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Interested in the dimension of the face lattices of d-dimensional grids, we are
led to the study of fences and their products. This yields a characterization of
generalized fences: F is a generalized fence if and only if dimpP ˆF q ď dimpP q `1
for every poset P .
Whether dimpP ˆ Qq ě dimpP q ` dimpQq ´ 2 for all posets P and Q is a long-

standing question in dimension theory. Having understood products where one
factor is a fence we further investigate the dimension of products where the factors
are crowns and other 3-dimensional posets. We reconsider the covering property
defined by Reuter for Ferrers relations and show that in many cases the gap between
dimpP ˆ Qq and dimpP q ` dimpQq can be explained with the covering properties
of one of the factors.

1 Introduction

Below in Subsection 1.1 we recall basic notions and concepts of posets and their dimension.
Readers with little background on the topic may want to go there first. A thorough introduction
to dimension of posets can be found in Trotter’s monograph [Tro92].
Our primary interest was to study the dimension of the face poset of a d-dimensional grid.

Faces of the d-grid are the elements of a d-dimensional product of paths. Hence, the inclusion
poset of faces of the d-grid is a product of fences, the incidence (inclusion) orders of paths. This
leads us to the study of products of fences and other posets. As results we have a dimension-
theoretic characterization of generalized fences, i.e., of posets whose cover graph is a forest
of paths. We also contribute some insights regarding one of the big open questions in order
theory.

Question 1. Do posets P and Q exist such that dimpP ˆ Qq ă dimpP q ` dimpQq ´ 2 ?

It is unclear when the dimension of products was first studied. It arises quite naturally
from the definition given by Dushnik and Miller [DM41]. The dimension of products is a
topic of a survey of Kelly and Trotter [KT82] but was already studied in unpublished work of
Baker [Bak61]. The following upper and lower bounds on the dimension of a product belong
to the folklore of dimension theory.
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Fact 2. For arbitrary posets P and Q we have

maxpdimpP q,dimpQqq ď dimpP ˆ Qq ď dimpP q ` dimpQq.

Baker has shown that if P and Q are posets with 0 and 1, i.e., with a least and a greatest
element, then dimpPˆQq “ dimpP q`dimpQq (a proof can be found in [Tro92, page 40]). Hence
the upper bound can be tight. On the other hand, if An is an antichain, then dimpAnq “ 2
and An ˆ P is just the n-fold disjoint union of P . Hence, the dimension of An ˆ P equals
max

`

dimpP q, 2
˘

, and if dimpP q ě 2, then dimpAn ˆ P q “ dimpP q “ dimpP q ` dimpAnq ´ 2.
So far nobody found an example with dimpP ˆ Qq ă dimpP q ` dimpQq ´ 2, however, the

lower bound of Fact 2 is still the best we know. Several competing conjectures concerning the
gap have been posed:

Conjecture 3 (Trotter [Tro85]). For every m,n with 1 ď m ď n, there exist posets P and Q
with dimpP q “ m, dimpQq “ n and dimpP ˆ Qq “ n.

Conjecture 4 (Kelly and Trotter [KT82]). dimpP ˆQq ě dimpP q`dimpQq´2 for all posets P
and Q.

Reuter identified a situation where the lower bound of Fact 2 is not tight:

Theorem 5 (Reuter [Reu89]). dimpP ˆ P q ě 4 for all P with dimpP q “ 3.

A proof of the theorem is given in Subsection 2.4. We also provide some results which suggest
that dimpP ˆ Qq ě 4 “ dimpP q ` dimpQq ´ 2 for all P and Q with dimpP q “ dimpQq “ 3. If
true this would disprove Conjecture 3 and provide additional evidence for Conjecture 4.

Our interest in the dimension of the face poset of a d-dimensional grid was motivated by
possible applications in discrete geometry. We found the question interesting also because it
closely relates with the order dimension of polytopes, a research topic which has resulted in a
collection of deep and interesting results.

• Schnyder [Sch89] proved that the face lattice of a 3-dimensional simplicial (triangulated)
polytope has order dimension 4. Moreover, the dimension drops to 3 upon removal of a
single face.

• Reuter [Reu90] proved that the order dimension of the face lattice of a d-polytope is
at least d ` 1 and observed that in fixed dimension d ě 4 there are polytopes with
arbitrarily large order dimension. This is due to the fact that in these dimensions there
are neighbourly polytopes, i.e., polytopes whose faces of dimension 0 and 1 induce a
complete graph.

• Brightwell and Trotter [BT93] generalized Schnyder’s result, they prove that the face
lattice of arbitrary 3-dimensional polytopes has order dimension 4, while the dimension
drops to 3 upon removal of a single face. Simplified proofs of this result can be found
in [Fel01, Fel03, FZ08].

The study of the dimension of the face poset of d-dimensional cubic grids in Section 2 leads
us to studying the dimension of products.
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1.1 Elements of Poset Dimension

We mostly consider posets P “ pX,ďP q with a reflexive order relation and corresponding
irreflexive order relation ăP . When x, y P X and x ęP y and y ęP x, then x and y are
incomparable and we write x ∥ y in P .

A poset P is a linear order if any two of its elements are comparable. If P and Q are partial
orders on the same ground set, we say Q is an extension of P if x ďP y implies x ďQ y. We
call Q a linear extension of P if Q is a linear order which is an extension of P .
A family R of linear extensions of P is a realizer of P if for all x, y P X, x ďP y if and only

if x ďL y for every L P R.
The definition of a realizer can be converted to the following:

Observation 6. A set R of linear extensions of P is a realizer if and only if for all x, y P P
with x ęP y there is some extension L P R such that y ăL x.

