
Geodesi Embeddings and Planar GraphsStefan FelsnerFreie Universit�at Berlin, Fahbereih Mathematik und Informatik,Takustr. 9, 14195 Berlin, GermanyE-mail: felsner�inf.fu-berlin.deAbstrat. Shnyder labelings are known to have lose links to order dimension anddrawings of planar graphs. It was observed by Ezra Miller that geodesi embeddings ofplanar graphs are another lass of ombinatorial or geometri objets losely linked toShnyder labelings. We aim to ontribute to a better understanding of the onnetionsbetween these objets. In this artile we prove� a haraterization of 3-onneted planar graphs as those graphs admitting rigidgeodesi embeddings,� a bijetion between Shnyder labelings and rigid geodesi embeddings,� a strong version of the Brightwell-Trotter theorem.Mathematis Subjet Classi�ations (2000). 05C10, 68R10, 06A07.1 The Players of the Game1.1 Planar MapsA planar map M is a simple planar graph G together with a �xed planarembedding of G in the plane. A suspension M� of M is obtained by seletingthree di�erent verties a1; a2; a3 in lokwise order from the outer fae of Mand adding a half-edge that reahes into the outer fae to eah of these speialverties. The losureM�1 of a suspensionM� ofM is obtained by adding a newvertex v1, this new vertex is used as seond endpoint of eah of the half-edgesof M�.1.2 Shnyder Labelings and WoodsWe review de�nitions and some properties of Shnyder labelings and Shnyderwoods for 3-onneted planar maps. Originally, these objets have been intro-dued for planar triangulation [7℄ and [8℄. A omprehensive treatment for thease of 3-onneted planar maps an be found in [4℄. This inludes the proof forthe existene of these objets and results related to drawings of planar graphs.LetM� be the suspension of a 3-onneted planar map. A Shnyder labelingwith respet to a1; a2; a3 is a labeling of the angles of M� with the labels 1; 2; 3(alternatively: red, green, blue) satisfying three rules. Throughout we assumea yli struture on the labels so that i+ 1 and i� 1 is always de�ned.31. Juni 2002 1



(A1) The two angles at the half-edge of the speial vertex ai have labels i+ 1and i� 1 in lokwise order.(A2) Rule of verties: The labels of the angles at eah vertex form, in lokwiseorder, a nonempty interval of 1's, a nonempty interval of 2's and a nonemptyinterval of 3's.(A3) Rule of faes: The labels of the angles at eah interior fae form, inlokwise order, a nonempty interval of 1's, a nonempty interval of 2'sand a nonempty interval of 3's. At the outer fae the same is true inounterlokwise order.
1 33321 31 1 1 23Figure 1: Rule of verties and rule of faesLemma 1. Let G be a plane graph with a Shnyder labeling, then the fourangles of eah edge ontain all three labels 1,2,3. Thus every edge has one ofthe two types shown in Figure 2.ii i � 1i + 1 ii+ 1 i � 1iFigure 2: The two types of labeling for an edge.A proof of the lemma is given in the appendix. There it is also shown thatin a Shnyder labeling all interior angles at the speial vertex ai are labeled i.Let M� be the suspension of a 3-onneted planar map. A Shnyder wood�rooted at a1; a2; a3 is an orientation and labeling of the edges of M� with thelabels 1; 2; 3 satisfying the following rules.(W1) Every edge e is oriented by one or two opposite diretions. The diretionsof edges are labeled suh that if e is bioriented the two diretions havedistint labels.(W2) The half-edge at ai is direted outwards and labeled i.(W3) Every vertex v has outdegree one in eah label. The edges e1; e2; e3 leavingv in labels 1,2,3 our in lokwise order. Eah edge entering v in label ienters v in the lokwise setor from ei+1 to ei�1. See Figure 3.(W4) There is no interior fae whose boundary is a direted yle in one label.�Shnyder wood is more suggestive than triorientation.2



