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Abstract. Representations of planar triangulations as contact graphs of a set of internally disjoint

homothetic triangles or respectively of a set of internally disjoint homothetic squares have received quite

some attention in recent years. In this paper we investigate representations of planar triangulations as

contact graphs of a set of internally disjoint homothetic pentagons. Surprisingly such a representation

exists for every triangulation whose outer face is a 5-gon. We relate these representations to five color

forests. These combinatorial structures resemble Schnyder woods respectively transversal structures. In

particular there is a bijection to certain α-orientations and consequently a lattice structure on the set of

five color forests of a given graph. This lattice structure plays a role in an algorithm that is supposed to

compute a contact representation with pentagons for a given graph. Again similar algorithms have been

proposed for contact representations with homothetic triangles and with squares.

1 Introduction

A pentagon contact system S is a finite system of

convex pentagons in the plane such that any two

pentagons intersect in at most one point. If all pen-

tagons of S are regular pentagons with a horizontal

segment at the bottom, we call S a regular pen-

tagon contact representation. Note that in this case

any two pentagons of S are homothetic. The con-

tact system is non-degenerate if every contact in-

volves exactly one corner of a pentagon. The con-

tact graph G∗(S) of S is the graph that has a vertex

for every pentagon and an edge for every contact

of two pentagons in S. Note that G∗(S) inherits a

crossing-free embedding into the plane from S. For

a given plane graph G and a pentagon contact sys-

tem S with G∗(S) = G we say that S is a pentagon

contact representation of G.

We will only consider the case that G is an inner

triangulation of a 5-gon, i.e., the outer face of G is a

5-gon with vertices a1, . . . , a5 in clockwise order and

all inner faces are triangles. Our interest lies in reg-

ular pentagon contact representations of G with the

additional property that a1, . . . , a5 are represented by

line segments s1, . . . , s5 which together form a pen-

tagon with all internal angles equal to (3/5)π. The

line segment s1 is always horizontal and s1, . . . , s5 is

the clockwise order of the segments of the pentagon.

Figure 1 shows an example.

Figure 1: A regular pentagon contact representation

of the black graph

Triangle contact representations have been intro-

duced by De Fraysseix et al. [3]. They observed that

Schnyder woods can be considered as combinatorial

encodings of triangle contact representations of tri-

angulations and essentially showed that any Schny-

der wood can be used to construct a corresponding

triangle contact system. They also showed that the

triangles can be requested to be isosceles with a hor-
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izontal basis. Representations with homothetic tri-

angles can degenerate in the presence of separating

triangles. As an application of the Monster Packing

Theorem, a strong result of Schramm, it was shown

by Gonçalves et al. [7] that 4-connected triangula-

tions admit contact representations with homothetic

triangles. A more combinatorial approach to this re-

sult which aims at computing the representation as

the solution of a system of linear equations which

are based on a Schnyder woods was described by

Felsner [5]. On the basis of this approach Schrezen-

maier reproved the existence of homothetic triangle

representations in his Masters thesis [11].

Representations of graphs using squares or more

precisely graphs as a tool to model packings of

squares already appear in classical work of Brooks

et al. [1] from 1940. Schramm [10] proved that

every 5-connected inner triangulation of a 4-gon ad-

mits a square contact representation. Again there is

a combinatorial approach to this result which aims

at computing the representation as the solution of

a system of linear equations, see Felsner [6]. In

this instance the role of Schnyder woods is taken

by transversal structures. As in the case of ho-

mothetic triangles this approach comes with an al-

gorithm which works well in practice, however, the

proof that the algorithm terminates with a solution

is still missing. On the basis of the non-algorithmic

aspects of the approach Schrezenmaier [11] reproved

Schramm’s Squaring Theorem.

In this paper we investigate representations of

planar triangulations as contact graphs of a set

of internally disjoint homothetic pentagons. From

Schramm’s Monster Packing Theorem it easily fol-

lows that such a representation exists for every tri-

angulation whose outer face is a 5-gon. We relate

such representations to five color forests. The main

part of the paper is reserved to show in what ex-

tent these combinatorial structures resemble Schny-

der woods respectively transversal structures. At the

end of the paper we propose an algorithm for com-

puting homothetic pentagon representations on the

basis of systems of equations and local changes in

the corresponding five color forests. The idea of

looking for pentagon contact representations and a

substantial part of the work originate in the Bache-

lors Thesis of Steiner [12].

2 Five Color Forests and

α-orientations

In this section G will always be a triangulation with

outer face a1, . . . , a5 in clockwise order.

In the following definition colors 1, . . . , 5 play a

role. We will always consider these colors modulo 5.

This means that, for example, −1 and 4 denote the

same color.

Definition 1. A five color forest of G is an orienta-

tion and coloring of the inner edges of G in the colors

1, . . . , 5 with the following properties (see Fig. 2 for

an illustration):

(F1) All edges incident to ai are oriented towards ai
and colored in the color i .