The dimension of the poset P , denoted dimpP q is the least integer t so that P has a realizer
R “ tL1, L2, . . . , Ltu of cardinality t. A poset is t-irreducible if it has dimension t but the
removal of any element leaves a subposet of dimension less than t, in this case the dimension
of the subposet is t ´ 1.

The product of two posets P “ pX,ďP q and Q “ pY,ďQq is the poset P ˆQ “ pXˆY,ďPˆQq

where px, yq ďPˆQ px1, y1q if and only if x ďP x1 and y ďQ y1. The dual of a poset P “ pX,ďP q

is the poset P d “ pX,ďP dq where x ďP d y if and only if y ďP x.
Given a poset P “ pX,ďP q, let incpP q “ tpx, yq P X ˆ X : x ∥ y in P u. A linear

extension L of P with y ăL x reverses the incomparable pair px, yq. A set R of linear extensions
of P is a realizer if and only if for every px, yq P incpP q, some L P R reverses the pair
px, yq. For this reason, it is convenient to have a criterion to determine whether there is
a linear extension reversing a given subset S Ă incpP q. For an integer k ě 2, a subset
S “ tpxi, yiq : 1 ď i ď ku Ă incpP q is called an alternating cycle when xi ď yi`1 in P ,
for all i “ 1, 2, . . . , k, where yk`1 “ y1. Note that a linear extension can not revert all the
incomparable pairs of an alternating cycle. In fact, alternating cycles characterize reversible
sets: A subset S of incpP q can be reverted by a single linear extension of P if and only if S
does not contain an alternating cycle.
A pair px, yq P incpP q is a critical pair if u ăP x implies u ăP y and y ăP v implies x ăP v,

for all u, v P X. The relevance of critical pairs is due to the following fact: A family of linear
extensions is a realizer if and only if it reverses the set of critical pairs. Thus the dimension
of P equals the minimum size of a family of linear extensions reversing all critical pairs.

2 Grids, Fences and Crowns

The d-grid can be defined as the product of paths. The notion of product applied here is the
product of cell-complexes, i.e., if c is a k-cell in the d-dimensional grid Gd viewed as Ga ˆ Gb

with a ` b “ d, then there there is a k1-cell c1 in Ga and a k2-cell c2 in Gb with c “ c1 ˆ c2 and
k “ k1 ` k2. From this it follows that the face order of Gd is the product of the face posets of
d paths. The face poset of a path of length k ě 1 is known as the k-fence, this is the poset Fk

with elements ta0, . . . , aku Y tb1, . . . , bku and relations ai ď bj if i P tj ´1, ju. See Figure 1 and
Figure 2 for examples.

Remark. Face lattices belong to convex polytopes, they include a unique minimal element
(the empty set) and a unique maximal element (the full body). In contrast face posets, i.e.,
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inclusion posets of faces, can be associated to general cell complexes and can have many
minimal and maximal elements.

a1 a2 a3 ak

b1 b2 b3 bk

a0

Figure 1: The k-fence Fk.

Figure 2: A 3 ˆ 2 grid and its face poset F3 ˆ F2.

To understand the dimension of a product Fk1 ˆ ¨ ¨ ¨ ˆFkd of fences, we study the dimension
of products F ˆ P where F is a fence in Subsection 2.1. In Subsection 2.4 we study products
with crowns and more generally products of 3-dimensional posets. This results in a new proof
of Theorem 5.

2.1 Fence Posets

In this subsection we prove the following theorem.

Theorem 7.
dimpFk1 ˆ . . . ˆ Fkdq “ d ` 1.

We begin with a simple observation which covers the case d “ 1 of the theorem.

Observation 8. The unique 2-realizer of the k-fence Fk is given by

Lleft “ a0a1b1a2b2 . . . akbk and Lright “ akak´1bk . . . a1b2a0b1.

The next proposition will give the upper bound for the theorem. Actually we bound the
dimension of dimpF ˆP q where F is a fence and P is arbitrary. We include the full proof even
though later we will prove more general statements. We begin by introducing a useful concept.

Infixing sequences. For a sequence S “ x1 . . . xs of elements of a set X and a sequence
T “ y1 . . . yt of elements of a set Y we define the infixion of T in S as a sequence in X ˆ Y by

SpT q “ px1, y1q . . . px1, ytqpx2, y1q . . . px2, ytq . . . pxs, y1q . . . pxs, ytq.

The building block of this operation is the infixion of T in an element x of X, this is xpT q “

px, y1q . . . px, ytq.

If realizers of products are constructed via infixions the condition of Observation 6 for being
a realizer is typically easy to check. The proof of the following proposition gives an example.
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Proposition 9. Let P be an arbitrary finite poset, then dimpP ˆ Fkq ď dimpP q ` 1.

Proof. Let d be the dimension of P and let R “ tL1, . . . , Ldu be a realizer of P . Define a set
R1 “ tL1

1 . . . , L
1
d, L

2
du of linear extensions of P ˆ Fk by

L1
i :“ Lipa0 . . . akb1 . . . bkq for 1 ď i ă d

L1
d :“ Ldpa0qLdpa1b1q . . . Ldpakbkq

L2
d :“ LdpakqLdpak´1bkq . . . Ldpa0b1q.