A Shnyder labeling of the angles of a plane graph indues a Shnyder wood.If an edge has di�erent angular labels i and j at one of its ends, we diret theedge from this end towards the other and give this diretion the third label k.Conversely, a Shnyder wood indues a Shnyder labeling. The proof of thefollowing theorem is plaed bak into the appendix.Theorem 1. Let M� be the suspension of a 3-onneted planar map. Theabove orrespondene is a bijetion between the Shnyder labelings (axiomsA1,A2,A3) and Shnyder woods (axioms W1,..,W4) of M�.Heneforth, we bend terminology and reuse the term Shnyder labeling todenote a Shnyder angle labeling together with a ompatible Shnyder wood.Let G be a planar graph with a Shnyder labeling. With Ti we denote thedigraph indued by the edges having a diretion labeled i and oriented in thisdiretion. Sine every inner vertex has outdegree one in Ti every v is the startingvertex of a unique i-path Pi(v) in Ti. In the remainder of this subsetion wereview results from [4℄. The digraph Ti is ayli and, even more, Ti is a treewith root ai.
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Figure 3: Edge orientations and labels at a vertex.The orientation Ti[T�1i�1[T�1i+1 is also ayli (disregarding bidireted edgesin labels i � 1 and i + 1). It follows that for i 6= j the paths Pi(v) and Pj(v)have v as the only ommon vertex. Therefore, P1(v); P2(v); P3(v) divide G intothree regions R1(v), R2(v) and R3(v), where Ri(v) denotes the region boundedby and inluding the two paths Pi�1(v) and Pi+1(v), see Fig. 4.
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R1(v)Figure 4: The three regions of a vertexLemma 2. For any two verties u and v of a Shnyder labeled graph3



� there are i and j with Ri(u) � Ri(v) and Rj(v) � Rj(u),� Ri(u) � Ri(v) i� u 2 Ri(v).The region vetor of a vertex v is the vetor (v1; v2; v3) de�ned byvi = The number of faes of M ontained in region Ri(v):Given three non-ollinear points �1, �2 and �3 in the plane. These points andthe region vetors an be used to de�ne an embedding of M in the plane. Avertex v is mapped to the point� : v ! v1�1 + v2�2 + v3�3;An edge fu; vg is mapped by � to the line segment onneting �(u) and �(u).Theorem 2. The drawing �(M) of a 3-onneted plane map is onvex, i.e.,the boundary of every fae is a onvex polygon.1.3 Geodesi EmbeddingsWith the notation in this part we widely follow Miller [6℄. Consider ZZ3 (or IN3)as subsets of IR3 and the dominane order on these sets, i.e, with u = (u1; u2; u3)and v = (v1; v2; v3) we have u dominates v, in symbols u � v if ui � vi fori = 1; 2; 3. Use u_v and u^v to denote the join (omponent-wise maximum)and meet (omponent-wise minimum) of u; v 2 IR3.Let V � IN3 � IR3 be an antihain, i.e., a set of pairwise inomparableelements. The �lter generated by V in IR3 is the sethVi = f� 2 IR3 j � � v for some v 2 Vg:The boundary SV of hVi is the orthogonal surfae generated by V. Orthogonalprojetion onto the plane x+ y + z = 0 yields a piture of SV in the plane. Thispiture is a rhombi tiling of the plane, see Figure 5.

