
On the Fractional Dimension ofPartially Ordered SetsSTEFAN FELSNERBell Communications Research, 445 South Street, Morristown, NJ 07962, U.S.A., and Technische Uni-versit�at Berlin, Fachbereich Mathematik, Strasse des 17. Juni 135, 1000 Berlin 12, GermanyE-mail address: felsner@math.tu-berlin.deWILLIAM T. TROTTERBell Communications Research, 445 South Street 2L-367, Morristown, NJ 07962, U.S.A., and Depart-ment of Mathematics, Arizona State University, Tempe AZ 85287, U.S.A.E-mail address: wtt@bellcore.comDate: September 23, 1993Abstract. We use a variety of combinatorial techniques to prove several theorems concerning fractionaldimension of partially ordered sets. In particular, we settle a conjecture of Brightwell and Scheinermanby showing that the fractional dimension of a poset is never more than the maximum degree plus one.Furthermore, when the maximum degree k is at least two, we show that equality holds if and only if oneof the components of the poset is isomorphic to Sk+1, the \standard example" of a k + 1{dimensionalposet. When w � 3, the fractional dimension of a poset P of width w is less than w unless P containsSw. If P is a poset containing an antichain A and at most n other points, where n � 3, we show that thefractional dimension of P is less than n unless P contains Sn. If P contains an antichain A such that allantichains disjoint from A have size at most w � 4, then the fractional dimension of P is at most 2w, andthis bound is best possible.Mathematics Subject Classi�cation (1991). 06A07, 05C35.Key words. Partially poset, dimension, fractional dimension, degree.1. IntroductionIn this paper, we consider a partially ordered set P as a pair (X;P ), and refer to X as theground set and P as the partial order. We �nd it convenient to use the short form posetfor a partially ordered set, and we use the term subposet to refer to a poset induced by asubset of the ground set.Let P = (X;P ) be a poset and let F = fM1; : : : ;Mtg be a multiset of linear extensionsof P . Brightwell and Scheinerman [1] callF a k{fold realizer of P if for each incomparablepair (x; y), there are at least k linear extensions in F which reverse the pair (x; y), i.e.,jfi : 1 � i � t; x > y in Migj � k. The fractional dimension of P, denoted by fdim(P), isthen de�ned in [1] as the least real number q � 1 for which there exists a k{fold realizerF = fM1; : : : ;Mtg of P so that k=t � 1=q (it is easily veri�ed that the least upper boundof such real numbers q is indeed attained). Using this terminology, the dimension of P,denoted by dim(P), is just the least t for which there exists a 1{fold realizer of P . Itfollows immediately that fdim(P) � dim(P), for every poset P.In this paper, we will �nd it convenient to use the following probabilistic interpretationof this concept. Let P = (X;P ) be a poset and let F = fM1; : : : ;Mtg be a multiset oflinear extensions of P . We consider the linear extensions of F as outcomes in a uniformsample space. For an incomparable pair (x; y), the probability that x is over y in F is1



2 FRACTIONAL DIMENSIONgiven by ProbF [x > y] = 1t ��fi : 1 � i � t; x > y in Mi g��:The fractional dimension of P is then the least rational number q � 1 so that there existsa multiset F = fM1; : : : ;Mtg of linear extensions of P with ProbF [x > y] � 1=q, forevery incomparable pair (x; y).For each n � 3, the height two poset containing n minimal elements fx1; x2; : : : ; xngand n maximal elements fy1; y2; : : : ; yng with xi < yj if and only if i 6= j, for all i; j =1; 2; : : : ; n will be denoted by Sn. The poset Sn is known as the standard example of an{dimensional poset. As noted in [1], fdim(Sn) = dim(Sn) = n.This paper is organized as follows. In Section 2, we introduce some terminology nec-essary for our theorems and review facts about lexicographic sums. In Section 3, weformulate the results relating the fractional dimension of a poset to its degree. In Sec-tion 4, we present a key technical lemma involving the algorithmic transformation of linearorders into linear extensions and present the proof for the main theorem of Section 3. InSection 5, we present the forbidden subposet characterization of the degree inequality. InSections 6 and 7, we derive two other forbidden subposet characterizations of inequalitiesfor fractional dimension. In both cases equality is only possible when P contains a \fulldimensional" standard example as a subposet.In Section 8, we present an inequality relating the fractional dimension of a posetP = (X;P ) to the width of the subposet induced by X � A, where A is an antichain.The bounds obtained in this case are slightly stronger than the corresponding bounds fordimension. We also prove that our bounds are best possible. In Section 9, we characterizeHiraguchi's inequality for fractional dimension. Finally, in Section 10, we propose somenew problems for fractional dimension.2. Notation and TerminologyLet P = (X;P ) be a poset. We denote the set of incomparable pairs of P by inc(P). Nowlet F = fM1;M2; : : : ;Mtg be a nonempty multiset of linear orders on X. We call F amulti-realizer of P if P = \F , i.e., eachMi is a linear extension of P and probF [x > y] > 0,for every (x; y) 2 inc(P).When F is a multi-realizer of P , we de�ne the value of F , denoted valueP(F), as theleast rational number q � 1, so that probF [x > y] � 1=q, for every (x; y) 2 inc(P). Thefractional dimension of P is just the least rational q � 1 so that P has a multi-realizer Fof value 1=q.Recall that an incomparable pair (x; y) in a poset P = (X;P ) is critical if any pointless than x is less than y and any point greater than y is greater than x. We denote the setof all critical pairs of P by crit(P). The following elementary proposition, �rst noted byRabinovitch and Rival [13], is stated formally to emphasize the fundamentally importantrole played by critical pairs in dimension theory.PROPOSITION 2.1. Let P = (X;P ) be a poset and let F be a multiset of linear exten-sions of P . Then F is a multi-realizer of P if and only if probF [x > y] > 0, for every(x; y) 2 crit(P). �We say that a linear order L reverses the critical pair (x; y) if x > y in L. Similarly, wesay L reverses the set S � crit(P) if L reverses each pair in S.The following remark is noted in [1].