(F2) For every inner vertex v the incoming edges

build five (possibly empty) blocks Bi , i =

1, . . . , 5, of edges of color i and the clockwise

order of these blocks is B1, . . . , B5. Moreover

v has at most one outgoing edge of color i

and such an edge has to be located between

the blocks Bi+2 and Bi−2.

(F3) For every inner vertex and for i = 1, . . . , 5 the

block Bi is nonempty or one of the outgoing

edges of colors i − 2 and i + 2 exists.
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Figure 2: The local conditions of a five color forest

The following theorem shows the key correspon-

dence between five color forests and pentagon con-

tact representations.

Theorem 1 Every regular pentagon contact repre-

sentation induces a five color forest on its contact

graph.

Proof. Let S be a non-degenerate regular pentagon

contact representation of G = G∗(S). We color the

corners of all pentagons of S with the colors 1, . . . , 5

in clockwise order, starting with color 1 at the cor-

ner opposite to the horizontal segment. Let e be an

inner edge of G. Then e corresponds to the contact
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of a corner of a pentagon A and an edge of a pen-

tagon B in S. We orient the edge e from the vertex

corresponding to A to the vertex corresponding to B

and color it in the color of the corner of A involved in

the contact. This yields a five color forest. Figure 3

shows an example.

Figure 3: The induced five color forest and α-

orientation of a pentagon contact repre-

sentation

Our goal is to connect the setting of five color

forests with the well studied setting of orientations

of a given undirected planar graph with prescribed

outdegrees.

Definition 2. Let H be an undirected graph and

α : V (H) → N. Then an orientation H′ of H is

called an α-orientation if outdeg(v) = α(v) for all

vertices v ∈ V (H′).

In a five color forest, every inner vertex has outde-

gree at most 5, but not exactly 5 since the definition

allows missing outgoing edges. The following lemma

allows us to handle this issue.

Lemma 1 Let G be endowed with a five color forest

and let f be a face of G that does not contain an

outer edge. Then in exactly one of the three interior

angles of f an outgoing edge is missing in the cyclic

order of the respective vertex.

Now we are able to define an extension of G and a

function α such that every five color forest of G can

be extended to an α-orientation of this extension.

Definition 3. The stack extension G? of G is the

extension of G that contains an extra vertex in ev-

ery inner face that is incident to at most one of the

outer vertices. These new vertices are connected

to all three vertices of the respective face. We call

the new vertices stack vertices and the vertices of G

normal vertices.

From now on, if we talk about α-orientations, we

always mean α-orientations of G? with

α(v) =


2 if v is a stack vertex,

5 if v is an inner normal vertex,

0 if v is an outer normal vertex,

where we keep the five outer edges undirected. A

five color forest on G induces an α-orientation of G?

in a canonical way by keeping the orientation of the

edges of G and defining the missing edge of Lemma 1

as the unique incoming edge of every stack vertex.

Observation 1 The coloring of the inner edges of

a five color forest can be extended to a coloring of

the inner edges of the induced α-orientation that ful-

fills the properties of a five color forest at all normal

vertices.

We want to prove that the canonical mapping

from five color forests to α-orientations is a bijec-

tion. For this purpose we need to reconstruct the

colors of the inner edges of G if we are given an α-

orientation. The idea of this construction is to start

with an inner edge e of G and follow a properly de-

fined path that at some point reaches one of the five

outer vertices. Then the color of this outer vertex

will be the color of e. This approach is similar to

the proof of the bijection of Schnyder Woods and

3-orientations in [2].

Now we will define these paths. Actually, we al-

ways want to go on with the opposite outgoing edge,

but if we run into a stack vertex, we need to be care-

ful. The paths we will define are not unique, but we

will see that all paths starting with the same edge e

end at the same outer vertex.

Definition 4. Let e = uv be an inner edge such

that u is a normal vertex. We will recursively define

a set P(e) of paths starting with e by distinguishing

several cases concerning v .

• If v is an outer vertex, i.e. v = ai for some i ,

the set P(e) contains only one path, the path

only consisting of the edge e.
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• If v is an inner normal vertex, let e ′ be the op-

posite outgoing edge of e at v , i.e. the third

outgoing edge in clockwise or counterclockwise

direction, and we define P(e) := {e+P : P ∈
P(e ′)}.

• If v is a stack vertex, let e ′1 = vv ′1 and e ′2 = vv ′2
be the left and right outgoing edge of v . Fur-

ther let e ′′1 be the second outgoing edge of

v ′1 after e ′1 in counterclockwise direction and

e ′′2 the second outgoing edge of v ′2 after e ′2 in

clockwise direction. Note that e ′′i is well de-

fined if v ′i is not an outer vertex, and that not

both of v ′1 and v ′2 can be outer vertices. If

both of e ′′1 and e ′′2 are well defined, we define

P(e) := {e+e ′1+P : P ∈ P(e ′′1 )}∪{e+e ′2+P :

P ∈ P(e ′′2 )}. If only e ′′i is well defined, we de-

fine P(e) := {e + e ′i + P : P ∈ P(e ′′i )}.