To certify that R1 is a realizer we consider pp, fq, pp̃, f̃q P P ˆ Fk with pp, fq ęPˆFk
pp̃, f̃q and

distinguish two cases:

• p ęP p̃: Since R is a realizer of P there is some Li such that p̃ ăi p. If i ă d then
pp̃, f̃q ăi1 pp, fq. If i “ d and f ęFk

f̃ , then we have f̃ before f in one of the two linear
extensions of the 2-realizer of Fk, whence Ldpf̃q precedes Ldpfq in L1

d or L2
d. Finally, if

f ďFk
f̃ then Ldpff̃q is a subsequence of L1

d or L2
d which has pp̃, f̃q before pp, fq.

• p ďP p̃ and f ęFk
f̃ : We have f̃ before f in one of the two linear extensions of the

2-realizer of Fk, whence Lkpf̃q precedes Ldpfq in L1
d or L2

d, hence, either pp̃, f̃q ăd1 pp, fq

or pp̃, f̃q ăd2 pp, fq.

Since R1 is a pd ` 1q-realizer of P ˆ Fk we conclude that dimpP ˆ Fkq ď dimpP q ` 1.

To see that the bound given in the proposition is tight let P be any d-dimensional poset with 0
and 1. Due to Baker’s theorem the dimension of P with the 2-chain 2 equals dimpP q`dimp2q “

d ` 1. The poset P ˆ 2 is a subposet of P ˆ Fk, whence dimpP ˆ Fkq ě d ` 1.
Products of fences have no 0, hence, to show the lower bound for the theorem we need

another argument. The following theorem, originally due to Reuter, shows that there are
posets P such that dimpP ˆF1q “ dimpP q`1. The dual of F1 is the poset V on three elements
t0, 1, 2u with the two relations 0 ď 1, 0 ď 2 and 1 ∥ 2.

Theorem 10 (Reuter [Reu90]). Let P be a poset with a 0. Then, dimpP ˆ V q “ dimpP q ` 1.

If P is the face lattice of a polytope with the 1 removed, then P ˆV corresponds to the face
lattice of a bipyramid with base P without the maximal element.

Figure 3: The face lattice of a bipyramid over a pentagon without 1.

In his proof of the theorem Reuter [Reu90] argues on the basis of Ferrers dimension. Since
this generalization of order dimension is not generally well known we have adapted the proof.
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Proof. Given Proposition 9 we only have to show the lower bound. Let P be a poset with a 0
and dimpP q “ d. Aiming for a contradiction we assume that there is a d-realizer L1, . . . , Ld

of P ˆ V . Observe that for x, y P P we have x ďP y if and only if px, 0q ăPˆV py, 1q. For
i P t0, 1, 2u we define a subset Ǐi of incpP ˆ V q by

Ǐi “ tppx, 0q, py, iqq P incpP ˆ V qu

and for j P t1, . . . , du we let Ǐji be the set of pairs in Ǐi which are reversed in Lj , i.e.,

Ǐji “
␣

ppx, 0q, py, iqq P incpP ˆ V q
ˇ

ˇ py, iq ăj px, 0q
(

.

Note that the definition of a realizer implies
Ť

j Ǐ
j
i “ Ǐi. With Ii we denote the projection of Ǐi

to P , i.e.,
Ii “

␣

px, yq
ˇ

ˇ x, y P P, ppx, 0q, py, iqq P incpP ˆ V q
(

,

and with Iji we denote the projection of Ǐji to P , i.e.,

Iji “
␣

px, yq
ˇ

ˇ py, iq ăj px, 0q
(

.

The set I0 equals incpP q while I1 and I2 contain incpP q together with all pairs px, yq with
y ăP x, still for i “ 0, 1, 2 we have

Ť

j I
j
i “ Ii.

Note that a subset of Ǐi is an alternating cycle in P ˆ V exactly if the projection onto pairs
of P contains an alternating cycle. Hence, all the sets Ij0 , I

j
1 and Ij2 are reversible subsets of

I0, I1 and I2 respectively. For px, yq P Ij1 we have py, 0q ăj py, 1q ăj px, 0q, hence Ij1 Ď Ij0 . A

symmetric argument yields Ij2 Ď Ij0 whence Ij1 Y Ij2 Ď Ij0 .
For j P t1, . . . , du we define

Bj “ tx P P | px, 2q ăj p0, 1qu.

From p0, 1q ∥ p0, 2q in P ˆV it follows that there is some k such that p0, 1q ăk p0, 2q, together
with p0, 2q ď px, 2q for all x P P this implies Bk “ H.
For j ‰ k let pIj “ Ij1 Y

`

pP ˆ Bjq X Ik1
˘

. We will show that incpP q Ď
Ť

i‰k
pIj and that

each pIj is a reversible set. This shows that P has a pd ´ 1q-realizer whence dimpP q ď d ´ 1, a
contradiction.
To show that pIj is reversible we assume an alternating cycle tpai, biq : 1 ď i ď ℓu with all pairs

in pIj . Since Ij1 and Ik1 are reversible as witnessed by Lj and Lk the cycle contains consecutive

pairs pai, biq P Ij1 and pai`1, bi`1q P pP ˆ Bjq X Ik1 . Being consecutive in the alternating cycle

requires ai ďP bi`1, however, bi`1 P Bj implies pbi`1, 2q ăj p0, 1q and pai, biq P Ij1 implies
pbi, 1q ăj pai, 0q. This yields

pbi`1, 0q ăj pbi`1, 2q ăj p0, 1q ďj pbi, 1q ăj pai, 0q,

so ai ęP bi`1. This is a contradiction.
It remains to show that incpP q Ď

Ť

j‰k
pIj . From

Ť

j B
j “ P and Bk “ H we obtain

Ť

j‰k B
j “ P . This implies

Ť

j‰kpP ˆ Bjq X Ik1 “ Ik1 whence
ď

j‰k

pIj “
ď

j‰k

`

Ij1 Y ppP ˆ Bjq X Ik1 q
˘

“
`

ď

j‰k

Ij1
˘

Y Ik1 “
ď

j

Ij1 “ I1.