S. FELSNER AND W. T. TROTTER 3PROPOSITION 2.2. Let P = (X;P ) be poset and let q � 1 be a rational number. Thenfdim(P) � q if and only if there exists a multiset F of linear extensions of P so thatProbF [x > y] � 1=q, whenever (x; y) 2 crit(P). �Let P = (X;P ) be a poset, and let D = fYx = (Yx; Qx) : x 2 Xg be a family of posetsindexed by the point set X of P. The lexicographic sum of D over P is the poset S whosepoint set consists of all pairs of the form (x; yx), where x 2 X and y 2 Yx. The partialorder on S is de�ned by setting (x1; yx1) � (x2; yx2) in S if and only if(1) x1 < x2 in P , or(2) x1 = x2 and yx1 � yx2 in Qx1 .Both dimension and fractional dimension are well behaved with respect to lexicographicsums. The statement for dimension is due to Hiraguchi [10], and the statement for frac-tional dimension is given in [1].PROPOSITION 2.3. Let S be the lexicographic sum of D = fYx : x 2 Xg over P =(X;P ). Then(1) dim(S) = maxfdim(P);maxx2X dim(Yx)g.(2) fdim(S) = maxffdim(P);maxx2X fdim(Yx)g. �A poset S is decomposable with respect to lexicographic sums if it is isomorphic to alexicographic sum of a familyD = fYx : x 2 Xg over a poset P = (X;P ), where jXj � 2,and jYxj � 2 for at least one x 2 X. Otherwise, we say S is indecomposable.Given a point x in a poset P = (X;P ), let DP(x) denote the set of all points which areless than x in P , and UP(x) the set of points which are greater than x in P . Wheneverthe meaning is clear from the context, we will drop the subscripts and just write D(x)and U (x). Two points x and y are said to be interchangeable in a poset P = (X;P ) ifD(x) = D(y) and U (x) = U (y). Thus x and y are interchangeable if and only if both(x; y) and (y; x) are critical pairs. Note that a poset with an interchangeable pair isdecomposable with respect to lexicographic sums unless it is a 2{element antichain.3. Fractional Dimension and DegreeFor a point x in a poset P = (X;P ), de�ne the degree of x, denoted deg(x), as the numberof points comparable (but not equal) to x in P. Then let �(P) denote the maximum degreeof P, i.e., �(P) = maxfdeg(x) : x 2 Xg.The following theorem is proved by Brightwell and Scheinerman in [1].THEOREM 3.1. If P = (X;P ) is a poset, then fdim(P) � 2 +�(P). �In the next section, we prove the following improved bound which was conjectured in [1].THEOREM 3.2. If P = (X;P ) is a poset and is not an antichain, then fdim(P) �1 +�(P). �As noted in [1], fdim(Sn) = n = 1+�(Sn), for all n � 3, so Theorem 3.2 is best possible.In Section 4, we show that when the the maximum degree of a connected poset P isat least 2, the inequality in Theorem 3.2 is strict, unless P is the standard example ofdimension 1 + �(P). This result has much the same 
avor as Brooks' theorem [4], whichasserts that the chromatic number of a connected graph is at most one more than themaximumdegree, with equality holding if and only if the graph is a complete graph or anodd cycle. It also provides another instance in which the role played by standard examples



4 FRACTIONAL DIMENSIONin dimension theory is analogous to the role played by complete graphs in the theory ofgraph coloring. This parallel is explored in greater detail in the monograph [17].We will in fact prove a result that is slightly stronger than Theorem 3.2. Given a pointx in a �xed poset P = (X;P ), let D[x] = D(x) [ fxg. Then let degD(x) = jD(x)j, andde�ne �D(P) = maxfdegD(x) : x 2 Xg. The set U [x] and the quantities degU (x),�U(P)are de�ned dually.With this notation, we can now state the result we actually prove.THEOREM 3.3. If P = (X;P ) is a poset, then fdim(P) � 1 +�D(P).Note that Theorem 3.3 has Theorem 3.2 as an immediate corollary. Since fractionaldimension is dual, i.e., a poset and its dual have the same fractional dimension, thefollowing result will also be an immediate corollary to Theorem 3.3.COROLLARY 3.4. If P = (X;P ) is a poset, then fdim(P ) � 1 + minf�D(P );�U(P )g.4. Linear Orders and Linear ExtensionsIn [8], F�uredi and Kahn showed that dimension theory problems could be formulated interms of linear orders on the ground set instead of linear extensions. Let P = (X;P ) be aposet and let L be any linear order on the ground set X. When S � X and x 2 X�S, wewrite x > S in L when x > s in L, for every s 2 S. We let C(L) = f(x; y) : (x; y) 2 crit(P)and x > D[y] in Lg. F�uredi and Kahn noted that the following statement holds.PROPOSITION 4.1. Let P = (X;P ) be a poset and let L be any linear order on X. Thenthere exists a linear extension M of P with C(L) � C(M ). �Given a poset P = (X;P ) and a linear order L on X, we let C�(L) = C(L)[f(x; y) : (x; y)is a critical pair, x > D(y) in L, and jD(y)j = �D(P)g.LEMMA 4.2. Let P = (X;P ) be a poset with no interchangeable pairs, and let L be anylinear order on X. Then there exists a linear extension M of P with C�(L) � C(M ).Proof. In order to simplify arguments to follow, we present an algorithmic proof. Wedescribe a deterministic algorithm, LINEX , which takes an arbitrary linear order L on Xas input and outputs a linear extension M = LINEX(L) satisfying the conclusion of thelemma.Set L0 = L; for j � 0, we obtain Lj+1 from Lj by moving an element of X to analternate position according to rules which we describe below. The procedure halts whenwe have a linear extension M = Lj satisfying the conclusion of the lemma. We divide theprocess into two phases. The �rst phase just transforms L into a linear extension N withC(L) � C(N ) and C�(L) � C�(N ), so in this phase, we will already be proving a modestextension of Proposition 4.1.Phase 1: Obtaining a Linear Extension. This phase ends when Lj is a linear exten-sion of P . If it is not, among all pairs (u; v) with u < v in P and v < u in Lj, choose onefor which the number of points between them in Lj is minimum. If there is more than onesuch pair, we choose one for which v is as low as possible in Lj .Claim 1. If w is between u and v in Lj , then w is incomparable with both u and v.Proof. Suppose to the contrary that w is between u and v in Lj , but that w is compa-rable to u. Now w < u in Lj . Also, there are fewer points between w and u than betweenu and v. If u < w in P , then we contradict our choice of the pair (u; v), as we would



S. FELSNER AND W. T. TROTTER 5prefer the pair (u;w). On the other hand, if w < u in P , then w < v in P , and we wouldprefer (v; w) to (u; v). The argument when a point between u and v is comparable to v isdual. 4Now form Lj+1 from Lj by moving v to a point immediately over u. From Claim 1,we note that Lj+1 preserves exactly one more comparable pair of P than does Lj . Thisinsures that Phase 1 will terminate.Claim 2. C(Lj ) � C(Lj+1).Proof. Suppose to the contrary that there exists a critical pair (x; y) 2 C(Lj)�C(Lj+1),and suppose v was placed over u in the construction of Lj+1. Then v 2 D[y], v < x in Lj ,but x < v in Lj+1. However, u < v in P now implies that u < y in P . Now (x; y) 2 C(Lj)requires x > u in Lj . This already gives x > v in Lj+1, a contradiction. 4The argument for Claim 2 also establishes the next claim, which we state for emphasis.Claim 3. C�(Lj) � C�(Lj+1). 4We may now assume that Phase 1 terminates with a linear extension N of P .Phase 2: Doing More. Set N0 = N . This phase produces a sequence fNj : j � 0g oflinear extensions of P and terminates whenM = LINEX(L) = Nj satis�es C�(M ) = C(M ).At each intermediate stage, we will preserve the key properties that C(Nj ) � C(Nj+1) andC�(Nj) � C�(Nj+1).Suppose that there is some pair (x; y) 2 C�(Nj) � C(Nj). Choose one such pair andnote that x < y in Nj , but z < x in Nj for each z 2 X with z < y in P .Claim 4. No point between x and y in Nj is comparable to y.Proof. Suppose to the contrary that u is between x and y inNj , but that u is comparableto y. Since Nj is a linear extension of P , we know that u < y in P . However, thiscontradicts the assumption that (x; y) 2 C�(L). 4Form the linear order Nj+1 from Nj by moving y immediately below x. In view ofClaim 4, we know that Nj+1 is a linear extension of P .Claim 5. C(Nj ) � C(Nj+1).Proof. Suppose to the contrary that (u; v) 2 C(Nj ) � C(Nj+1). Then it follows thatu = y. Since jD(y)j is maximum, y is maximal element in P. However, since (y; v) is acritical pair, we know D(y) � D(v), and thus D(y) = D(v). So v is also a maximal point,and U (y) = U (v) = ;. We conclude that y and v are interchangeable. 4Exactly the same argument establishes the following claim.Claim 6. C�(Nj) � C�(Nj+1). 4Phase 2 terminates because C(Nj) is a proper subset of C(Nj+1), as the second setcontains (x; y), but the �rst does not. This completes the proof of the lemma. �We now present the proof of Theorem 3.3.Proof. Clearly, we may assume that P is indecomposable with respect to lexicographicsums; in particular, P has no interchangeable pair.Let jXj = n and set t = n!. Then consider the set F = fL1; L2; : : : ; Ltg of all linearorders on the ground set X. Note that for a point x and a set S with x 62 S, the fraction oflinear orders in which x is higher than all points in S is exactly 1=(jSj+1). It follows, that