Figure 5: An orthogonal surfae and its generator set VIf u; v 2 V and u_v 2 SV then SV ontains the union of the two linesegments joining u and v to u_v; we refer to suh ars as elbow geodesis in SV .4



The orthogonal ar of v 2 V in diretion of the standard basis vetor ei is theintersetion of the ray v + �ei, � � 0, with SV . Clearly every vetor v 2 V hasexatly three orthogonal ars, one parallel to eah oordinate axis, althoughsome orthogonal ars may be unbounded while others are bounded. Observethat u_v must share two oordinates with at least one (and perhaps both) ofu and v, so every elbow geodesi ontains at least one orthogonal ar.Making ompatible hoies of elbow geodesis ontaining all orthogonal raysyields a planar map. A plane drawing M ,! SV is a geodesi embedding in SV ,if the following two axioms are satis�ed:(Vertex axiom) There is a bijetion between the verties of M and V.(Elbow geodesi axiom) Every edge of M is an elbow geodesi in SV , and everybounded orthogonal ar in SV is part of an edge of M .An antihain V in ZZ3 is alled axial if it ontains exatly three unbounded or-thogonal ars. Clearly every �nite antihain ontains at least three unboundedorthogonal ars, one in eah diretion. An axial geodesi embedding of a sus-pended map M� is a geodesi embedding M ,! SV suh that the three halfedges of M� map onto the three unbounded orthogonal rays of SV .Theorem 3. Let M� ,! SV be an axial geodesi embedding, then the losureM�1 is 3-onneted and the embedding indues a Shnyder labeling of M�. Con-versely, every Shnyder labeling of a map M� yields an axial geodesi embeddingof M�.Proof. Given the embedding M� ,! SV , the Shnyder labeling of the angles ofM� is the labeling by the three di�erent shades in the tiling �gure. The vertexand fae rules are easily veri�ed. Alternatively, olor the edges by the diretionof the orthogonal ars they ontain, see Figure 6.
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Figure 6: The Shnyder labeling indued by a geodesi embedding.3-onnetedness is obtained from the existene of three internally disjointpath between any two verties u and v (Menger's theorem). Suh path an beonstruted by onsidering the path Pi(w) for w = u; v and i = 1; 2; 3 togetherwith the three edges inident to v1. 5



Given a Shnyder labeling of M� embed every vertex v in IN3 at its regionvetor (v1; v2; v3). Sine v1 + v2 + v3 = f � 1 is independent of v (it is thenumber of bounded faes of M) this maps the vertex set of M to an antihainin IN3. If e = fu; vg is an edge of M and x 62 e a vertex, then for some i edgee is ontained in region Ri(x). This implies Ri(u) � Ri(x) and Ri(v) � Ri(x)hene, ui � xi and vi � xi. Together with x1 + x2 + x3 = f � 1 this showsthat with e = fu; vg the join u_v and hene the elbow geodesi [u; v℄ is on thesurfae SV . In this onstrution the orthogonal ar of v in diretion ei is usedby the edge whih leaves v in olor i.1.4 Order DimensionThe dimension of an order P is the least k suh that P admits an order pre-serving embedding in INk equipped with the dominane order. For more onorder dimension see [9℄, [10℄, [3℄ or [4℄. With a graph G = (V;E) assoiate itsinidene order P (G) on ground set V [E and with relations v < e i� vertex vis one of the endverties of e. Shnyder's elebrated theorem [7℄. haraterizesplanar graphs in terms of order dimension.Theorem 4. A Graph G is planar if and only if the dimension of the inideneorder P (G) is at most 3.Theorem 3 is not a diret onsequene of Shnyder's Theorem. At �rst, inan embedding of P (G) in IN3 the edges need not fall onto the orthogonal surfaeSV generated by the verties. Even if we push the edges down to the join oftheir inident verties to ful�ll this ondition, the property that the orthogonalars of the verties are used by the onneting elbow geodesis an fail. Anexample an be found in Figure 6 of [6℄.Conversely, it might seem that Theorem 3 yields a proof of Shnyder's theo-rem. At least we have shown that if we embed edge e = fu; vg at u_v then bothverties u and v are dominated by the edge. However, referring to Figure 6,we �nd that u_v also happens to dominate w, therefore, we an only laim tohave embedded some extension of P (G) whih is not even the inidene orderof a graph.To overomes this diÆulty we demand an additional property from elbowgeodesis, this property alled rigidity was proposed by Miller [6℄. The mainontribution of this paper is to show how Shnyder labelings an be used toobtain rigid geodesi embeddings of 3-onneted planar maps. As a onsequenethis leads to a strong version of a theorem by Brightwell and Trotter. TheBrightwell{Trotter Theorem (see [3℄ or [9℄) is the following generalization ofShnyder's Theorem.Theorem 5. The inidene order of verties, edges and bounded faes of aplanar map has dimension at most 3.An elbow geodesi onneting verties u and v is SV is rigid if u and v arethe only verties in V whih are dominated by u_v. A geodesi embedding of amap M in a surfae SV is alled rigid if all the edges of M are mapped to rigidelbow geodesis. 6