Since incpP q Ď I1 this completes the proof.

From the theorem we obtain dimpF d
1 q “ dimpV dq ě d ` 1. Since F d

1 is a subposet of every
product of fences we have completed the proof of Theorem 7.
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2.2 Geometric Applications

In this short subsection we collect some geometric consequences of Theorem 10 and open
questions.

Observing that F d
1 with a 1 attached is the face lattice of the d-cube we obtain.

Corollary 11 (Reuter [Reu90]). If Hd is the face lattice of the d-hypercube, then dimpHdq “

d ` 1.

This is a special case of the dimension of the face poset of a grid.

Corollary 12. The dimension of the face poset of a d-grid with side-lengths k1, . . . , kd, ki ě 1
is equal to d ` 1.

In two dimensions it follows from Schnyder’s theorem and its generalizations that the di-
mension of the face poset of finite patches of other plane tesselations is also 3, Figure 4 shows
some examples.

Figure 4: Patches of plane tesselations.

In Rd it is not clear that the dimension of the face posets of such examples remains d ` 1,
even in cases where all the full-dimensional cells are cubes.

2.3 Generalized Fences

A generalized fence is a poset P whose cover graph is a forest of paths. The name is motivated
by the fact that every generalized fence can be obtained from some fence in two steps, taking a
suborder and subdividing the edges of the diagram. Note that disjoint unions of chains belong
to the class of generalized fences.

Our aim in this subsection is to prove the following characterization of generalized fences in
terms of products and dimension.

Theorem 13. A poset F is a generalized fence if and only if dimpP ˆ F q ď dimpP q ` 1 for
every poset P .

The proof that the product with a generalized fence is increasing the dimension by at most
one is similar to the proof of Proposition 9.
To begin with, we observe that the dimension of generalized fences is at most 2, this is

the generalization of Observation 8. To construct a realizer, fix a left to right order of the
components and draw a diagram respecting this order. An example is shown in Figure 5.
Based on this drawing we can define two linear extensions Lleft and Lright. These linear
extensions are constructed with the generic algorithm for linear extensions which iteratively
picks a minimal element of the poset for the linear extension and removes it from the poset.
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Figure 5: A generalized fence F with three components.

For Lleft the minimal element chosen by the algorithm is always the leftmost and for Lright it
is the rightmost. In the case of the generalized fence of Figure 5 we obtain:

Lleft “ 1, 2, 4, 3, 5, 8, 7, 6, 9, 10, 11, 15, 14, 13, 12, 16

Lright “ 15, 16, 14, 13, 12, 9, 10, 11, 8, 7, 4, 5, 6, 1, 2, 3.

Let P be a k-dimensional poset with realizer L1, . . . , Lk and let F be a generalized fence.
We construct a realizer of P ˆF by mimicking the proof of Proposition 9. We let L “ Lk and
use the technique of infixing subsequences of elements of F into linear extensions of P . Choose
an arbitrary linear extension M of F and define L1

i “ LipMq for i “ 1, . . . , k ´ 1. The linear
extensions L1

k and L2
k are based on L, i.e., on Lk, and the linear extensions Lleft and Lright of

F respectively. To construct L1
k we first break Lleft into pieces of consecutive elements, where

each piece consists of all elements of a maximal down-slope. Pieces are one by one infixed into
L in the order given by Lleft. The construction of L2

k is alike but on the basis of Lright and the
pieces correspond to maximal up-slopes.
We exemplify the construction with the example from Figure 5, the 2-realizer constructed

above and with M “ 1, 4, 8, 9, 15, 2, 5, 7, 10, 14, 16, 3, 6, 11, 13, 12 is:

L1
i “ Lip1, 4, 8, 9, 15, 2, 5, 7, 10, 14, 16, 3, 6, 11, 13, 12q for 1 ď i ă k

L1
k “ Lp1qLp2qLp4, 3qLp5qLp8, 7, 6qLp9, 10, 11qLp15, 14, 13, 12qLp16q

L2
k “ Lp15, 16qLp14qLp13qLp12qLp9, 10, 11qLp8qLp7qLp4, 5, 6qLp1, 2, 3q.

To certify that this is a realizer, we refer to Observation 6. Consider pp, fq, pp̃, f̃q P P ˆ F
with pp, fq ęPˆF pp̃, f̃q. The argument that pp̃, f̃q precedes pp, fq in one of the linear extensions
is exactly as in the proof of Proposition 9.

• p ęP p̃: There is some Li such that p̃ ăi p. If i ă k then pp̃, f̃q ăi1 pp, fq. If i “ k and
f ęF f̃ , then we have f̃ before f in Lleft or Lright , whence Lkpf̃q precedes Lkpfq in L1

k

or L2
k. Finally, if f ďF f̃ then Lkpff̃q is a subsequence of L1

k or L2
k which has pp̃, f̃q

before pp, fq.

• p ďP p̃ and f ęF f̃ : We have f̃ before f in Lleft or Lright, whence Lkpf̃q precedes Lkpfq

in L1
k or L2

k, which implies that pp̃, f̃q comes before pp, fq in L1
k or L2

k.

This completes the proof of the following proposition which is othe first implication needed
of the theorem.