6 FRACTIONAL DIMENSIONa critical pair (x; y) with jD(y)j < k is in C(L) for n!=(jD[y]j+ 1) di�erent permutationsL. Also, a critical pair (x; y) with jD(y)j = k is in C�(L) for n!=(jD(y)j + 1) di�erentpermutations L.Apply the algorithm LINEX de�ned in the previous section, and let S = fM1;M2; : : : ;Mtg, where Mi = LINEX(Li), for each i = 1; 2; : : : ; t. Lemma 4.2 implies ProbS [x > y] �1=(jD[y]j + 1), when jD(y)j < k and ProbS [x > y] � 1=(jD(y)j + 1), when jD(y)j = k.Thus, ProbS [x > y] � 1=(k + 1), for every critical pair (x; y) in P. �We remark that local exchange arguments of the type used in this argument have alsobeen applied in [5].5. Characterizing the Case of EqualityAs noted by Brightwell and Scheinerman, the standard example of an n{dimensional posetsatis�es fdim(P) = 1 + �(P), so Theorem 3.2 is best possible. In this section, we willshow that the standard examples are the only connected posets for which the inequalityin Theorem 3.2 is tight. Before presenting the details of the argument, we need a littlemore notation.Let P = (X;P ) be a poset, and let F be a multi-realizer of P with value(F) = r. Wede�ne ess(F) = f(x; y) 2 crit(P) : probF [x > y] = 1=rg. The pairs in ess(F) are calledthe essential pairs of F .We call a multi-realizerF of a poset P = (X;P ) an optimal family for P if value(F) =fdim(P). Let F1 and F2 be multi-realizers of P. We denote by F1 [F2 the union of thetwo multisets, de�ned so that if a linear order appears n times in F1 and m times in F2, itappears n+m times in F1 [F2. The following elementary proposition is stated formallyfor emphasis.PROPOSITION 5.1. If F1 and F2 are optimal multi-realizers of a poset P, then F1[F2is also an optimal multi-realizer. Furthermore,ess(F1 [F2) = ess(F1) \ ess(F2): �We may then say that a critical pair (x; y) 2 crit(P) is an essential pair of P if (x; y) 2ess(F), for every optimal multi-realizer F . We let ess(P) denote the set of all essentialpairs of P. Note that ess(P) is always nonempty when P is not a chain. When L is alinear order on X, we let ess(L) = C(L) \ ess(P) and ess�(L) = C�(L)\ ess(P). The nextstatement is an immediate consequence of the preceding de�nitions.PROPOSITION 5.2. Let P = (X;P ) be a poset and let F be an optimal multi-realizerfor P. If M1;M2 2 F and ess(M1) � ess(M2), then ess(M1) = ess(M2). �We are now ready to present our characterization of Theorem 3.3.THEOREM 5.3. If P = (X;P ) is a poset with �D(P) � 2, then fdim(P) < 1 + �D(P),unless P contains a standard example of a poset of dimension 1 + �D(P).Proof. Let P = (X;P ) be a poset, k = �D(P), fdim(P) = 1+k and jXj = n. Withoutloss of generality, we may assume that P is indecomposable with respect to lexicographicsums; in particular, we may assume P has no interchangeable pair. Again, let S denotethe family of linear extensions of P constructed in the proof of Theorem 3.3 given in thepreceding section. Then S is optimal. We now derive some elementary statements aboutthe essential pairs reversed by a linear extension in S.



S. FELSNER AND W. T. TROTTER 7Claim 1. Let L be any linear order, and let M = LINEX(L). Then ess�(L) = ess(M ):Proof. Let (x; y) 2 crit(P) and let L0 be a random linear order on X. The probabilitythat (x; y) belongs to ess�(L0) is at least 1=(k + 1). Should this inequality not be tight,then it follows that the pair (x; y) does not belong to ess(P). If there is any linear orderL on X for which there exists a pair (x; y) 2 ess(LINEX(L)) � ess�(L), then we wouldconclude that ProbS [x > y] > 1=(k + 1), and thus (x; y) =2 ess(P). 4Claim 2. If (x; y) 2 ess(P), then jD(y)j = �D(P).Proof. Suppose to the contrary that r = jD(y)j < �D(P) = k. If r < k � 1, then theprobability that (x; y) 2 C(L) for a random linear order on X is 1=(r+2), which is greaterthan 1=(k + 1). Hence (x; y) 62 ess(P), a contradiction.Now suppose r = k � 1 and let D(y) = fy1; y2; : : : ; yk�1g. Also let L be any linearorder on X so that the lowest k + 1 elements of L are fxg [ D[y] with y1 < y2 < � � � <yk�1 < y < x in L. Let L0 be obtained from L by switching the positions of x and y. Then(x; y) =2 ess(L0). We conclude from Claim 1 and Proposition 5.2 that there is a pair (a; b)in ess�(L0)� ess�(L). It is easy to see that this requires (a; b) = (y; z), for some z which ishigher than x in L. This is in turn requires degD(z) = k and hence D(z) = fxg [D(y).Let L00 be obtained from L by moving yr immediately above x. Now ess(L00) $ ess(L),which is a contradiction. 