Let M ,! SV be a rigid geodesi embedding. By the above remarks thisyields an embedding of the vertex-edge inidene order of M in IN3.The following result (Proposition 2.4 from Miller [6℄) shows that in thisase even the full inidene order of verties, edges and bounded faes of M isembedded in IN3.Proposition 1. Let M� ,! SV be a rigid embedding, and F a bounded regionof M . If �F is the join of the verties of F , then w 2 F , w � �F .Proof. The embedding M� ,! SV indues a Shnyder labeling of M� (Theo-rem 3). Assoiated to a vertex v there are three speial paths Pi(v). The ver-ties visited by path Pi are stritly inreasing in oordinate i and non-inreasing(weakly dereasing) in oordinates i� 1 and i+1. Suppose fae F is ontainedin region Ri(v). For w 2 Ri(v) let w0 be the last vertex of Pi(w) in Ri(v).From w0 2 Pi�1(v)[Pi+1(v) follows vi � w0i � wi. Hene, for every v there is aoordinate i suh that vi � [�F ℄i. This proves that �F = Vw2F w is one of themaxima of the surfae SV .Let XF = fv 2 V : v � �F g. Sine �F 2 SV every w 2 XF is on one ofthe desents from �F , i.e., there is an i with wi = [�F ℄i. Let [XF ℄i = fw 2XF : wi = [�F ℄ig, eah [XF ℄i indues a path in M . The three path are joinedtogether by three additional edges to form a simple yle, the boundary of faeF . Therefore, XF is the set of verties of F .With this proposition we immediately obtain a proof of the Brightwell Trot-ter theorem. Atually, the result implied by Proposition 1 is stronger than theoriginal. In our embedding all verties, edges and faes sit in a single surfae.An alternative way of stating this is: For every inident pair v 2 F there is aoordinate i suh that vi = (�F )i.1.5 Rigid Geodesi EmbeddingsA nie property of rigid embeddings is that they uniquely determine a pla-nar map. A �xed planar map, however, an be determined by di�erent rigidembeddings. Figure 7 shows an example.Consider two rigid geodesi embeddings to be ombinatorially equivalentif they indue the same Shnyder labeled planar graph. In geometri termsthis equivalene an be stated as follows: Two rigid surfaes SV and SW areequivalent if there is a bijetion � : V ! W suh that an elbow geodesi [v; w℄in SV ontains a piee of the orthogonal ray v + �ei i� [�(v); �(w)℄ is an elbowgeodesi in SW ontaining a piee of the orthogonal ray �(v) + �ei.The following theorem is a speial ase of our main Theorem 9. The restri-tion to planar triangulations allows a short proof.Theorem 6. Let M� be a suspended planar triangulation. There is a bijetionbetween equivalene lasses of rigid geodesi embeddings and Shnyder labelingsof M�.Proof. By our de�nition of equivalene for rigid surfaes the map from rigidgeodesi embeddings to Shnyder labelings is injetive. It remains to show that7