Proposition 14. Let F be a generalized fence and P be an arbitrary poset, then dimpP ˆF q ď

dimpP q ` 1.
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For the proof of the theorem it remains to show that for every P which is not a generalized
fence we can find some Q such that dimpQ ˆ F q ą dimpQq ` 1. Due to the monotonicity of
dimension we only have to consider posets P which are minimal in the suborder relation with
respect to not being generalized fences. All minimal examples are shown in Figure 6.

Lemma 15. If Q is a poset which is not a generalized fence, then Q contains one of posets
Z3, Z

d
3 , Y , Y d, B2, C2, or Ck with k ě 3 shown in Figure 6 as a subposet.

Proof. The cover graph of every poset which is not a generalized fence contains a vertex of
degree three or a cycle. If it contains a vertex of degree three it has Z3 or Y or one of the
duals Zd

3 or Y d as a subposet. Now suppose that the poset contains a cycle. Consider the
orientation of the edges of the cycle induced by the order relation. Let k be the number
of sinks in this orientation and note that the number of sources on the cycle is also k. If
k “ 1 the cycle decomposes into two directed paths from source to sink. Since the cover graph
has no transitive edges the length of each path is at least two, whence the poset contains an
induced B2. If k ě 2 take the poset induced by the k sources and the k sinks and note that it
is isomorphic to Ck.

a b c

0

c1 c2

00

01 10

11

a1 a2 a1 aka2

b1 b2

a3

b1 b3 bkb2

Z3 Y B2 C2 Ck k ě 3

b

a

Figure 6: Obstructions for generalized fences: the posets Z3, Y, B2, C2, and Ck with k ě 3.

We go through the cases one by one, starting with the easy ones.

For the duals Zd
3 and Y d of Z3 and Y it is sufficient to note that P d ˆ Qd “ pP ˆ Qqd and

that dimpP q “ dimpP dq for all posets P and Q.

Case Q “ B2. The poset B2 is the 2-dimensional Boolean lattice. The product B2 ˆ B2 is
the Boolean lattice B4, hence dimpB2 ˆ B2q “ dimpB4q “ 4 ą 3 “ dimpB2q ` 1.

Case Q “ Ck, k ě 3. Recall that dimpCkq “ 3 for k ě 3. Now consider the product of a
chain L with Ck. We obtain dimpL ˆ Ckq ě 3 ą 2 “ dimpLq ` 1.

Case Q “ Z3. The dimension of Z3 is obviously two. We will see that the dimension of Z3ˆZ3

is four. Together this yields dimpZ3 ˆ Z3q “ 4 ą dimpZ3q ` 1 “ 3.
It is easily checked that Z3 ˆ Z3 is the incidence order of the complete bipartite graph K3,3

with a 0 attached, hence dimpZ3 ˆ Z3q “ dimpK3,3q. Schnyder [Sch89] proved the following
remarkable characterization of planar graphs: A graph G is planar if and only if the dimension
of the incidence poset of G is at most three. Since K3,3 is nonplanar we conclude that dimpZ3ˆ

Z3q ě 4.
The history of the proof that the dimension of the incidence order of a non-planar graph is

at least four is intricate. The result has frequently been attributed to Babai and Duffus (see
e.g. [Tro92, page 128]), this, however, may be wrong. We are aware of a proof in Trotter’s book
[Tro92, page 129] and a proof in Schnyder’s article [Sch89, Thm. 4.1]. Schnyder’s proof is a
2-dimensional version of a more general theory of geometric realizations of abstract simplicial
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complexes which are defined via a collection of linear orders, we refer to Scarf [Sca73] and
Ossona de Mendez [Oss99].

a1 a2

b1 b4

a3 a4

b2 b3

x y

Figure 7: The 4-dimensional poset P2.

For the two remaining cases we use the poset P2 shown in Figure 7. Below in Lemma 16 we
show that dimpP2q “ 4.

Case Q “ C2. The dimension of C2 is obviously two. The diagram of C2 ˆ C2 is shown in
Figure 8 (left), there it is highlighted that P2 is a subposet of C2 ˆ C2. Therefore we have
dimpC2 ˆ C2q ě 4 ą 3 “ dimpC2q ` 1.

Case Q “ Y . The dimension of Y is obviously two. The diagram of Y ˆ Y is shown in
Figure 8 (right), there it is highlighted that P2 is a subposet of Y ˆ Y . Therefore we have
dimpY ˆ Y q ě 4 ą 3 “ dimpC2q ` 1.

Figure 8: P2 in C2 ˆ C2 and Y ˆ Y.

Lemma 16. The dimension of the poset P2 shown in Figure 7 is four.

Proof. Suppose that P2 has a realizer L1, L2, L3 of size three. Since P2 has two minimal
elements each has to be the first in one of the three linear extensions. By symmetry between x
and y, we may assume that x is first in L1 and y is first in L2 and L3. The critical pairs py, a1q

and py, a3q can only be reversed in L1, i.e., a1 ă1 y and a3 ă1 y. Again due to symmetry we
may assume that a2 ă1 a4.
The pair px, a2q has to be reversed, we may assume that this happens in L2. We now know

that the pairs pa2, b1q and pa2, b4q have not been reversed in L1 because b1 and b2 are both
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larger than a4 in P2 and a2 ă1 a4. The two pairs are also not reversed in L2 because b1 and b2
are both larger than x in P2 and a2 ă2 x. This implies b1 ă3 a2 and b4 ă3 a2. Together with
the relations of P2 we find that both of a1, a3 precede both of b2, b3 in L3 and also in L1.

Consequently, the two pairs pa1, b3q and pa3, b2q have to be reversed in L2. However, this is
impossible because they form an alternating cycle. Hence, there is no 3-realizer of P2.