4Now �x an essential pair (yk+1; zk+1) of P and let D(zk+1) = fy1; y2; : : : ; ykg. Thenlet R be any linear order on X in which the k + 1 lowest elements are fy1; y2; : : : ; yk+1gwith y1 < y2 < � � � < yk+1 in R. Note that (yk+1; zk+1) 2 ess�(R).For each i = 1; 2; : : : ; k, let Ri be the linear order on X obtained by moving yi im-mediately over yk+1 in R. Now choose an integer i 2 f1; 2; : : : ; kg. Then (yk+1; zk+1) =2ess�(Ri). It follows that there is a pair in ess�(Ri)�ess�(R). Claim 2 implies that this pairhas the form (yi; zi) with jD(zi)j = k and hence D(zi) = fy1; y2; : : : ; yi�1; yi+1; : : : ; yk+1g.We conclude that the subposet of P induced by fy1; y2; : : : ; yk+1g [ fz1; z2; : : : ; zk+1g isa standard example of dimension k + 1. �We note that Theorem 15 in [1] is a special case of the preceding theorem. We alsonote that the characterization for Theorem 3.2 follows immediately.COROLLARY 5.4. If P = (X;P ) is a poset with 3 � fdim(P) = 1 + �D(P), then oneof the connected components of P is isomorphic to the standard example of dimension1 +�D(P). �6. Fractional Dimension and WidthThe following inequality is due to Dilworth [6].THEOREM 6.1. Let P = (X;P ) be a poset. Then dim(P) � width(P). �The forbidden subposet characterization problem for the inequality in Theorem 6.1 remainsan unsolved (and we suspect very challenging) problem, although in [15], some in�nitefamilies of examples are constructed which must be present in the solution. Also, it is notknown whether it is NP{complete to determine whether the dimension of a poset is lessthan its width. Using the techniques developed in the preceding sections, we can answerthese questions completely for fractional dimension.Let P = (X;P ) be a poset and let S and T be disjoint subsets of X. When M is alinear extension of P , we say S is over T in M , and write S=T in M , when x > y in M ,for every (x; y) 2 inc(P), with x 2 S and y 2 T . The following elementary result is dueto Hiraguchi [10].



8 FRACTIONAL DIMENSIONPROPOSITION 6.2. Let P = (X;P ) be a poset and let C � X be a chain. Then thereexist linear extensions M1, M2 of P with C=(X �C) in M1 and (X � C)=C in M2. �Recall that Dilworth's theorem [6] asserts that a poset P of width w can be partitionedinto w chains. As a consequence, the inequality in Theorem 6.1 is an immediate corollaryto Proposition 6.2In what follows, we will concentrate on chain decompositions (also called chain covers),i.e,. we will write the ground set as a union of not necessarily disjoint subsets, each ofwhich is a chain.THEOREM 6.3. Let P be a poset. Then fdim(P) � width(P). Furthermore, fdim(P) <width(P), unless(1) width(P) = 2; or(2) width(P) = w for some w � 3, and P contains the standard example of a t{dimensional poset as a subposet.Proof. The �rst statement is trivial. Suppose the second is false and choose a coun-terexample P = (X;P ) with X as small as possible. Let w = width(P) = fdim(P) � 3.The minimality of jXj requires that fdim(Q) < w, for any proper subposet Q of P.Now suppose that P has fewer than w maximal elements. Then there exist a maximalelement y and a chain decomposition X = C1 [C2 � � �[Cw of P so that y belongs to twoor more of the chains in the decomposition. Let Q = (Y;Q) be the subposet obtained byremoving y from P, and let fdim(Q) = r < w. Let G be an optimal realizer of Q andsuppose that G consists of t linear extensions. For eachM 2 G, form a linear extension M 0of X by adding y at the top of M . Let G0 denote the resulting family of linear extensionsof P .Then for each i = 1; 2; : : : ; w, let Mi be a linear extension of P with (X � Ci)=Ci inMi. Let F = fM1;M2; : : : ;Mwg and recall that value(F) = 1=w. Then for each j � 2,let jF denote the multi-realizer of P consisting of j copies of each linear extension fromF .Let Hj = G0 [ jF and observe, that for j su�ciently large, value(Hj) > 1=w, which isa contradiction.The same argument with an appropriate F shows that for each maximal element y ofP, there is some x 2 X so that (x; y) 2 ess(P).Let fy1; y2; : : : ; ywg denote the set of maximal elements of P, and choose an integeri from f1; 2; : : : ; wg. Then choose an element xi 2 X for which (xi; yi) 2 ess(P). Since(xi; yi) 2 inc(P), we know that xi =2 Ci. Choose an integer j = ji so that xi 2 Cj. Thenxi � yj . We now show that xi � yk in P , for every k = 1; 2; : : : ; w, with k 6= i.Suppose to the contrary that there is some integer k 2 f1; 2; : : : ; wg with k 6= i, forwhich xi � yk. It follows easily that there is a linear extension M 0k of P with (X �Ck)=Ckand xi > yi in M 0k. However, this implies that (xi; yi) =2 ess(P). The contradictioncompletes the proof of our assertion that xi � yk in P , for every k = 1; 2; : : : ; w, withk 6= i.Now it follows that the points fx1; x2; : : : ; xwg form an antichain and the order inducedon fx1; x2; : : : ; xwg [ fy1; y2; : : : ; ywg is isomorphic to Sw. �7. The Complements of Antichains IThe following theorem was proved independently by Kimble [11] and Trotter [14].