Figure 7: A planar map with two ombinatorially di�erent rigid embeddingsevery Shnyder labeling of M� is indued by some rigid geodesi embedding.From the proof of Theorem 3 it follows that every Shnyder labeling is induedby some geodesi embedding. We thus only have to take are of rigidity.Claim 1. No elbow geodesi representing a interior edge ontains two orthog-onal ars.This follows from ounting. We need three trees overing all edges and eah ofthe three outer edges is ontained in two of the trees.Claim 2. Every elbow geodesi is rigid.Let [u; v℄ be an elbow geodesi using an orthogonal ray leaving u. The followingargument is illustrated in Figure 8. If [u; v℄ is non-rigid, then there is some ww u v
Figure 8: A non-rigid edgebelow u_v. On the surfae the only diretion where it goes down from u_v is onthe plane path desending to v. Therefore, v and w both sit on this same planepath and are onneted by a zig-zag path onsisting only of orthogonal ars.By the elbow geodesi axiom these ars are ontained in edges, in ontraditionto Claim 1.Brehm [2℄ has studied the struture of all Shnyder labelings of a suspendedtriangulated map. De�ne A � B for Shnyder labelings A and B if the twolabelings di�er only loally around a triangle as shown in Figure 9.Let P(M�) be the transitive losure of the � relation on the set of allShnyder labelings of a suspended planar triangulation M�. The main result8



1 3 2 323 1 12 2 2 1 332113A B
Figure 9: A ip from labeling A to labeling B.of Brehm, whih arries over to equivalene lasses of rigid embeddings, is thefollowing.Theorem 7. IfM� is a 4-onneted suspended planar triangulation then P(M�)is a distributive lattie.2 A Constrution for Rigid EmbeddingsFor planar triangulations the existene of rigid embeddings immediately followsfrom Theorem 6 together with the existene of Shnyder labelings. In thissetion we show the existene of a rigid embeddings for every 3-onneted planarmap.The idea is to use Shnyder labelings and modify the de�nition for theregions of a vertex. To begin with we de�ne the lifted i-path ePi(v) of vertex vas a sequene of edges.� The �rst edge of ePi(v) is the edge leaving v in olor i.Let (x; y) be an i-olored edge of ePi(v).� If y = ai then the path ends.� If fx; yg is bidireted, suh that (y; x) is olored i � 1 and there is anunidireted edge entering y in olor i + 1, let (z; y) be the �rst suh edgein lokwise diretion from (x; y) at y. Then ePi(v) ontains (y; z) and theedge leaving z in olor i.� Else, ePi(v) ontains the edge leaving y in olor i.The de�nition of ePi(v) is illustrated in Figure 10. In the next lemma we olletsome important properties of lifted path.Lemma 3. The following statements are valid for all u; v 2 V .(1) The lifted path ePi(v) is simple, it starts in v and ends in ai.(2) The lifted path ePi(v) and the unlifted path Pi+1(v) are internally disjoint.(3) Two path ePi(u) and ePi(v) never ross.Proof. Property (1) readily follows from the fat that Ti [ T�1i+1 is ayli.Assume that vertex x is ommon to ePi(v) and Pi+1(v). Going from v to xalong ePi(v) and bak on the reverse of Pi+1(v) gives a yle in Ti [ T�1i+1. Theontradition proves (2). 9
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3Figure 10: A partial Shnyder labeling and the indued lifted 2-paths.For property (3) onsider two paths ePi(u) and ePi(v) meeting in vertex x. Ifthey both ontinue with the edge leaving x in olor i, then they both ontainePi(x) and there is no rossing at or after x. Otherwise, one of the paths, sayePi(u) ontains an i+ 1 olored edge e entering x. By de�nition ePi(u) enters xalong the edge whih follows e in ounterlokwise diretion at x. Hene, thepath ePi(u) stays on the same side of ePi(v) and there is no rossing at x. 4Let fRi(v) be the region bounded by the unlifted path Pi�1(v) and the liftedpath gPi+1(v) inluding the two paths, we all fRi(v) the lifted i-region of v.Lemma 4. For any verties u and v of a Shnyder labeled graph and every i(1) Ri(v) � fRi(v).(2) Ri(u) = Ri(v) i� fRi(u) = fRi(v).(3) fRi(u) � fRi(v) i� u 2 fRi(v).(4) If Ri(u) � Ri(v) then fRi(u) � fRi(v).The lemma shows that the inlusion order with respet to the lifted i-regionsfRi is an extension of the inlusion order of the i-regions Ri. A omparison ofthe lifted and unlifted 1-regions of the two blak verties in Figure 10 showsthat it is a proper extension.We now de�ne three orders on the verties of a planar Shnyder labeled graph.The relation Si is de�ned suh that u! v in Si i� either(a) fRi(u) � fRi(v), or(b) fRi(u) 6� fRi(v), fRi(v) 6� fRi(u) and Ri+1(u) � Ri+1(v).The open interior Roi (v) of region Ri(v), is Ri(v)n(Pi�1(v)[Pi+1(v)). Note thatwith this notation the ondition for u b! v in Si is equivalent to the statementthat u 2 Roi+1(v) and the two paths gPi+1(u) and Pi�1(v) interset.10