We have shown that dimpP2q ě 4. The construction of a 4-realizer for P2 is an easy exercise
left to the reader.

The poset P2 is the first poset in a sequence of posets Pn “ pXn,ďnq, on 4n ` 2 elements
tx, yu Y ta1, . . . , a2nu Y tb1, . . . , b2nu. The elements ai and bi of Pn induce a crown C2n as in
Figure 6. The element x is below all the odd indexed ai and incomparable to the even indexed,
while y is below all the even indexed ai and incomparable to the odd indexed.

Proposition 17 (Wittmann [Wit23], Lemma 3.8.). The poset Pn is 4-dimensional and irre-
ducible, i.e., removing any element results in a poset of dimension three.

2.4 Crowns and Products

To show that there is a poset P with dimpP ˆCkq ą dimpP q`1 where Ck is a crown with k ě 3
we have been using a chain, i.e., a 1-dimensional poset P . This choice was not by laziness.
Indeed we next show that there are no other examples.

Theorem 18. Let P be a finite poset and k ě 3. Then,

dimpP ˆ Ckq ď maxp3, dimpP q ` 1q.

Proof. The proof of this theorem is similar to the proof given for fences in Proposition 9. We
use a specific realizer of Ck and an arbitrary realizer L1, . . . , Ld of P . The realizer of P ˆ Ck

is then constructed via infixion.
Note that unlike in the case of fences and generalized fences the minimum size realizer of Ck

is not unique. We are going to use the following 3-realizer of Ck where M2 and M3 are the
unique 2-realizer of the fence obtained by deleting b1 from Ck while M1 is only reverting the
critical pairs involving b1, i.e., the pairs pai, b1q for 2 ď i ď k ´ 1.

M1 “ a1akb1a2 . . . ak´1b2 . . . bk,

M2 “ a1a2b2a3b3a4b4 . . . akbkb1,

M3 “ akak´1bkak´2bk´1 . . . a2b3a1b2b1.

(1)

Given a poset P with a realizer L1, . . . , Ld we define a realizer L1
1, . . . , L

1
d´1, L

1
d, L

2
d as follows.

L1
i :“ Lipa1 . . . akb1 . . . bkq for 1 ď i ď d ´ 2,

L1
d´1 :“ Ldpa1akb1qLd´1pa2 . . . ak´1b2 . . . bkq,

L1
d :“ Ldpa1a2b2qLdpa3b3q . . . Ld´1pakbkb1q,

L2
d :“ Ldpakak´1bkqLdpak´2bk´1q . . . Ld´1pa1b2b1q.

Note that the last three linear extensions of this list contain subsequences where parts of the
realizer of Ck have been injected into Ld´1 and parts where the injection is into Ld. We come
to this again in Section 3.
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If dimpP q “ 1, then we use a 2-realizer consisting of two copies of the chain P and obtain a
3-realizer of P ˆ Ck which is minimum because the 3-dimensional crown Ck is a subposet of
the product.
It remains to show that L1

1, . . . , L
1
d´1, L

1
d, L

2
d is a realizer of P ˆ Ck. Let pp, cq ęPˆCk

pp̃, c̃q
in P ˆ Ck and consider the following two cases.

• c ęCk
c̃: If c̃ ‰ tb1, a1, aku, then the pair is reversed in either L1

d or L2
d. If c̃ “ b1, then

the pair is reversed in L1
d´1. For c̃ “ a1 and c ‰ a2, the pair is reversed in L1

d and for
c “ a2 it is reversed in L1

d´1. An analogous reasoning applies for c̃ “ ak and c “ a2 or
c ‰ a2 but with L2

d instead of L1
d.

• p ęP p̃ and c ďCk
c̃: As p ęP p̃, there is some i P t1, . . . , du such that p̃ ăi p. If i ă n´1,

then the pair is reversed in L1
i. If i “ n ´ 1 and c R ta1, aku, then the pair is reversed

in Ld´1pa2 . . . ak´1b2 . . . bkq. If c “ a1 or c “ ak, then the part Ld´1pa1b2b1q of L2
d or

the part Ld´1pakbkb1q of L1
d respectively suffices. Lastly, if i “ n and c P ta1, aku, then

the pair is reversed in one of the blocks Ldpa1akb1q, Ldpa1a2b2q or Ldpakak´1bkq. For all
c R ta1, aku with c ď c̃ one of L1

d or L2
d contains Ldpcc̃q whence the pair is reversed.

In Proposition 14 we have extended the result for fences (Proposition 9) to generalized fences,
i.e., suborders of fences with subdivisions. Similarly, Theorem 18 can be extended to crowns
with subdivisions.

We believe that the upper bound given in the proposition is always tight, i.e., that there is
no poset P with dimpP ˆ Ckq “ dimpP q.

We now know that 3 ď dimpCk ˆ Cℓq ď 4, for all k, ℓ ě 3. The following proposition shows
that the upper bound is tight.

Proposition 19. dimpCk ˆ Cℓq “ 4, for k, ℓ ě 3.

Proof. While it is not used in our proof, it is interesting to note that Ck ˆ Cℓ is the incidence
poset of vertices, edges and faces of a toroidal k ˆ ℓ grid.

The upper bound immediately follows from Theorem 18. For the lower bound we will show
that subposet of Ck formed between the top and the bottom layer is of dimension 4.

Let L be a linear extension of CkˆCℓ which belongs to a minimum realizer. Due to symmetry
we may assume that pb1, b1q is the smallest element from the top layer in L, i.e., pb1, b1q is the
first element of tb1, . . . , bku ˆ tb1, . . . , bℓu in L. The set of elements of the bottom layer which
are smaller than pb1, b1q is

D “
␣

pa1, a1q, pa1, aℓq, pak, a1q, pak, aℓq
(

.