S. FELSNER AND W. T. TROTTER 9THEOREM 7.1. Let P = (X;P ) be a poset, let A � X be an antichain and let n =jX �Aj. Then dim(P) � maxf2; ng. �In [16], a forbidden subposet characterization of this inequality is obtained. The casewhere jX �Aj � 2 is trivial, and the case jX �Aj = 3 includes some pathology associatedwith the family of 3{irreducible posets. However, for jX � Aj = n � 4, there are exactly2n� 1 forbidden subposets in the list.For fractional dimension, the result is even more elegant.THEOREM 7.2. Let P = (X;P ) be a poset, let A � X be an antichain and let n =jX �Aj. Then fdim(P) � maxf2; ng. Furthermore, fdim(P) � maxf2; n� n�2n�1g, unless(1) n = 2 and P contains a 2{element antichain; or(2) n � 3 and P contains the standard example of an n{dimensional poset as a sub-poset.Proof. Again, the �rst statement is trivial. We provide a sketch of the proof of thesecond, omitting details for some routine parts of the argument. When n � 4, it is provedin [11] that the dimension of P is at most n� 1, unless the n points of X � A constitutean antichain on one side of A (that is, completely above or completely below A). Whenn = 3, we leave it to the reader to show that fdim(P) � 5=2, unless the 3 points in X �Aare an antichain and all three are on the same side of A. Note that this statement is nottrue for ordinary dimension.To complete the proof, it it su�cient to show that the following poset has fractionaldimension at most n � 1 + 1=(n � 1). The antichain A is the set of minimal elementsof P. The maximal elements of P are the n points in Y = X � A = fy1; y2; : : : ; yng.Furthermore, for each nonempty subset S � f1; 2; : : : ; ng with S 6= f1; 2; : : : ; n�1g, thereis an element aS 2 A with aS < yi in P if and only if i 2 S. Note that by requiringS 6= f1; 2; : : : ; n� 1g, we are excluding the appearance of Sn as a subposet of P.Here is the basic idea. We describe two families of linear extensionsM = fM1;M2; : : : ;Mng and R = fR1; R2; : : : ; Rn�1g such that F =M[ (n� 2)R is a (n� 1)-fold realizerof P.To de�ne these extensions, we �rst describe how they order the points of Y . Once thisis done, we have the \gaps" between these points into which the points of the antichain Awill be inserted. These insertions will be done according to a speci�ed set of rules. Finally,we will provide a rule for ordering elements of A which are inserted into the same gap.Let an = afng; note that an < yi in P if and only if i = n. Here are the rules forconstructingM = fM1;M2; : : : ;Mng:(1) For each i = 1; 2; : : : ; n, the point yi is below all other elements of Y in Mi.(2) The largest element of Y in M1 is yn.(3) For each i = 2; 3; : : : ; n, we insert a 2 A � fang into the highest gap in Miconsistent with the partial order P .(4) For each i = 1; 2; : : : ; n, if a; a0 2 A � fang, both belong to the same gap in Mi,and jU (a)j > jU (a0)j, then a > a0 in Mi.(5) The point an is the second largest element in M1 and the �rst element of Mi foreach i = 2; 3; : : : ; n.Here are the rules for constructing R = fR1; R2; : : : ; Rn�1g:(1) For each i = 1; 2; : : : ; n� 1, the point yi is below all other elements of Y in Ri.(2) For each i = 1; 2; : : : ; n� 1, the point yn is the second lowest element of Y in Ri.



10 FRACTIONAL DIMENSION(3) For each i = 1; 2; : : : ; n� 1 and each a 2 A, we insert a into the highest gap in Miconsistent with the partial order P .(4) For each i = 1; 2; : : : ; n � 1, if a; a0 2 A, both belong to the same gap in Ri, andjU (a)j > jU (a0)j, then a > a0 in Ri.We leave it to the reader to verify that a critical pair of the form (aS ; an) with n 2 Sis reverted in Mi for i = 2; : : : ; n, while every other critical pair (x; y) is reversed in alinear extension M 2 M and in a linear extension R 2 R. This shows that F is a(n� 1)-fold realizer. Since F consists of (n � 1)2 + 1 linear extensions we conclude thatfdim(P) � n� 1 + 1=(n� 1), as claimed. �It is interesting to note that we have been able to provide a discrete \jump" in thefractional dimension in the characterization of equality in Theorem 7.2. However, there isno such jump in the characterizations of equality for Theorem 3.3.REMARK 7.3. For all k � 2 and every � > 0, there exists a poset P with �D(P) = kand k + 1� � < fdim(P) < k + 1.Let P be the incidence poset of a k-regular, k-partite hypergraph, where the sides if thek-partition all are of size n for some large n = n�. �8. The Complements of Antichains IIThere is another inequality bounding the dimension of the complement of an antichain.This is another result of Trotter [14]. Let A � X be an antichain in P with X � A 6= ;,and let Q be the subposet of P induced by X �A.THEOREM 8.1. Let P = (X;P ) be a poset, with A and Q as above. Then dim(P) �1 + 2width(Q). �In [16] it is shown that this inequality is best possible. The proof makes use of the ProductRamsey Theorem (see Chapter 5 of [9]. We now show, that in the case of fractionaldimension the situation changes slightly. For a poset P = (X;P ) and a subset Y � X,we let P (Y ) denote the restriction of P to Y , so that Q = (Y; P (Y ) is the subposet of Pinduced by Y .THEOREM 8.2. Let P = (X;P ) be a poset, let A be an antichain with X �A nonempty,and let Q = (Y; P (Y ). Then let w = width(Q).(1) If w = 1 or w = 2, then fdim(P) < 1=2 + 2w.(2) If w = 3, then fdim(P) < 1=4 + 2w.(3) If w � 4, then fdim(P) � 2w.Furthermore, for w = 1 and w � 4, the inequalities are asymptotically best possible.Proof. Let C1; C2; : : : ; Cw be a chain partition of Q. With C+i we denote the subchainof Ci above A and with C�i the subchain below A. We may assume that Ci = C+i [ C�ifor all i. Also let Y = X � A and de�ne Y + = Y \ U (A) and Y � = Y \D(A).To prove the theorem we will construct a multirealizer F of P. This multirealizer isthe union of three blocks of linear extensions, i.e., F = B1 [B2 [B3.Block 1. For each i = 1; : : : ; w, let Li and Mi be linear extensions with Ci=(X �Ci) and(X � Ci)=Ci. Let L = fL1; : : : ; Lwg andM = fM1; : : : ;Mwg. De�ne B1 as pL [ pM,the value of p = p(w) to be speci�ed later.