Lemma 5. The relation Si is ayli, hene, an order relation.Proof. Call u ! v an a-pair if in Si by part (a) of the de�nition otherwiseu! v is a b-pair. The a-relation and the b-relation are ontainment relations,hene ayli. The a-relation is learly transitive, we laim that the b-relationis also transitive. Let u b! v b! w and let P be the path that joins ai�1 tov along the reverted Pi�1(v) and ontinues along gPi+1(v) to ai+1. This pathP is rossed in the �rst part by gPi+1(u) and in the seond part by Pi�1(w).Therefore, the two paths gPi+1(u) and Pi�1(w) ross in the interior of regionRi(v). This shows that there is no inlusion between the lifted i-regions of uand w and furthermore u 2 Roi+1(w) this shows u b! w.Transitivity and irreexivity of a! and b! implies that a shortest yle inSi ontains an a-pair followed by a b-pair. We laim that with u a! v b! w wealso have u! w, in ontradition to the hoie of the yle.From u a! v b! w onlude fRi(u) � fRi(v) � fRi(w) [Ri+1(w). If u 2 fRi(w)then fRi(u) � fRi(v) \ fRi(w) � fRi(w), hene, u a! w. Otherwise there is noinlusion between fRi(u) and fRi(w) and u 2 Roi+1(w) whih implies u b! w. 4Note that the inomparability relation in Si is an equivalene relation: uand v are inomparable in Si i� fRi(u) = fRi(v). Therefore, Si is a weak-order,i.e., a series omposition of antihains. In partiular Si is ranked. For a vertexv of a Shnyder labeled graph and i = 1; 2; 3, let vi = rank(v; Si).Theorem 8. Let M� be a suspended planar map with a Shnyder labeling.With vi = rank(v; Si) and v ! (v1; v2; v3) de�ne a map from V to a subset V ofIN3. The surfae SV generated by V supports a rigid geodesi embedding of M�.Reall the four properties that have to be veri�ed for the embeddingM� ,! SV .(1) There is a bijetion between the verties of M and V.(2) Every edge is an elbow geodesi in SV .(3) Every edge is a rigid geodesi in SV .(4) Every orthogonal ar is part of an edge of M�.Lemma 6. Let e = (u; v) be an edge and x be a vertex not on e, then there isan i, suh that u < x and v < x in Si.Proof. By symmetry we may assume that e 2 fR1(x). From Lemma 4.(3) weknow fR1(u) � fR1(x) and fR1(v) � fR1(x). If fR1(u) 6= fR1(x) and fR1(v) 6= fR1(x)this implies u a! x and v a! x, i.e., u < x and v < x in S1.Now suppose fR1(v) = fR1(x), it follows that there is a bidireted path inolors 2 and 3 onneting v and x. First assume that v is to the left of x.The situation is shown in the left part of Figure 11. Clearly v is on P3(x) aswell as on fP3(x). From the relative positions of the outgoing edges of v andx in olor 1 it follows that fR2(v) � fR2(x). From e 2 fR1(x) it follows thatu 2 P3(x) or (u; v) is unidireted in olor 1. Therefore, either fP3(x) goes belowu or fP3(x) ontains u, more formally, either u 2 P3(x) or u is ontained in the11