The poset induced by tpb1, b2q, pb2, b1q, pb1, bℓq, pbk, b1qu Y D forms a 4-crown (see Figure 9).
Because pb1, b1q is first among all pbi, bjq in L, none of the critical pairs of this 4-crown is
reversed in L. Hence, besides L a realizer of CkˆCℓ requires at least three linear extensions.

In the introduction we have promised a proof of the fact that dimpP ˆ P q ě 4 for all P
with dimpP q “ 3 (Theorem 5). For the proof it is enough to verify the inequality for all 3-
irreducible posets. The complete list of 3-irreducible posets has been obtained by Kelly [Kel77]
and Trotter and Moore [TM76], and can be found in Trotter’s book [Tro92, pp. 62–66]. In this
list all the posets except for the chevron and the crowns contain a copy of Z3 or Zd

3 . The right
side shows the 3-irreducible poset C from the list with an induced Zd

3 . From Subsection 2.3
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pa1, a1q

pb1, b2q

pa1, aℓq

pb2, b1q

pak, aℓq

pb1, bℓq

pak, a1q

pbk, b1q

pb1, b1q

Figure 9: 4-crown in Ck ˆ Cℓ blocked by pb1, b1q.

we know that dimpZ3 ˆ Z3q “ 4, so dimpP ˆ P q ě 4 for these posets. We have also shown
dimpC2 ˆ C2q “ 4. The dimension of the product Ck ˆ Ck with Ck a crown with k ě 3 has
been investigated in Proposition 19. The chevron itself contains an induced copy of C2, see
Figure 10, hence, we are done with this case too and the proof of Theorem 5 is complete.

Figure 10: A C2 subposet of the chevron and a Zd
3 subposet of the 3-irreducible poset C.

Products of 3-dimensional posets. We are convinced that dimpP ˆQq ě 4 for all P and Q
with dimpP q ě 3 and dimpQq ě 3. For the proof it would be sufficient to show the inequality
for every pair of 3-irreducible posets. We have already observed that except for crowns and the
chevron all 3-irreducible posets contain a copy of Z3 or Zd

3 . Moreover, the chevron contains
a C2, hence, the result would follow from the following seven inequalities:

1q dimpZ3ˆZ3q ě 4, 2q dimpC2 ˆ C2q ě 4, 3q dimpZ3 ˆ Zd
3 q ě 4, 4q dimpZ3 ˆ C2q ě 4,

5q dimpCk ˆ Z3q ě 4, 6q dimpCk ˆ C2q ě 4, 7q dimpCk ˆ Cℓq ě 4.

Inequalities 1) and 2) have been shown as part of the proof of Proposition 14. Inequalities 3)
and 4) can easily be checked by computer or with some patience by hand. Inequality 7) was
the subject of Proposition 19. Inequalities 5) and 6), however, have been shown to be wrong
in Theorem 18. In fact, the theorem shows that to obtain the result that the product of two
3-dimensional posets is at least 4-dimensional, the dimension of each of the products Ck ˆ P
with 3-irreducible P has to be considered.

Using computers (see [Wit]) we have determined the dimension of products of pairs of 3-
irreducible posets. In the cases of infinite families the computations were restricted to the
initial cases n “ 0, 1, 2. The results of the computation do not depend on n with the only
exception dimpF0 ˆ F0q “ 5 ă 6. The values are shown in the following table:

3 The Covering Property

In [Reu89] Reuter defines a covering property for Ferrers relations which implies upper bounds
for the dimension of products. It turns out that the upper bounds of Proposition 9, Propo-
sition 14, and Theorem 18 can be described in these terms. In this section we describe the
covering property and discuss its potential and its limitations.
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An B C CX1 CX2 CX3 D E EX1 EX2 FX1 FX2 Hn In Fn Gn Jn

An 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
B 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
C 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

CX1 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
CX2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
CX3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

D 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
E 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

EX1 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
EX2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
FX1 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
FX2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Hn 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
In 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Fn 4 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6
Gn 4 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6
Jn 4 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6

Table 1: The dimension of products of 3-irreducible posets. For drawings of the diagrams of
the posets see [Tro92, pp. 62–66] and note that in the drawing of Fn the edge pc, dq

is missing.

To introduce the idea let us look at the proof of Theorem 18 again. We injected consecutive
pieces of the linear extensions M1, M2 and M3 of Ck into two linear extensions Ld´1 and Ld

of P to make three linear extensions of the product. The following indicates the blocks used
for injection (parentheses) and the linear extension into which the block was injected (color).

M1 “ pa1akb1qpa2 . . . ak´1b2 . . . bkq,

M2 “ pa1a2b2qpa3b3q . . . pak´1bk´1qpakbkb1q,

M3 “ pakak´1bkqpak´2bk´1q . . . pa2b3qpa1b2b1q.

We had to prove that a pair pair pp, xq ę pq, yq is reversed. For the proof we distinguished
two cases.

• x ę y: Here we use that there is some Mi such that y precedes x in Mi and the two
elements are in distinct blocks of Mi. The L1 obtained by injecting the blocks of Mi

reverts the pair, i.e., pq, yq precedes pp, xq in L1.

• p ę q and x ď y: As p ę q, the realizer of P contains some L with q ăL p. If in one of
the Mi there is a block B containing x and y such that the construction involves LpBq,
i.e., the injection of a block B into L, then pq, yq precedes pp, xq in LpBq and the pair is
reversed.