S. FELSNER AND W. T. TROTTER 11Block 2. In B2 we have for each i = 1; : : : ; w a subblock Ci of linear extensions, i.e.,B2 = C1 [ : : :[ Cw. Each linear extension in Ci has (Y + �C+i )=C+i and C�i =(Y � �C�i ).Moreover, for every subset B of A with jBj = jAj=2 (we may assume jAj to be even) thereis a linear extension LB in Ci in which elements of B are as low as possible, while elementsof A � B are as high as possible. Let q = � jAjjAj=2� denote the number of linear extensionsin Ci.Block 3. In B3 we assemble r copies of a linear extension which simultaneously reversesall critical pairs (x; y) with x; y 2 A. Assuming that there are no interchangeable pairsthis can easily be done.To count how often a critical pair (x; y) of P is reversed in F , we have to distinguishthree types.Type 1. x 2 Ci and y 2 Cj. The pair is reversed whenever Ci=(X � Ci) and when(X �Cj)=Cj. Since i 6= j, this gives 2p reversals in B1.Type 2. x 2 Ci and y 2 A. The pair is reversed whenever Ci=(X�Ci), giving p reversalsin B1. However x 2 C�i and the pair is also reversed in a linear extension LB 2 Ci wheny 2 B. Together this gives p + q=2 reversals. By the dual argument, the same numbercounts the reversals when x 2 A and y 2 Ci.Type 3. x 2 A and y 2 A. The pair is reversed r times in B3. Also each Ci gives morethan q=4 reversals, together this makes more than r + (wq)=4.Note that jF j = (2p+ q)w + r. We now give the proportions of p and r relative to q.w = 1 ! p = 0, r = q=4w = 2 ! p = q=2, r = q=2w = 3 ! p = q=2, r = q=4w � 4 ! p = q=2, r = 0A simple calculation shows that the multirealizers built with these proportions havethe right values. Note, that in the �rst three cases, the values p and r where chosen as tobalance the proportion of reversals of Type 3 with the proportion of reversals of Types 1and 2. In the calculation we only counted (wq)=4 reversals of Type 3 in B3. As alreadynoted, the actual number is slightly larger. This proves that the given bounds can not beattained.We now sketch the argument showing that for every � > 0, there is a poset P containingan antichain A, such that width(P �A) = w and the fractional dimension of P is at least2w� �.For given w and n, let P = (X;P ) be the poset de�ned by:(1) A is an antichain in P.(2) C1; : : : ; Cw is a chain partition of X � A.(3) jC+i j = jC�i j = n for all i.(4) C+i is incomparable to C+j , C�i is incomparable to C�j and C�i < C+j for all i 6= j.(5) For every down-set S � D(A) and every up-set T � U (A) there is an elementaS;T 2 A with D(aS;T ) = S and U (aS;T ) = T .Now let F be an optimalmultirealizer of P, in what follows we consider F as a probabilityspace. We choose a � = �� and round all probabilities to multiples of �. Consider anantichain B consisting of one point from C+i for each i. For each � in the symmetricgroup on w objects, let p� be the (rounded) probability that in a linear extension in F the



12 FRACTIONAL DIMENSIONelements of B appear in the order speci�ed by �. There are fewer than (1 + 1� )w! possiblefunctions � ! p� and we color the antichains by these functions. Provided n is large, theProduct Ramsey Theorem guarantees the existence of a two-element subchain Ei in eachC+i , such that all antichains consisting of one point from each Ei receive the same color.Note that this implies that in all but a negligible portion of linear extensions in F thesubchains Ei behave as points relative to one another, i.e, if x 2 Ei, y 2 Ej and x < y,then Ei < Ej.The same argument allows us to choose two element subchains Fi in C�i for each i,such that the Fi behave as points relative to each other almost all linear extensions in F .Now let a 2 A be the element with a < maxEi, ajjminEi, ajjmaxFi and a > minFifor all i = 1; : : : ; w. Observe that when the Ei and Fi behave as points in a linearextension L, then only one of the 2w events a > minEi, a < maxFi for i = 1; : : : ; wcan hold in L. Hence the probability of the least probable of these events is at most(1 � 
)=2w + 
, where 
, the probability that the Ei or the Fi do not behave as points,only depends on the accuracy of the rounding, i.e., on �. Now � can be chosen so that(1� 
)=2w + 