1 11 32 2 3 11 12 3 32uvR2 x x R3vuFigure 11: The two ases for fR1(v) = fR1(x).losed region enlosed by P3(x) and fP3(x). In onlusion fR2(u) � fR2(x). FromfR2(v) � fR2(x) and fR2(u) � fR2(x) it follows that u < x and v < x in S2.The last ase is that fR1(v) = fR1(x) and v is to the right of x. This situationis shown in the right part of Figure 11. The inlusion fR3(v) � fR3(x) is obviousand shows v < x in S3. If u 2 P2(x) then fR3(u) � fR3(x) whene u < x inS3. If u 62 P2(x) then (u; v) is unidireted in olor 1 and there is no inlusionbetween fR3(u) and fR3(x). However, we �nd u in the open interior of R1(x)and onlude that R1(u) � R1(x). Therefore u < x in S3. 4If v and x are two verties then there is some u 6= x suh that fu; vg isan edge. This observation and the lemma allows the onlusion that the mapV ! V is injetive. Together with a symmetri argument using a neighbor y ofx this shows that for verties v 6= x there are i and j suh that v < x in Si andx < v in Sj, i.e., V is an antihain in IN3.Let fu; vg be an edge of M , the lemma implies that u and v are the onlyelements of V whih are dominated by u_v. Therefore, u_v and the geodesi[u; v℄ are ontained in SV and [u; v℄ is rigid.Lemma 7. Every bounded orthogonal ar of SV is part of an edge of M�.Proof. The laim is that the orthogonal ar ontained in v + �e1 is ontainedin [v; w℄, where (v; w) is the outgoing edge in olor 1 at v. Observe that withw 2 fR2(v) and w 2 fR3(v) we have w2 � v2 and w3 � v3. This already impliesv_w = (w1; v2; v3). 4The lemma veri�ed the fourth and last property of rigid embeddings. Thisonludes the proof of Theorem 8.The natural mapping from equivalene lasses of rigid geodesi embeddingsof a map M� to Shnyder labelings of M� is injetive by de�nition of theequivalene lasses. The proof of Theorem 8, in partiular Lemma 7 showsthat the mapping is surjetive. This proves the generalization of Theorem 6 togeneral 3-onneted planar maps:Theorem 9. Let M� be a suspended planar map. There is a bijetion betweenequivalene lasses of rigid geodesi embeddings and Shnyder labelings of M�.
12



3 Conluding RemarksFrom the onnetion with algebra desribed by Miller [6℄ there arises inter-est in a lassi�ation of grid surfaes. The bijetions given in Theorem 6 andTheorem 9 translate parts of this problem into the realm of planar maps andShnyder labelings. For the ase of a planar triangulation M Theorem 7 pro-vides good insight into the struture of all Shnyder labelings of M . A similarresult holds true in the more general ontext of 3-onneted planar maps. In [5℄the notion of `ips' between Shnyder labelings is generalized. Let P(M�) bethe transitive losure of direted ips on the set of all Shnyder labelings of asuspended planar map M�. In [5℄ we prove the following struture theorem:Theorem 10. If M� is a suspended planar map then P(M�) is a distributivelattie.The proof makes use of a beautiful duality for geodesi embeddings. Thisduality is obtained by reverting the order on IN3, i.e., exhanging the notionsof above and below and the roles of minima and maxima on a surfae S. Thisduality gives a nie bijetion between the Shnyder labelings of a suspendedplanar map and its suspension dual, i.e., the dual obtained by plaing a dualvertex in eah of the three parts of the unbounded fae and onneting thempairwise by an edge. Figure 12 shows an example where the primal graph is atriangulation. Remarkably, the duality even preserves rigidity. This is beausenon-rigid edges ome in primal-dual pairs.