We now turn the conditions established in this abstraction of the proof of Theorem 18 into
a definition.

Definition 20. Let Q “ pX,ďq be a poset and let R “ M1, . . . ,Ms be a realizer of Q. The
s-realizer R has the pr, sq-covering property if it is possible to break the linear extensions of R
into consecutive blocks and color these blocks with colors from t1, 2, . . . , ru such that

1. If x ę y then there is some Mi such that y precedes x in Mi and the two elements are in
distinct blocks of Mi.
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2. If x ď y then for each color j there is some Mi with a block of color j which contains x
and y.

This definition can be viewed as the specialization of a definition given by Reuter [Reu89]
in the context of Ferrers relations to the case of partial orders.

Theorem 21. Let P , Q be posets. If Q has the pr, sq-covering property and dimpP q ě r then

dimpP ˆ Qq ď dimpP q ` s ´ r.

Proof. Let the pr, sq-covering property of Q be certified by the realizer M1, . . . ,Ms where for
each i the linear extension Mi is a sequence Bi,1 . . . Bi,ki of blocks and ri, js P t1, . . . , ru is the
color of block Bi,j . Let dimpP q “ d ě r and let L1, . . . , Ld be a realizer of P .

We next define linear extensions of P ˆ Q. Let a “ d ´ r For i P t1, . . . , au define

L1
i “ LipM1q,

i.e, we inject M1 in Li. For i P t1, . . . , su let

L2
i “ La`ri,1spBi,1q, La`ri,2spBi,2q, . . . , La`ri,kispBi,kiq.

The claim is that L1
1, . . . , Ld´r, L

2
1 . . . , L

2
s is a realizer of P ˆ Q.

We have to prove that a pair pair pp, qq ę pp1, q1q is reversed.

• q ę q1: Condition 2 of the pr, sq-covering property asserts that there are i, j1, j2 with
j1 ă j2 such that y P Bi,j1 and x P Bi,j2 . Hence pp1, q1q precedes pp, qq in L2

i .

• p ę p1 and q ď q1: As p ę p1, the realizer of P contains some Li reverting the pair pp, p1q.
If i ď a “ d´r, the the pairs are reversed in L1

i “ LipM1q. If i “ a`c, then condition 1 of
the pr, sq-covering property asserts that these is some block of color c containing q and q1.
If this block is Bk,ℓ, then L2

k contains the subsequences La`rk,ℓspBk,ℓq which reverts the
pair.

3.1 Examples of Coverings

We know of no example where a choice of s ą dimpP q would yield an interesting result.
Therefore we simplify notation and say that a poset P has the r-covering property, if it has
the

`

r, dimpP q
˘

-covering property. We list known examples:

• Fences and generalized fences have the 1-covering property.

• Crowns Ck with k ě 3 are 2-covering.

• Antichains and more generally disjoint sums of chains are 2-covering.

• Standard example are 2-covering.

Reuter [Reu89] mentioned that under certain conditions, which he did not describe in detail,
the 2-covering property is maintained under the bipyramid construction discussed in 2.1. The
following proposition provides a precise statement. A realizer R “ L1, . . . , Lk of P has the
hereditary 2-covering property if for each i P t1, . . . , ku, the first block of Li has color two and
all other blocks have color one.
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Proposition 22 (Wittmann [Wit23], Proposition 4.13). If P is a poset with a k-realizer which
has the hereditary 2-covering property, then ppP ` 0q ˆV q ´ p0,0q has a pk ` 1q-realizer which
has the hereditary 2-covering property.

It is easy to verify that the sum of two chains, the crown Ck with k ě 3 and the standard
example Sn admit minimum realizers with the hereditary 2-covering property. Hence after
adding a 0 we can use them to construct infinite series of posets with the 2-covering property.

It would be interesting to identify further posets with the pr, sq-covering property with
r ´ s ě 2. A single example with r ´ s ě 3 would disprove Conjecture 4. Our computations
(see Table 1) suggest that if P and Q both are 3-dimensional and contain a 3-irreducible
subposet different from a crown Ck with k ě 3, then dimpP ˆ Qq ě 5, hence, such posets can
not be 2-covering.

Figure 11: Connected poset P with dimpP q “ 3, dimpP 2q “ 4 and dimpP ˆ B2q “ 4.

Let P be the poset shown in Figure 11 and note that dimpP q “ 3. The Boolean Lattice B2

is a subposet of P , therefore dimpP ˆ B2q ě 4 ą dimpP q ` 2 ´ 2. This shows that P is not
2-covering. On the other hand dimpP ˆ P q “ 4 “ dimpP q ` dimpP q ´ 2. The example thus
shows that the defect in the dimension of a product with respect to the sum of the dimensions
of the factors is not always explained by the covering property.

4 Conclusion

We have studied problems related to the dimension of products of posets. On the way, we have
obtained a characterization of generalized fences as the only posets satisfying the inequality
dimpP ˆ F q ď dimpP q ` 1 for every poset P . We also discussed the r-covering property in
the context of order dimension. The covering property was originally introduced by Reuter
for Ferrers dimension. As a side product of this research, Wittman developed a computational
framework for dimension problems based on SAT. This allows to compute the dimension of
posets with more than 100 elements, whereas all previous algorithms would fail with such sizes.
The algorithm is available in a public repository [Wit].

We are not alone with our interest in the dimension of products of posets. George Bergman
has a draft [Ber23] with a collection of problems. Here is an interesting question from his
collection:

• If P is a poset, and C a chain of more than one element, must dimpP ˆCq “ dimpP ˆ2q?
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