The following lemma shows that these paths are

suitable to define the the color of of an edge e.

Lemma 2 (i) The paths P ∈ P(e) do not cycle.

(ii) Let P1, P2 ∈ P(e) be two paths starting with

the same edge e. Then P1 and P2 end in the

same outer vertex.

(iii) Let v be a normal vertex and e1 = vv1, e2 =

vv2 be two different outgoing edges. Further

let P1 ∈ P(e1) and P2 ∈ P(e2) be two paths.

Then v is the only common vertex of P1 and

P2.

Now we are able to prove the the main result of

this subsection.

Theorem 2 The canonical mapping from five color

forests to α-orientations is a bijection.

Proof. Let F be the set of five color forests of G

and A the set of α-orientations of G?. Further let

φ : F → A be the canonical map and ψ : A → F
the map that keeps the orientation of the edges as

in the α-orientation and colors every edge e in the

color of the end vertex of the paths in P(e). Then ψ

is well-defined and the inverse function of φ.

It has been shown in [4] that the set of all α-

orientations of a planar graph carries the structure of

a distributive lattice. By applying this theory, we can

derive the following result about five color forests.

Theorem 3 The set of all five color forests of G car-

ries the structure of a distributive lattice. In this lat-

tice a five color forest F1 covers a five color forest F2

if and only if the α-orientation corresponding to F1
can be obtained from the α-orientation correspond-

ing to F2 by the reorientation of a counterclockwise

oriented facial cycle.

3 An Algorithm

In this section we will propose an algorithm to com-

pute a regular pentagon contact representation of a

given graph G.

If we know a five color forest of G that is induced

by a regular pentagon representation, the following

system of linear equations allows us to compute this

representation: Every inner vertex v of G gets a vari-

able xv representing the edge length of the corre-

sponding pentagon and every inner face f gets four

variables x
(1)
f , . . . , x

(4)
f standing for the four edge

lengths of the corresponding quadrilateral in clock-

wise order where the concave corner is located be-

tween the edges corresponding to x
(1)
f and x

(2)
f (see

Fig. 4). For the five inner faces which are incident

to two outer vertices of G we simply set x
(1)
f = 0

since these faces are represented by triangles, not by

quadrilaterals. Now every inner vertex v naturally in-

duces five equations, namely that xv is equal to the

sum of the lengths of the face edges building the

five edges of the pentagon corresponding to v . For

geometric reasons the three convex corners of the

quadrilaterals corresponding to the faces of G are

always exactly (1/5)π. This implies for every inner

face f the two equations

x
(3)
f = x

(1)
f + φx

(2)
f , x

(4)
f = φx

(1)
f + x

(2)
f

where φ denotes the golden ratio. Finally, we add

one more equation to our system stating that the

sum of the lengths of the face edges building the

line segment corresponding to the outer vertex a1
of G is exactly 1.

x
(1)
fx

(2)
f

x
(3)
f

x
(4)
f

π/5

π/5
π/5

Figure 4: The variables for an inner face f
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Theorem 4 The system of linear equations is

uniquely solvable. The solution is nonnegative if and

only if the five color forest the system is based on

is induced by a regular pentagon contact represen-

tation of G.

The basic idea of our algorithm is to start with an

arbitrary five color forest of G and to solve the sys-

tem of linear equations. If the solution is nonnega-

tive, we can construct the regular pentagon contact

representation from the edge lengths given by the

solution and are done. If the solution has negative

entries, we would like to change the five color forest

locally and proceed with the new one. The follow-

ing theorem shows that such local changes locally

change the sign of the solution.

Theorem 5 Let F be a five color forest, g

an oriented facial cycle in the corresponding α-

orientation, f the face of G contained in g and x
(i)
f

with i ∈ {1, 2} the variable corresponding to the

edge surrounded by g. If we flip g in the α-

orientation, i.e. change its orientation, and solve the

system of linear equations for the five color forest

corresponding to the new α-orientation, the sign of

the variable x
(i)
f changes.

Finally, the following theorem shows that it is al-

ways possible to flip a facial cycle in the α-orientation

such that locally a sign switches from negative to

positive.

Theorem 6 If the solution of the system of lin-

ear equations has negative entries, there is an ori-

ented facial cycle in the α-orientation, that sur-

rounds an edge corresponding to a negative vari-

able x
(i)
f where f is an inner face of G and i ∈ {1, 2}.

We can not prove that iterating this local mod-

ifications that are supposed to yield local progress

(Thm. 5) can guarantee global progress. Therfore, a

proof is still missing that this algorithm (or a variant

of it) always terminates with a solution. However

similar algorithms for the computation of contact

representations by homothetic squares or triangle

have been described in [5] and [6], these algorithms

have been subject to extensive experiments [8, 9].

They have always been successful. We therefore

conjecture that the algorithm for computing regular

pentagon contact representations always terminates

with a solution.
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