Figure 12: A dual pair of Shnyder labelings for a planar graph and its dual,on the right side the induing surfae.Bonihon et. al. [1℄ investigate the struture of all planar triangulations withtheir Shnyder labelings on a given number of verties. They propose 'oloredips' and show that these ips make the set onneted.
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ounterlokwise order. De�ne �1; �2; �3; �4 so that �2 = �1 + �1, �3 = �2 + �2,�4 = �3+ �3 and �1 = �4+ �4. Form the rules of verties and faes �j 2 f0; 1g,for all j. The yli nature of the linear system implies that P4j=1 �j = 0mod 3, hene, either Pj �j = 0 or Pj �j = 3. Sine the ontribution of anedge e to the degree sum S is Pj �j(e) we must have Pj �j(e) = 3 for everyfull-edge e. Up to rotational symmetry this only leaves the two ases shown inFigure 2.Note that from the exterior labels at speial verties (A1) and the rule forthe outer fae we know all the edge labels at outer angles. Every outer angle onthe lokwise outer path from ai to ai+1 has label i � 1. The previous lemmatogether with rule (A2) applied to vertex ai implies:Corollary. In a Shnyder labeling all interior angles at the speial vertex aiare labeled i.The equivalene of Shnyder angle labelings and Shnyder woodsLet a Shnyder angle labeling be given. Reall how this indues orientationsand labeling of edges: If an edge has di�erent angular labels i and j at oneof its ends, we diret the edge from this end towards the other and give thisdiretion the third label k.Lemma 1 shows that this orientation and labeling obeys (W1). There isan immediate orrespondene of (A1) and (W2). Also the two rules of verties(A2) and (W3) orrespond to eah other. If there is an interior fae whoseboundary is direted in one label, then we infer that all interior angles of thisfae have the same label. Hene, the rule of faes (A3) fores (W4).For the onverse suppose a Shnyder wood is given. If the diretion (u; v)is olored i then we olor the angle at u to the left of edge uv with i + 1 andthe angle to the right of uv with i� 1. If uv is unidiretional we also olor thetwo adjaent angles at v with olor i. From (W3) it follows that this oloringis well-de�ned, i.e., the olors assigned to an angle from its two adjaent edgesoinide.Again, the orrespondene of (A1) and (W2) and of the two rules of verties(A2) and (W3) is trivial. To show that the rule of faes (A3) is valid is moresubtle.We ount olor hanges at verties, faes and edges. The four angles of afull-edge are olored as in Figure 2 (by (W1)), therefore, d(e) = 3 for every full-edge and d(e) = 2 for eah of the three half-edges. The ontribution of vertiesis Pv d(v) = 3n. The degree d(F ) of a bounded fae F is the number of olorhanges at the angles when we yle around F . If we yle lokwise then anangle olored i is always followed by an angle olored i or i+ 1. Consequently,d(F ) must be a multiple of 3. Rule (W4) enfores d(F ) 6= 0. For the unboundedfae we have d(F ) = 3 anyway.Xv d(v) +XF d(F ) =Xe d(e) =) 3n+XF d(F ) = 3jEj + 6With Euler's Formula PF d(F ) = 3f whih is only possible if d(F ) = 3 forevery fae F . 15



We have already seen that the olors go lokwise at bounded faes andounterlokwise at the outer fae. This proves the rule of faes (A3).1 111 1 111 11 1 112
2

2 3
3 3222 222 2 22 23 333 3 3 33 3 3

Figure 13: The example orientation and oloring of edges obeys (W1), (W2)and (W3) but not (W4). The indued angle labeling is not a Shnyder labeling.
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