The JohnsHopkins University Press, 1992.[10℄ W. T. Trotter, Partially ordered sets, Handbook of Combinatori
s, VolI, Graham, Gr�ots
hel, Lov�asz (eds) (1995), pp. 433{480.Appendix: S
hnyder Labelings and WoodsProof of Lemma 1The proof is based on double 
ounting and Euler's formula. De�ne the degreed(v) of a vertex v as the number of edges in
ident with v whose angles at v havedistin
t labels. By the rule of verti
es d(v) = 3 for every vertex v. Similarly,the degree d(F ) of a fa
e F is the number of boundary edges of F whose anglesin F have distin
t labels. By the rules of fa
es d(F ) = 3 for every fa
e, in the
ase of the outer fa
e the half-edges are 
ounted. Therefore,S =Xv d(v) +XF d(F ) = 3n+ 3f = 3jEj+ 6:The same number S 
an be obtained by 
ounting the 
hanges of label aroundthe edges. Ea
h of the half-edges 
ontributes two. Hen
e, the average 
ontri-bution of full-edges is 3. Consider the four angles �1; �2; �3; �4 of an edge in14




ounter
lo
kwise order. De�ne �1; �2; �3; �4 so that �2 = �1 + �1, �3 = �2 + �2,�4 = �3+ �3 and �1 = �4+ �4. Form the rules of verti
es and fa
es �j 2 f0; 1g,for all j. The 
y
li
 nature of the linear system implies that P4j=1 �j = 0mod 3, hen
e, either Pj �j = 0 or Pj �j = 3. Sin
e the 
ontribution of anedge e to the degree sum S is Pj �j(e) we must have Pj �j(e) = 3 for everyfull-edge e. Up to rotational symmetry this only leaves the two 
ases shown inFigure 2.Note that from the exterior labels at spe
ial verti
es (A1) and the rule forthe outer fa
e we know all the edge labels at outer angles. Every outer angle onthe 
lo
kwise outer path from ai to ai+1 has label i � 1. The previous lemmatogether with rule (A2) applied to vertex ai implies:Corollary. In a S
hnyder labeling all interior angles at the spe
ial vertex aiare labeled i.The equivalen
e of S
hnyder angle labelings and S
hnyder woodsLet a S
hnyder angle labeling be given. Re
all how this indu
es orientationsand labeling of edges: If an edge has di�erent angular labels i and j at oneof its ends, we dire
t the edge from this end towards the other and give thisdire
tion the third label k.Lemma 1 shows that this orientation and labeling obeys (W1). There isan immediate 
orresponden
e of (A1) and (W2). Also the two rules of verti
es(A2) and (W3) 
orrespond to ea
h other. If there is an interior fa
e whoseboundary is dire
ted in one label, then we infer that all interior angles of thisfa
e have the same label. Hen
e, the rule of fa
es (A3) for
es (W4).For the 
onverse suppose a S
hnyder wood is given. If the dire
tion (u; v)is 
olored i then we 
olor the angle at u to the left of edge uv with i + 1 andthe angle to the right of uv with i� 1. If uv is unidire
tional we also 
olor thetwo adja
ent angles at v with 
olor i. From (W3) it follows that this 
oloringis well-de�ned, i.e., the 
olors assigned to an angle from its two adja
ent edges
oin
ide.Again, the 
orresponden
e of (A1) and (W2) and of the two rules of verti
es(A2) and (W3) is trivial. To show that the rule of fa
es (A3) is valid is moresubtle.We 
ount 
olor 
hanges at verti
es, fa
es and edges. The four angles of afull-edge are 
olored as in Figure 2 (by (W1)), therefore, d(e) = 3 for every full-edge and d(e) = 2 for ea
h of the three half-edges. The 
ontribution of verti
esis Pv d(v) = 3n. The degree d(F ) of a bounded fa
e F is the number of 
olor
hanges at the angles when we 
y
le around F . If we 
y
le 
lo
kwise then anangle 
olored i is always followed by an angle 
olored i or i+ 1. Consequently,d(F ) must be a multiple of 3. Rule (W4) enfor
es d(F ) 6= 0. For the unboundedfa
e we have d(F ) = 3 anyway.Xv d(v) +XF d(F ) =Xe d(e) =) 3n+XF d(F ) = 3jEj + 6With Euler's Formula PF d(F ) = 3f whi
h is only possible if d(F ) = 3 forevery fa
e F . 15



We have already seen that the 
olors go 
lo
kwise at bounded fa
es and
ounter
lo
kwise at the outer fa
e. This proves the rule of fa
es (A3).1 111 1 111 11 1 112
2

2 3
3 3222 222 2 22 23 333 3 3 33 3 3

Figure 13: The example orientation and 
oloring of edges obeys (W1), (W2)and (W3) but not (W4). The indu
ed angle labeling is not a S
hnyder labeling.
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