 < 1=(2w � �). This completes the proof. �Note, that the examples given in the proof of Theorem 8.2 have already been used in[16] to show that the inequality of Theorem 8.1 is tight.9. Hiraguchi's Inequality and Removal TheoremsWe now give two further characterizations for inequalities involving fractional dimension.Both results will be easy corollaries of previous results, and both show that some problemsare much easier when stated in terms of fractional dimension. The �rst example is knownas Hiraguchi's inequality [10]. In this case, when jXj � 8, the characterizing posets arethe same for both ordinary dimension and fractional dimension. For ordinary dimension,the proof is only moderately complicated when jXj is even (see [2]). However, for ordinarydimension, there is no transparent proof when jXj is odd. The most frequently cited sourcefor the proof is Kimble [11], but to the best of our knowledge, the arguments therein areincomplete.By way of contrast, the proof of the characterization for fractional dimension is veryeasy in both cases (for an analogous situation, see the characterization given for intervaldimension in [3]).THEOREM 9.1. If P = (X;P ) and jXj � 4, then fdim(P) � bjXj=2c. Furthermore, ifjXj � 6, then fdim(P) = bjXj=2c only if jXj is even and P is a standard example, or jXjis odd and P contains a standard example on jXj � 1 points.Proof. If P contains an antichain A with jAj > jXj=2, then Theorem 7.2 impliesfdim(P ) � jX � Aj < jXj=2. Now assume that there is no antichain of size more thenjXj=2, then width(P ) � bjXj=2c. In this case Theorem 6.3 implies fdim(P ) � bjXj=2c.The characterization is an immediate consequence of the characterization of Theorem 6.3.�THEOREM 9.2. If P = (X;P ) is a poset and x 2 X, then fdim(X � x; P (X � x)) �fdim(P) � 1. Furthermore fdim(X � x; P (X � x)) = fdim(P) � 1 for each x 2 X only ifP is a standard example.Note, that the condition dim(X � x; P (X � x)) = dim(P) � 1 for each x 2 X gives ade�nition for irreducible posets. A characterization of irreducible posets has only beenobtained for dimensions two and three. An indication for the abundancy of irreducible



S. FELSNER AND W. T. TROTTER 13posets is the following estimate: For each t � 4, if n > 10t, then the number of t-irreducible posets on n points is at least as large as the number of posets on n=3 pointshaving dimension at most t� 1.Proof of Theorem 9.2. In [1] it is shown that a poset P = (X;P ) on n elements containsan element x, such that fdim(X � x; P (X � x)) � n�2n fdim(P). Hence, when fdim(P) <jXj=2, there is an element x 2 X, such that fdim(X � x; P (X � x)) > fdim(P)� 1. Theresult now follows from Theorem 9.1. �10. Open Problems for Fractional DimensionIn most instances, we have been able to show that our inequalities for fractional dimensionare best possible. In two cases, there is still some uncertainty.PROBLEM 10.1. Are the following two inequalities of Theorem 8.2 best possible?Let P = (X;P ) be a poset, let A be an antichain with X � A nonempty, and letQ = (Y; P (Y ). Then let w = width(Q).(1) If w = 2, then fdim(P) < 1=2 + 2w.(2) If w = 3, then fdim(P) < 1=4 + 2w. �For the inequality ofTheorem 6.3 (see the remarks at the end of Section 7), we makethe following conjecture.CONJECTURE 10.2.(1) For each � > 0, there is an integer w� so that for every w > w�, there exists a posetP so that w � � < fdim(P ) < w = width(P).(2) For every positive integer w � 2, there is an �w > 0 so that fdim(P) � w� �w, forevery poset P with fdim(P) < w = width(P). �Our results and techniques suggest that many dimension theoretic problems have analo-gous versions for fractional dimension which may be somewhat more tractable. Here aretwo such problems. The �rst problem is just a restatement of a problem �rst posed byPeter Fishburn (see [7]).PROBLEM 10.3. For each t � 3, let f(t) be the minimum number of incomparable pairsin a poset P with fdim(P) � t. Is it true that f(t) = t2? �We note that the \chevron" [17] has dimension 3, and has only 7 incomparable pairs.However, an easy exercise shows that a poset with fractional dimension at least 3 musthave at least 9 incomparable pairs. The case t = 4 was resolved by Qin [12]. He showedthat a poset must have at least 16 incomparable pairs in order to have dimension 4.PROBLEM 10.4. Given rational numbers p and q, what is the minimum value of thefractional dimension of P�Q, where fdim(P) = p and fdim(Q) = q? �We were unable to make any progress on determining whether a poset on three or morepoints always contains a pair whose removal decreases the fractional dimension by atmost 1. As is the situation with ordinary dimension, this appears to be a very di�cultproblem. Perhaps the following restricted version is accessible.PROBLEM 10.5. Does there exist an absolute constant � > 0 so that any poset with 3 ormore points always contains a pair whose removal decreases the fractional dimension byat most 2� �? �
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